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ISA semantics for ARM and RISC-V
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Foundation for software verification: architecture

I the hardware/software interface, defining the envelope of all allowed hardware behaviour

(distinct from microarchitecture – hardware implementations)

Architecture ' Instruction-set Architecture (ISA) + Concurrency
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EDSAC, 1947–1958
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One “Simple” ARM instruction

ADD <Xd|SP>, <Xn|SP>, #<imm>{, <shift>}

“Add (immediate) adds a register value and an optionally-shifted immediate value, and writes
the result to the destination register.”
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One “Simple” ARM instruction
ADD <Xd|SP>, <Xn|SP>, #<imm>{, <shift>}

“Add (immediate) adds a register value and an optionally-shifted immediate value, and writes
the result to the destination register.”

CompCert ARMv8-A Semantics

Inductive instruction: Type :=

| Paddimm (sz:isize) (rd:iregsp) (r1:iregsp) (n:Z) (**r addition*)

| ...

(** Execution of a single instruction [i] in initial state [rs] and [m]. Return

updated state. For instructions that correspond to actual AArch64 instructions,

the cases are straightforward transliterations of the informal descriptions

given in the ARMv8 reference manuals. *)

Definition exec_instr (f:function) (i:instruction) (rs:regset) (m:mem) : outcome :=

| Paddimm W rd r1 n =>

Next (nextinstr (rs#rd <- (Val.add rs#r1 (Vint (Int.repr n))))) m

| ... 9 / 52



So why is this a big deal?

I scale
I instructions are not really that simple

(average 64-bit ARM instruction have 800 calls to auxiliary functions)

I instruction sets are not that small
(the ARMv8.4-A manual is 7476 pages)

I full-scale definitive machine-readable semantics did not exist for any major architecture,
even within vendors (until Reid for ARM)

I legal concerns with making them publicly available
I readability for practising engineers
I usability as an executable test oracle
I usability for proof
I integration with concurrency semantics
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Decoding, 1/2

val decode64 : bits(32) -> unit

effect {configuration, escape, undef, wreg, rreg, rmem, wmem}

function clause decode64

((_:bits(1) @ 0b0010001 @ _:bits(24) as op_code) if SEE<1066) = {

SEE = 1066;

Rd : bits(5) = op_code[4 .. 0];

Rn : bits(5) = op_code[9 .. 5];

imm12 : bits(12) = op_code[21 .. 10];

shift : bits(2) = op_code[23 .. 22];

S : bits(1) = [op_code[29]];

op : bits(1) = [op_code[30]];

sf : bits(1) = [op_code[31]];

addsub_immediate_decode(Rd, Rn, imm12, shift, S, op, sf)

}
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Decoding, 2/2
val addsub_immediate_decode :

(bits(5), bits(5), bits(12), bits(2), bits(1), bits(1), bits(1))

-> unit

effect {escape, rreg, undef, wreg}

function addsub_immediate_decode(Rd, Rn, imm12, shift, S, op, sf) = {
__unconditional = true;

let ’d = UInt(Rd); let ’n = UInt(Rn);

let ’datasize = if sf == 0b1 then 64 else 32;

let sub_op = op == 0b1; let setflags = S == 0b1;

imm : bits(’datasize) = undefined : bits(’datasize);

match shift {

0b00 => { imm = ZeroExtend(imm12, datasize) },

0b01 => { imm = ZeroExtend(imm12 @ Zeros(12), datasize) },

0b10 => { throw(Error_See("ADDG, SUBG")) },

0b11 => { ReservedValue() }

};
__PostDecode();

addsub_immediate(d, datasize, imm, n, setflags, sub_op)

}
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Execution
function addsub_immediate(d, datasize, imm, n, setflags, sub_op) = {

result : bits(’datasize) = undefined : bits(’datasize);

let operand1 : bits(’datasize) = if n == 31 then SP() else X(n);

operand2 : bits(’datasize) = imm;

nzcv : bits(4) = undefined : bits(4);

carry_in : bits(1) = undefined : bits(1);

if sub_op then {

operand2 = ~(operand2);

carry_in = 0b1

} else {

carry_in = 0b0

};

(result, nzcv) = AddWithCarry(operand1, operand2, carry_in);

if setflags then {

(PSTATE.N @ PSTATE.Z @ PSTATE.C @ PSTATE.V) = nzcv

};

if d == 31 & ~(setflags) then { SP() = result }

else { X(d) = result }
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Auxiliary register-access functions
Register getters and setters defined as functions, e.g. those SP() = result and X(n)

function aset_SP(value) = {

assert(’width == 32 | ’width == 64);

if PSTATE.SP == 0b0 then {

SP_EL0 = ZeroExtend(value)

