WebAssembly:

Mechanisation, Security, and Concurrency

Conrad Watt

University of Cambridge

Verified Software Workshop 2019

Conrad Watt (Cambridge) Formal WebAssembly

A brief history of WebAssembly (Wasm)

o A low-level bytecode, supported by all major browsers.
o A “compilation target for the Web".

o Has a principled formal specification.

WEBASSEMBLY

Conrad Watt (Cambridge) Formal WebAssembly

How WebAssembly can be Used

Web User Web Developer Producer
/Web Browser \ foo.c
Serving Compilation
www.website.com www.website.com (Emscripten)
(HTTPS) Import
'[foo.wasm { foo.wasm 4—[foo.wasm
\ y — (npm)

o Wasm bytecode files are packaged and distributed
without their original source files.

Conrad Watt (Cambridge) Formal WebAssembly

WebAssembly is Stack-Based

o WebAssembly is specified using a small-step formal
semantics.

o WebAssembly programs must be validated
(type-checked) before they can be run.

o Only well-typed programs may be executed.

(i32.add) 5 (i32.add) 5 5

(i32.const 2) .
|_| (i32.const 3) N\ (132.const 3) ~_, 3 | (i32.add) ™ €

Conrad Watt (Cambridge) Formal WebAssembly

Stack Typing

Typing program fragments:

(i32.const 2) | (f64.const 0)

| | |

(i32.const 2) ! (i32.add) ' (i32.const 3) ! (i32.const 3)
| 1 (i32.add) 1 (i32.add)
I I I
I I I

0—[i32] 1[32,i32] > [i32] ' [| - [i32] 'L

Some structural typing rules:
e’ it — t, e i t; — t, e t, — t]
e* ittty >t e, 6 (1t -t

Conrad Watt (Cambridge) Formal WebAssembly

WebAssembly type system

Progress

For any validated program P that has not terminated with a result,
there exists P' such that P reduces to P’

Preservation

If a program P is validated with a type ts, any program obtained by
reducing P to P’ can also be validated with type ts.

These properties together guarantee syntactic type soundness.?

'A.K. Wright and M. Felleisen. “A Syntactic Approach to Type Soundness’. In:
Information and Computation 115.1 (1994). 1ssN: 0890-5401.
Conrad Watt (Cambridge) Formal WebAssembly

e An unambiguous formal specification and an unambiguous
correctness condition.

@ Perfect for mechanisation!
e ~11,000 lines of Isabelle/HOL.?

e Found several errors in the draft specification.
@ Also included:

e Verified sound and complete type-checking algorithm.
e Verified sound run-time interpreter.

2Conrad Watt. “Mechanising and Verifying the WebAssembly Specification” . In:
Certified Programs and Proofs (CPP 2018).
Conrad Watt (Cambridge) Formal WebAssembly

Wasm Logic
A separation logic for WebAssembly.

CT-Wasm
Secure information flow type system.

Petar Maksimovi¢* Neel Krishnaswami'

Philippa Gardner*
Imperial College London* /Cambridge?

Conrad Watt (Cambridge)

Formal WebAssembly

John Renner Natalie Popescu

L4

Sunjay Cauligi Deian Stefan

UC San Diego

o WebAssembly's stack is very static.
o The type system guarantees a precise structure.

o A program logic should mirror/take advantage of this
structure.

3Conrad Watt, Petar Maksimovic, Neelakantan R. Krishnaswami, and
Philippa Gardner. “A Program Logic for First-Order Encapsulated WebAssembly”. In:
European Conference on Object-Oriented Programming (ECOOP 2019).

Conrad Watt (Cambridge) Formal WebAssembly 9/24

Wasm Proof Rules - Control

Notice how closely these proof rules follow the typing rules!

t™ labs - e* : t" — t™

block typin
Qm ;i L+ {Py} e {Qm}
[block]
L {P,} block (t" — t™) e* end {Qp,}
labslk = t* _ [k = P
- br typing [br]

labs - (br k) : t* — t L+ {P} br k {Q}

Conrad Watt (Cambridge) Formal WebAssembly

Wasm Proof Rules - Control

Wasm’s loop opcode works like block, except executing br restarts the
loop, like a continue statement.

t¥; labst e* : tF — t} | -
00 in
labs - (loop (t* — t¥) e* end) : t¥ — t} P typing

P ,Ll_{Pn} e” {Qm}
L+ {Pp}loop (t" — t™) e* end {Qp,}

[loop]

Conrad Watt (Cambridge) Formal WebAssembly

o WebAssembly's type system is very simple and static.
o We can easily add additional security annotations.

o Key insight - best practice cryptographic algorithms
already obey a course-grained "type system” -
constant time principles.

*Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Stefan.
“CT-Wasm: Type-Driven Secure Cryptography for the Web Ecosystem”. In: Principles
of Programming Languages (POPL 2019).

