
WebAssembly:
Mechanisation, Security, and Concurrency

Conrad Watt

University of Cambridge

Verified Software Workshop 2019

Conrad Watt (Cambridge) Formal WebAssembly 1 / 24



A brief history of WebAssembly (Wasm)

A low-level bytecode, supported by all major browsers.

A “compilation target for the Web”.

Has a principled formal specification.

Conrad Watt (Cambridge) Formal WebAssembly 2 / 24



How WebAssembly can be Used

Wasm bytecode files are packaged and distributed
without their original source files.

Conrad Watt (Cambridge) Formal WebAssembly 3 / 24



WebAssembly is Stack-Based

WebAssembly is specified using a small-step formal
semantics.

WebAssembly programs must be validated

(type-checked) before they can be run.

Only well-typed programs may be executed.

pi32.const 2q
pi32.const 3q
pi32.addq

;
2

pi32.const 3q
pi32.addq ; 3

2

pi32.addq;
5

✏

Conrad Watt (Cambridge) Formal WebAssembly 4 / 24



Stack Typing

Typing program fragments:

pi32.const 2q pi32.addq
pi32.const 2q
pi32.const 3q
pi32.addq

pf64.const 0q
pi32.const 3q
pi32.addq

rs Ñ ri32s ri32, i32s Ñ ri32s rs Ñ ri32s K

Some structural typing rules:

e

˚ : t˚
a Ñ t

˚
b

e

˚ : t˚; tå Ñ t

˚; t˚
b

e

˚
1

: t˚
a Ñ t

˚
b e

˚
2

: t˚
b Ñ t

˚
c

e

˚
1

; e˚
2

: tå Ñ tc̊

Conrad Watt (Cambridge) Formal WebAssembly 5 / 24



WebAssembly type system

Progress

For any validated program P that has not terminated with a result,
there exists P’ such that P reduces to P’

Preservation

If a program P is validated with a type ts, any program obtained by
reducing P to P’ can also be validated with type ts.

These properties together guarantee syntactic type soundness.1

1A.K. Wright and M. Felleisen. “A Syntactic Approach to Type Soundness”. In:
Information and Computation 115.1 (1994). issn: 0890-5401.

Conrad Watt (Cambridge) Formal WebAssembly 6 / 24



Mechanisation

An unambiguous formal specification and an unambiguous
correctness condition.

Perfect for mechanisation!

„11,000 lines of Isabelle/HOL.2

Found several errors in the draft specification.
Also included:

Verified sound and complete type-checking algorithm.

Verified sound run-time interpreter.

2Conrad Watt. “Mechanising and Verifying the WebAssembly Specification”. In:
Certified Programs and Proofs (CPP 2018).

Conrad Watt (Cambridge) Formal WebAssembly 7 / 24



Mechanisation

Wasm Logic

A separation logic for WebAssembly.

Petar Maksimović

˚
Neel Krishnaswami

:

Philippa Gardner

˚

Imperial College London

˚
/Cambridge

:

CT-Wasm

Secure information flow type system.

John Renner Natalie Popescu

Sunjay Cauligi Deian Stefan

UC San Diego

Conrad Watt (Cambridge) Formal WebAssembly 8 / 24



Wasm Logic3

WebAssembly’s stack is very static.

The type system guarantees a precise structure.

A program logic should mirror/take advantage of this
structure.

3Conrad Watt, Petar Maksimovic, Neelakantan R. Krishnaswami, and
Philippa Gardner. “A Program Logic for First-Order Encapsulated WebAssembly”. In:
European Conference on Object-Oriented Programming (ECOOP 2019).

Conrad Watt (Cambridge) Formal WebAssembly 9 / 24



Wasm Proof Rules - Control

Notice how closely these proof rules follow the typing rules!

tm; labs $ e˚
: tn Ñ tm

block typing

labs $ pblock ptn Ñ tmq e˚
endq : tn Ñ tm

Qm ; L $ tPnu e˚ tQmu
[block]

L $ tPnu block ptn Ñ tmq e˚
end tQmu

labs!k “ t˚
br typing

labs $ pbr kq : t˚ Ñ t˚
L!k “ P

[br]

L $ tPu br k tQu

Conrad Watt (Cambridge) Formal WebAssembly 10 / 24



Wasm Proof Rules - Control

Wasm’s loop opcode works like block, except executing br restarts the

loop, like a continue statement.

t˚
a ; labs $ e˚

: t˚
a Ñ t˚

b
loop typing

labs $ ploop pt˚
a Ñ t˚

b q e˚
endq : t˚

a Ñ t˚
b

Pn ; L $ tPnu e˚ tQmu
[loop]

L $ tPnu loop ptn Ñ tmq e˚
end tQmu

Conrad Watt (Cambridge) Formal WebAssembly 11 / 24



CT-Wasm4

WebAssembly’s type system is very simple and static.

We can easily add additional security annotations.

Key insight - best practice cryptographic algorithms
already obey a course-grained ”type system” -
constant time principles.

4Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Stefan.
“CT-Wasm: Type-Driven Secure Cryptography for the Web Ecosystem”. In: Principles
of Programming Languages (POPL 2019).

Conrad Watt (Cambridge) Formal WebAssembly 12 / 24



CT-Wasm

We turn violations of these principles into type errors.

Security properties fully mechanised.

s32.const 2
s32.const 2
i32.const 3
i32.add

s32.const 2
br if

rs Ñ rs32s K K

Conrad Watt (Cambridge) Formal WebAssembly 13 / 24



Relaxed Memory

Guillaume Barbier (ENS Rennes)
Stephen Dolan (University of Cambridge)
Shaked Flur (University of Cambridge)
Shu-yu Guo (Google / Bloomberg LP)
Jean Pichon-Pharabod (University of Cambridge)
Anton Podkopaev (HSE / MPI-SWS)
Christopher Pulte (University of Cambridge)
Andreas Rossberg (Dfinity Stiftung)

Conrad Watt (Cambridge) Formal WebAssembly 14 / 24



Relaxed Memory

WebAssembly program can read from and write to a
linear bu↵er of raw bytes.

Adding threads, these bu↵ers can now be shared.

Need a relaxed memory model.

WebAssembly

WebAssembly
i32.load

i32.atomic.store

x = buff[i]

Atomics.store(buff,i,v)

i32.load

i32.atomic.store

Conrad Watt (Cambridge) Formal WebAssembly 15 / 24



Relaxed Memory

JavaScript also has threads (“web workers”) and
shared bu↵ers, even a memory model!

The WebAssembly memory will be exposed to
JavaScript as a shared bu↵er.

JavaScript

WebAssembly
i32.load

i32.atomic.store

x = buff[i]

Atomics.store(buff,i,v)

Conrad Watt (Cambridge) Formal WebAssembly 16 / 24



Relaxed Memory

Committee: JS/Wasm interop should “just work”.

So a lot of Wasm consistency behaviour is inherited
from JS.

JavaScript

WebAssembly
i32.load

i32.atomic.store

x = buff[i]

Atomics.store(buff,i,v)

Conrad Watt (Cambridge) Formal WebAssembly 17 / 24



Relaxed Memory

But Wasm has additional feature - memory growth.

Now, the size of the memory needs to become part of
the axiomatic model.

JavaScript

WebAssemblymem.grow

x = buff[i]

Atomics.store(buff,i,v)

Conrad Watt (Cambridge) Formal WebAssembly 18 / 24



Relaxed Memory

Implementers don’t want to guarantee SC
bounds-checking behaviour.

Updates to memory size can create “data” races.5

x

y

store x 42

grow 2

load y

load x

5Conrad Watt, Andreas Rossberg, and Jean Pichon-Pharabod. “Weakening
WebAssembly”. In: Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2019).

Conrad Watt (Cambridge) Formal WebAssembly 19 / 24



Relaxed Memory

We said Wasm follows JS.

What if the JS model is wrong? Ideally, we fix it.

JS standards body has been very welcoming.

Shu-yu Guo (Bloomberg LP) has been a great point
of contact.

Conrad Watt (Cambridge) Formal WebAssembly 20 / 24



Relaxed Memory

Several JS memory model problems discovered.

Missing synchronization for wait/wake ops.6

SC-DRF violation.7

ARMv8 lda/stl not supported (Stephen Dolan, Cambridge).8

6Conrad Watt. Normative: Strengthen Atomics.wait/wake synchronization to the
level of other Atomics operations. Mar. 2018. url:
https://github.com/tc39/ecma262/pull/1127.

7Shu-yu Guo. Normative: Fix memory model so DRF-SC holds. Nov. 2018. url:
https://github.com/tc39/ecma262/pull/1362.

8Shu-yu Guo. Memory Model Support for ARMv8 LDA/STL. Jan. 2019. url:
https://docs.google.com/presentation/d/1qif7z-Y8C-

nvJM20UNJQzAKJgLN4wmXS_5NN2Wgipb4/edit?usp=sharing.
Conrad Watt (Cambridge) Formal WebAssembly 21 / 24



SC-DRF violation

Atomics.store(v,0,1);

Atomics.store(v,0,2);

if (Atomics.load(v,0) === 1) {

r = v[0];

}

You might think that r must always be assigned 1.

Not so, before our corrections!

This example, and others, found by model checking
(in Alloy).9

9John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides.
“Automatically Comparing Memory Consistency Models”. In: Principles of
Programming Languages (POPL 2017).

Conrad Watt (Cambridge) Formal WebAssembly 22 / 24



bit.ly/2M8cZ2v

Android/Desktop Chrome for best results.

You will almost certainly observe store bu↵ering (SB)
relaxed behaviour.10

store x 1

load y

store y 1

load x

Do you observe the JavaScript Violation? This is the
ARMv8 compilation violation.

10https://www.cl.cam.ac.uk/ pes20/ppc-supplemental/test6.pdf
Conrad Watt (Cambridge) Formal WebAssembly 23 / 24



Thanks for listening!

Conrad Watt (Cambridge) Formal WebAssembly 24 / 24