} else {

match PSTATE.EL {

el if el == EL0 => SP_EL0 = ZeroExtend(value),

el if el == EL1 => SP_EL1 = ZeroExtend(value),

el if el == EL2 => SP_EL2 = ZeroExtend(value),

el if el == EL3 => SP_EL3 = ZeroExtend(value)

}

}

}

val aget_X : forall ’width ’n, 0 <= ’n <= 31 & ’width in {8, 16, 32, 64}).

(implicit(’width), int(’n)) -> bits(’width) effect {rreg}

function aget_X(width, n) =

if n != 31 then slice(_R[n], 0, width) else Zeros(width)
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Execution auxiliary functions

val AddWithCarry : forall (’N : Int), (’N >= 0 & ’N >= 0).

(bits(’N), bits(’N), bits(1)) -> (bits(’N), bits(4))

function AddWithCarry (x, y, carry_in) = {

let ’unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);

let ’signed_sum = SInt(x) + SInt(y) + UInt(carry_in);

let result : bits(’N) = __GetSlice_int(’N, unsigned_sum, 0);

let n : bits(1) = [result[’N - 1]];

let z : bits(1) = if IsZero(result) then 0b1 else 0b0;

let c : bits(1) = if UInt(result) == unsigned_sum then 0b0 else 0b1;

let v : bits(1) = if SInt(result) == signed_sum then 0b0 else 0b1;

return((result, ((n @ z) @ c) @ v))

}
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So why is this a big deal?

I scale
I instructions are not really that simple

(average 64-bit ARM instruction have 800 calls to auxiliary functions)
I instruction sets are not that small

(the ARMv8.4-A manual is 7476 pages)

I full-scale definitive machine-readable semantics did not exist for any major architecture,
even within vendors (until Reid for ARM)

I legal concerns with making them publicly available
I readability for practising engineers
I usability as an executable test oracle
I usability for proof
I integration with concurrency semantics
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Architecture ISA semantics, in Sail

Sail: a clean engineer-friendly first-order imperative language with lightweight dependent
types (typechecked using SMT) for ISA specification, that can generate executable emulators
and prover definitions.

Legal and technical work with ARM to take their internal definition, make it available in Sail,
and validate it.

Sail definitions can include:
I instruction execution: functions above register/memory primitives
I instruction AST
I assembly syntax and decode: bidirectional mappings

[Armstrong, Bauereiss, Campbell, Reid, Gray, Norton, Mundkur, Wassell, French, Pulte, Flur,
Stark, Krishnaswami, Sewell; POPL 2019]
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Sail Tooling
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Sail ISA Models

source KLoS KIPS provers boots conc
ARMv8.5-A ASL 125 200 Isa, HOL4, Coq∗ Linux, Hafnium
MIPS hand 2 800 Isa, HOL4, Coq FreeBSD
RISC-V hand 5 Isa, HOL4, Coq Linux, FreeBSD RMEM

...and smaller IBM POWER and x86 fragments

All publicly available on github, https://www.cl.cam.ac.uk/~pes20/sail/.

BSD or BSD Clear licences

Viable for proof? Isabelle and (ongoing) Coq proofs about ARMv8.5-A address translation
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Why CHERI? See C...
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[Memarian, Gomes, Davis, Kell,
Richardson, Watson, Sewell;
POPL 2019]



from 2018-12-17 19-35-56.png



from 2018-12-17 19-36-30.png



from 2018-12-17 19-36-50.png



from 2018-12-17 19-43-16.png





Does C really permit that?

Yes and No...

I ISO C Standard (WG14) says 35c3.c has undefined behaviour (UB)
I ...it doesn’t constrain C implementations for programs with UB
I I.e., it’s the programmer’s responsibility to avoid UB
I ...and compilers can assume its absence
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Fundamental legacy problem: conventional architecture interface provides only coarse-grain
mechanisms to enforce safety and security properties. Disastrous synergy with conventional
C/C++ systems programming languages.

Many/most security vulnerabilities arise from memory-unsafety, but it is infeasible to radically
change the industry-wide architectures or languages.
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CHERI
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CHERI

CHERI: research architecture to fundamentally improve security, with a hardware capabilities
for fine-grained memory protection and sandboxing.