Conrad Watt (Cambridge) Formal WebAssembly 12 /24

o We turn violations of these principles into type errors.

o Security properties fully mechanised.

. s32.const 2

s32.const 2 i i32.const 3 i Z::»Zi.fconst 2
: i132.add | -
I .

Conrad Watt (Cambridge) Formal WebAssembly

Relaxed Memory

Guillaume Barbier (ENS Rennes)

Stephen Dolan (University of Cambridge)

Shaked Flur (University of Cambridge)

Shu-yu Guo (Google / Bloomberg LP)

Jean Pichon-Pharabod (University of Cambridge)
Anton Podkopaev (HSE / MPI-SWS)
Christopher Pulte (University of Cambridge)
Andreas Rossberg (Dfinity Stiftung)

Conrad Watt (Cambridge) Formal WebAssembly

Relaxed Memory

o WebAssembly program can read from and write to a
linear buffer of raw bytes.

o Adding threads, these buffers can now be shared.

o Need a relaxed memory model.

132.1load
[WebAssembly i32.atomic.store

i32.1load WebAssembly }
132.atomic.store

Conrad Watt (Cambridge) Formal WebAssembly

Relaxed Memory

o JavaScript also has threads (“web workers") and
shared buffers, even a memory model!

o The WebAssembly memory will be exposed to
JavaScript as a shared buffer.

x = buff[i]
[JavaScript Atomics.store(buff,i,v)

i32.1oad WebAssembly }
132.atomic.store

Conrad Watt (Cambridge) Formal WebAssembly

Relaxed Memory

o Committee: JS/Wasm interop should “just work”.

o So a lot of Wasm consistency behaviour is inherited
from JS.

x = buff[i]
[JavaScript Atomics.store(buff,i,v)

i32.1oad WebAssembly }
132.atomic.store

Conrad Watt (Cambridge) Formal WebAssembly 17 /24

Relaxed Memory

o But Wasm has additional feature - memory growth.

o Now, the size of the memory needs to become part of
the axiomatic model.

[JavaScript

mem. grow WebAssembly }

Conrad Watt (Cambridge) Formal WebAssembly 18 /24

Relaxed Memory

o Implementers don't want to guarantee SC
bounds-checking behaviour.

o Updates to memory size can create “data” races.”

L (=] P

store x 42 H load y

grow 2 load x

>Conrad Watt, Andreas Rossberg, and Jean Pichon-Pharabod. “Weakening

WebAssembly”. In: Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2019).
Conrad Watt (Cambridge) Formal WebAssembly

Relaxed Memory

o We said Wasm follows JS.
o What if the JS model is wrong? ldeally, we fix it.
o JS standards body has been very welcoming.

o Shu-yu Guo (Bloomberg LP) has been a great point
of contact.

Conrad Watt (Cambridge) Formal WebAssembly

Relaxed Memory

o Several JS memory model problems discovered.

o Missing synchronization for wait/wake ops.°

o SC-DRF violation.”

o ARMvV8 Ida/stl not supported (Stephen Dolan, Cambridge).®

®Conrad Watt. Normative: Strengthen Atomics.wait/wake synchronization to the
level of other Atomics operations. Mar. 2018. URL:
https://github.com/tc39/ecma262/pull/1127.

"Shu-yu Guo. Normative: Fix memory model so DRF-SC holds. Nov. 2018. URL:
https://github.com/tc39/ecma262/pull/1362.

8Shu-yu Guo. Memory Model Support for ARMv8 LDA/STL. Jan. 2019. URL:
https://docs.google.com/presentation/d/1qif7z-Y8C-
nvJM20UNJQzAKJgLN4wmXS_5NN2Wgipb4/edit?usp=sharing.

Conrad Watt (Cambridge) Formal WebAssembly

SC-DRF violation

Atomics.store(v,0,2);
if (Atomics.load(v,0) === 1) {

Atomics.st ,0,1);
omics.store(v) r = v[0]:

}

o You might think that r must always be assigned 1.

o Not so, before our corrections!

o This example, and others, found by model checking
(in AIon).9

% John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides.
“Automatically Comparing Memory Consistency Models". In: Principles of

Programming Languages (POPL 2017).
Conrad Watt (Cambridge) Formal WebAssembly

bit.ly /2M8cZ2v

o Android/Desktop Chrome for best results.

o You will almost certainly observe store buffering (SB)

relaxed behaviour.!?
store x 1 ‘ store y 1
load y load x

o Do you observe the JavaScript Violation? This is the
ARMv8 compilation violation.

Ohttps: / /www.cl.cam.ac.uk/ pes20/ppc-supplemental /test6.pdf
Conrad Watt (Cambridge) Formal WebAssembly

Thanks for listening!

WEBASSEMBLY

Conrad Watt (Cambridge) Formal WebAssembly

