Projects

Practical acquisition and rendering of diffraction effects in surface reflectance

We propose two novel contributions for measurement based rendering of diffraction effects in surface reflectance of planar homogeneous diffractive materials. Firstly for commonly manufactured materials, we propose a practical data-driven rendering technique and a measurement approach to efficiently render complex diffraction effects in real-time. Our measurement step simply involves photographing a planar diffractive sample illuminated with an LED flash and a spectral filter. Secondly, for sharp specular samples, we propose a novel method for practical measurement of the underlying diffraction grating using out-of-focus “bokeh” photography of the specular highlight.
[+] more

Practical Measurement and Reconstruction of Spectral Skin Reflectance

We present two practical methods for measurement of spectral skin reflectance suited for live subjects, and drive a spectral BSSRDF model with appropriate complexity to match skin appearance in photographs, including human faces. Our primary measurement method employs illuminating a subject with two complementary uniform spectral illumination conditions using a multispectral LED sphere to estimate spatially varying parameters of chromophore concentrations in skin. We also demonstrate how to adapt practical skin patch measurements using a hand-held dermatological skin measurement device for skin appearance reconstruction and rendering.
[+] more

Real-time rendering of realistic surface diffraction with low rank factorisation

We propose a novel approach for real-time rendering of diffraction effects in surface reflectance in arbitrary environments. Such renderings are usually extremely expensive as they require the computation of a convolution at real-time framerates. In the case of diffraction, the diffraction lobes usually have high frequency details that can only be captured with high resolution convolution kernels which make calculations even more expensive. Our method uses a low rank factorisation of the diffraction lookup table to approximate a 2D convolution kernel by two simpler low rank kernels which allow the computation of the convolution at real-time framerates using two rendering passes. We show realistic renderings in arbitrary environments and achieve a performance from 50 to 100 FPS making possible to use such a technique in real-time applications such as video games and VR.
[+] more

Rerendering Landscape Photographs

We present a practical approach for realistic rerendering of landscape photographs. We extract a view dependent depth map from single input landscape images by examining global and local pixel color distributions and demonstrate applications of depth dependent rendering such as novel viewpoints, digital refocusing and dehazing. We also present a simple approach to relight the input landscape photograph under novel sky illumination.
[+] more

Single-shot layered reflectance separation using a polarized light field camera

We present a novel computational photography technique for single shot separation of diffuse/specular reflectance as well as novel angular domain separation of layered reflectance. Our solution consists of a two-way polarized light field (TPLF) camera which simultaneously captures two orthogonal states of polarization. A single photograph of a subject acquired with the TPLF camera under polarized illumination then enables standard separation of diffuse (depolarizing) and specular reflectance using light field sampling, as well as novel angular separation of layered skin reflectance.
[+] more
Delicious Twitter Digg this StumbleUpon Facebook