Originally (2010–): hardware/software co-design: PIs Robert Watson, Simon Moore (UCam);
Peter Neumann (SRI).

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

[Watson, Moore, Neumann, Sewell; Almatary, Anderson, Baldwin, Barrel, Bauereiss, Bukin, Chisnall,
Clarke, Dave, Davis, Esswood, Filardo, Gudka, Gutstein, Joannou, Kovacsics, Laurie, Markettos, Maste,
van der Maas, Mazzinghi, Mujumdar, Mundkur, Murdoch, Napierala, Nienhuis, Norton-Wright, Paeps,
Paul-Trifu, Richardson, Roe, Rothwell, Rugg, Saidi, Son, Stolfa, Turner, Vadera, Woodruff, Xia, Zeeb]
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CHERI basic idea: add hardware support for capabilities

ISO C CHERI C

#include <stdio.h>

int x=1;

int secret_key = 4091;

int main() {

int *p = &x;

p = p+1;

int y = *p ;

printf("%d\n",y);

}

  x: signed int [@3, 0x14]
                   1                                                                               

  secret_key: signed int [@4, 0x18]
                   4091                                                                               

  p: signed int* [@5, 0x20]
                   

   0x18  
                                                                                                                                                           

 x: signed int [@3, 0x14]
                   1                                                                               

 secret_key: signed int [@4, 0x18]
                   4091                                                                               

 p: signed int* [@5, 0x20]
                   

address 0x18

base 0x14

length 0x4

perms R/W

                                                                                                                                                                                                                                                                                                                   
tag 1
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CHERI basic idea: add hardware support for capabilities

ISO C CHERI C

#include <stdio.h>

int x=1;

int secret_key = 4091;

int main() {

int *p = &x;

p = p+1;

int y = *p ;

printf("%d\n",y);

}

  x: signed int [@3, 0x14]
                   1                                                                               

  secret_key: signed int [@4, 0x18]
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  p: signed int* [@5, 0x20]
                   

   0x18  
                                                                                                                                                           

 x: signed int [@3, 0x14]
                   1                                                                               

 secret_key: signed int [@4, 0x18]
                   4091                                                                               

 p: signed int* [@5, 0x20]
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base 0x14

length 0x4

perms R/W

                                                                                                                                                                                                                                                                                                                   
tag 1
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CHERI architecture key design points

I encoding allocation data and permissions within capability permits fast checking at
access-time, without a lookup or TLB pressure

I ISA design lets code shrink capabilities, but never grow them
I non-addressable tags prevent forging (one bit per capability-sized/aligned unit of

memory, cleared by any non-capability write, and one bit per register)
I compressed 128-bit encoding reduces extra memory cost
I can use capabilities either for all pointers, or just when desired
I co-exists nicely with existing C and C++
I co-exists nicely with existing virtual memory machinery (when desired)
I additional mechanisms (sealed capabilities) for secure encapsulation
I initial focus on spatial memory safety, but CHERI can also aid various temporal memory

safety approaches
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Scalable encapsulation using sealed capabilities

...omitted for today
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CHERI architecture

Definitions of CHERI instruction-set architectures and their behaviour

First: CHERI-MIPS

Now: also exploring CHERI-RISC-V and (with Arm) CHERI-ARM
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CHERI hardware

Hardware BlueSpec/FPGA CHERI-MIPS implementation, demonstrating that capabilities can
be implemented efficiently:
I hierarchical tag cache for tagged memory
I efficient capability compression scheme
I avoid interference with conventional pipeline, MMU, etc.

Now: also CHERI-RISC-V
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CHERI software

Have to demonstrate software performance and adaption costs are reasonable, and explore use
of new protection mechanisms

Prototyped a complete software stack for CHERI by adapting widely used open-source
software: Clang/LLVM, FreeBSD, FreeRTOS, and applications such as WebKit, OpenSSH,
and PostgreSQL.

(also speaks to our ISO C work and v.v.)
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Hardware/software co-design

Originally, with conventional engineering (mostly):
I prose+pseudocode ISA specification
I hand-written ISA test suite
I separate QEMU emulator

Successful, but painful!

And not much assurance of correctness – but that’s essential for security
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Semantics to the rescue?

previously: ISA semantics in HOL4 and L3 (Anthony Fox) (and for concurrency)

2014: shift to use formal L3 ISA semantics in CHERI-MIPS development

now: shifted to ISA semantics in Sail, for CHERI-MIPS and CHERI-RISC-V

I CHERI-MIPS: https://github.com/CTSRD-CHERI/sail-cheri-mips
I CHERI-RISCV: https://github.com/CTSRD-CHERI/sail-cheri-riscv
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Rigorous Engineering

Lightweight:
I use formal ISA semantics as central design document

(owned by CHERI researchers and engineers)
I use in architecture specification

(readable)
I make executable as a test oracle, auto-translating L3/Sail to SML/OCaml/C

(∼ 400KIPS, booting FreeBSD in 4 min)
I use for testing hardware against
I use for software bring-up

(supporting existing engineering practice)

I use for fast exploration of design alternatives (e.g. compression schemes)
I use for automatic test generation
I auto-translate to SMT and use to check properties
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Rigorous Engineering

Heavyweight:
I auto-translate L3/Sail to HOL and Isabelle
I prove compression-scheme properties
I state (some of) the intended security properties of the CHERI-MIPS architecture
I prove them
I re-prove them

[Nienhuis, Joannou, Fox, Roe, Bauereiss, Campbell, Naylor, Norton, Moore, Neumann, Stark,
Watson, Sewell; UCAM-CL-TR-940
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-940.pdf]
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The main artifacts of the CHERI engineering process

Bluespec/FPGA

Isabelle

L3/Sail

Prover defns

Isabelle

Emulators

C/OCaml/SML

Tests

CHERI asm

CHERI C/C++

LaTeX

ISA documentation H/W design

auto−generate

prove

execute

execute
test

CHERI h/w impl

Security Properties

CHERI ISA spec

CHERI software

(plus CHERI-QEMU)
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union clause ast = CLoad : (regno, regno, regno, bits(8), bool, WordType)
function clause execute (CLoad(rd, cb, rt, offset, signext, width)) = {
checkCP2usable();
let cb_val = readCapRegDDC(cb);
if not (cb_val.tag) then
raise_c2_exception(CapEx_TagViolation, cb)

else if cb_val.sealed then
raise_c2_exception(CapEx_SealViolation, cb)

else if not (cb_val.permit_load) then
raise_c2_exception(CapEx_PermitLoadViolation, cb)

else {
let ’size = wordWidthBytes(width);
let cursor = getCapCursor(cb_val);
let vAddr = (cursor + unsigned(rGPR(rt)) + size*signed(offset)) % pow2(64);
let vAddr64 = to_bits(64, vAddr);
if (vAddr + size) > getCapTop(cb_val) then
raise_c2_exception(CapEx_LengthViolation, cb)

else if vAddr < getCapBase(cb_val) then
raise_c2_exception(CapEx_LengthViolation, cb)

else if not (isAddressAligned(vAddr64, width)) then
SignalExceptionBadAddr(AdEL, vAddr64)

else {
let pAddr = TLBTranslate(vAddr64, LoadData);
memResult : bits(64) = extendLoad(MEMr_wrapper(pAddr, size), signext);
wGPR(rd) = memResult;

} } }

function clause decode (0b110010 @ rd:regno @ cb:regno@ rt:regno @ offset:bits(8) @ 0b0 @ 0b00) = Some(CLoad(rd,cb,rt,offset,false,B)) /*CLBU*/
function clause decode (0b110010 @ rd:regno @ cb:regno@ rt:regno @ offset:bits(8) @ 0b1 @ 0b00) = Some(CLoad(rd,cb,rt,offset,true, B)) /*CLB*/
function clause decode (0b110010 @ rd:regno @ cb:regno@ rt:regno @ offset:bits(8) @ 0b0 @ 0b01) = Some(CLoad(rd,cb,rt,offset,false,H)) /*CLHU*/
function clause decode (0b110010 @ rd:regno @ cb:regno@ rt:regno @ offset:bits(8) @ 0b1 @ 0b01) = Some(CLoad(rd,cb,rt,offset,true, H)) /*CLH*/
function clause decode (0b110010 @ rd:regno @ cb:regno@ rt:regno @ offset:bits(8) @ 0b0 @ 0b10) = Some(CLoad(rd,cb,rt,offset,false,W)) /*CLWU*/
function clause decode (0b110010 @ rd:regno @ cb:regno@ rt:regno @ offset:bits(8) @ 0b1 @ 0b10) = Some(CLoad(rd,cb,rt,offset,true, W)) /*CLW*/
function clause decode (0b110010 @ rd:regno @ cb:regno@ rt:regno @ offset:bits(8) @ 0b0 @ 0b11) = Some(CLoad(rd,cb,rt,offset,false,D)) /*CLD*/
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CHERI security properties

I define authority-inclusion order ≤ over capabilities
I define abstract capability intentions of each instruction
I characterise the capabilities a (potentially untrusted) compartment can access or

construct by executing arbitrary code
I define reachable capability monotonicity
I define isolation assumptions and guarantees
I prove in Isabelle

Clarify some ambiguity along the way

[Nienhuis,...]
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1 CompartmentIsolation sem is defined as
2 for all addrs types s s ′ trace step.
3 if IsolatedState addrs types s
4 and IntraDomainTrace trace
5 and SwitchesDomain step
6 and s ′ ∈ FutureStates sem s (trace; step)
7 then IsolationGuarantees addrs types s s ′

1 IsolatedState addrs types s is defined as
2 CapabilityAligned addrs
3 and NoSystemRegisterAccess addrs types s
4 and ContainedCapBounds addrs types s
5 and ContainedObjectTypes addrs types s
6 and InvokableCapsNotUsable addrs types s
7 and not AccessToCU0 s
8 and not KernelMode s
9 and StateIsValid s

1 IsolationGuarantees addrs types s s ′ is defined as
2 Base (PCC s ′) + PC s ′

3 ∈ ExceptionPCs ∪ InvokableAddresses addrs s
4 and for all a.
5 if not a ∈ TranslateAddresses addrs Store s
6 then MemData s ′ a = MemData s a
7 and MemTag s ′ (GetCapAddress a) =
8 MemTag s (GetCapAddress a)
9 and for all r.
10 if r 6= 0 and r 6= 1 and r 6= 31
11 then SpecialCapReg s ′ r = SpecialCapReg s r
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T-CHERI

Refactor proof via properties of instruction-local semantics:

For capability-load, [[CLW rd,cb,offset]] is roughly the set of traces like:

[E_read_reg(cb, c), E_read_mem(Read_plain, addr , 4, c ′), E_write_reg(rd, c ′′)]

Axiom
If a tagged capability c is stored to memory at index i of a local trace t of an instruction,
then c is derivable from capabilities that are available at index i of t.

[Bauereiss, Nienhuis, ...]
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Hardware/software/semantics co-design!

Lightweight rigorous engineering methods all used by systems folk

Mechanised statements and proofs of security properties boost assurance in the architecture
design

Practical evaluation, of performance and software adaption costs: looking good

Security evaluation: hard to do, but encouraging so far
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Where next?

CHERI is a large academic project: 2010–date, ∼£24m DARPA+EPSRC+Industry (UCam)

Many papers, academically convincing evaluation.

Potential industry uptake?

Quite some enthusiasm, from major vendors – but CHERI touches the whole stack, even if
only lightly. Really need industry-scale evaluation:
I port CHERI ideas to modern ISA (eg ARMv8-A, not MIPS)
I adapt high-performance out-of-order hardware implementation
I adapt more software
I invite others to experiment and evaluate
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ISCF Digital Security by Design programme
Announced 2019-01: £70M government and £114M industry
Collaborators workshop: Thursday

“The InnovateUK ISCF Digital Security by Design challenge aims to radically update the
foundation of the UK’s insecure digital computing infrastructure.”

I develop an industrial prototype/demonstrator for CHERI-ARM
I define a prototype CHERI-ARM architecture (extending ARMv8-A)

...and make ISA semantics available
I academic proofs of security properties
I integrate into a high-end core
I build a testchip SoC including that and tag caches etc
I adapt software stacks (incl. Android)
I integrate into a prototyping board (250–1000 units), made available for R&D by academics

and major vendors

I support for academic and industry research around this (InnovateUK/EPSRC/ESRC)
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ISCF Digital Security by Design programme

Goal is to generate compelling evidence to enable uptake, if possible

If successful, learnings from these will be adopted into future mainstream extensions to the
Arm architecture (but no commitment to future compatability w.r.t. the prototype!).

More details from Arm on Thursday.
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Enabling CHERI verification research

An Introduction to CHERI [Watson, Moore, Sewell, Neumann] (TR, this week)

Formal models available now:
I CHERI-MIPS
I CHERI-RISC-V
I ARMv8.5-A (with Arm)

All in Sail, and with generated Coq/HOL4/Isabelle prover models.

In future (with Arm):
I experimental CHERI-ARM
I security properties
I prover infrastructure for reasoning about the specification
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