
© 2019 Arm Limited

Gustavo Petri, Dominic Mulligan

Security Group, Arm Research

VeTSS Workshop on Verified Software

Software verification

at Arm

Two case studies

2 © 2019 Arm Limited

Arm Research Security group

Security, privacy, correctness

Mission: Systematically remove excuses for untrustworthiness

• Develop new security and robustness technologies, and accelerate adoption by

eliminating performance costs and other obstacles

• Reduce what needs to be trusted: minimize the trusted computing base (TCB), and

verify what remains

• Take a principled and quantitative approach to security through the use of formal

methods

• Progress the application of privacy-enhancing technologies to information processing

systems — demonstrate that business requirements can be addressed while respecting

users and their data

3 © 2019 Arm Limited

Two case studies

Two different uses of formal verification technology:

1. Verification of ultra-low level security-critical firmware

2. Verification in a privacy-preserving compute project

(Original talk title mentioned three case studies, sadly we only have 45 minutes…)

© 2019 Arm Limited

Security-critical firmware

verification

Alex Chadwick, Nathan Chong,

Dominic Mulligan, Gareth Stockwell

5 © 2019 Arm Limited

Background

A security-oriented project under development in Arm

• Limited in what we can talk about…:

• …but example of us using software verification in production

Project consists of two components:

• "Traditional architecture": TrustZone hardware

• Firmware component built on top of TrustZone, written in C

Programmer-facing functionality provided by firmware

6 © 2019 Arm Limited

Firmware challenges

How do we deliver a high-quality product?

• All Arm hardware designs are extensively tested and verified before shipping

• Firmware implementation strategy not an excuse to ship substandard product!

Firmware will be running in a privileged Exception Level on processor

• If buggy, could have significant effect on usability and security of system

• Moreover, tempting target for malefactors to try and attack

On the other hand, firmware can’t be correct but dog-slow

• Firmware is a product and verification techniques have to fit around that

7 © 2019 Arm Limited

Commands

Architecture provides a series of programmer-facing commands:

• Invoked and take parameters similar to a sys-call, with a defined calling convention

• Parameters may be different types of addresses (PA/VA), which point to pages of

memory: firmware therefore needs to handle address translation explicitly

• Some pages contain metadata objects that are kept isolated, inaccessible to any agent

other than the firmware and are used by the firmware as a book-keeping mechanism

Some metadata objects are arranged in tables, some have fields that point to other

metadata objects, some control memory permissions, some have a state, and so on

Metadata objects with state have a defined lifecycle: transition diagram through which

they progress and which must be enforced by the commands

8 © 2019 Arm Limited

Firmware specification

Firmware’s behaviour is well specified by software standards, consists of two parts:

1. ASL “implementation” showing the functionality of the firmware at an abstracted level

2. A set of pre- and postconditions that describe the action of each command using

assertions over an abstracted Arm machine state

Like specification and “meta-specification”: pre-/postconditions have precedence over ASL

ASL implementation very useful, however:

• Exists to check pre-/postconditions can be realized through a command, check internal

consistency of architecture, allow integration tests with wider Arm v8-A architecture, as

a guide to implementors, as a means of communicating with partners, etc…

9 © 2019 Arm Limited

Pre-/postcondition specification

Failure: Checked first, and in the order specified, e.g.:

• “if address A not page aligned, return error code Error_Alignment”

• “if translation of address A fails, return error code Error_Translation”

• “if address A points to structure S, and S.type is not T, return error code Error_Parameter”

Success: Assume no failure modes apply, describe state change effected by command, e.g.:

• “if address A points to structure S, and S has type T, then change T to type U”

Implicit atomicity pre-/postconditions, as firmware is running in concurrent setting:

• If command fails to obtain exclusive access to resources, abort

• If command aborts for any reason, then no effect on system is observed

• Any synchronization mechanisms obtained (e.g. locks) are eventually released

Note, particular synchronization strategy used is not architecturally prescribed

10 © 2019 Arm Limited

Specification internal consistency

For Arm, specification is as-much the product as implementation! First step is checking

specification is not broken and can be implemented…

• All pre-/postconditions for commands are written in JSON, used as common source for:

1. SystemVerilog assertions (SVA henceforth)

2. CBMC assertions

3. English-language stylized rendering of pre-/postconditions that will appear in reference manual

• From ASL prototype implementation of each command, we can also extract Verilog

using ArchEx, an Arm-internal tool for working with ASL

• We then feed both the SVA and the autogenerated Verilog into a commercial model

checking tool

(Finds lots of bugs: architects make changes to specification, repeat over many months…)

11 © 2019 Arm Limited

Model Checker verification testbenches

Various testbenches (due to Alex Chadwick):

• Lint: checks all inline assertions in the ASL implementation are always reachable, and

can never be invalidated

• Pre-post: check ASL implementation against declarative description of pre-

/postconditions for each command

• Lifecycle: checks lifecycle transitions of metadata object match declarative description

of possible state transitions

• Invariant: checks higher-level invariants of machine state are never invalidated

All run paths of N arbitrary commands out of a reset state, with a “havocking” step which

perturbs register and memory contents between each invocation

12 © 2019 Arm Limited

Verifying the implementation

Once specification is stable, need to verify C firmware implementation

We use CBMC, the C bounded model checker, for this task:

• It’s generally robust, and is good at parsing C code that’s written by real engineers

• Counterexample-guided debugging is very useful

• In our context, model checking is familiar and engineers quick to understand CBMC

• C programmers also quickly pick CBMC up with minimal training and use existing C

expertise to understand (and write!) the properties being verified

13 © 2019 Arm Limited

Toward a command testbench

Suppose command Foo(A) has postcondition (with A a VA):

if address A points to structure S, and S has type T, then change T to type U

Unpacking this a little:

• Testbench assumes there’s a structure S floating around in physical memory

somewhere, that command will modify. Call this S the command footprint

• A is a VA and will point to structure S only after address translation into PA, P. We

therefore need to model Arm address translation…

Address translation is complicated: having to model it is not good… Can we avoid that?

14 © 2019 Arm Limited

Not modelling address translation

First, the command footprint is declared in the testbench preamble:

struct S s;

and (simplifying) this is going to have various addresses associated with it:

struct footprint {
paddr_t pa; vaddr_t va; bool is_locked;

};

Initially set pa, va, and is_locked fields to be unconstrained values:

footprint.pa = �; footprint.va = �; footprint.is_locked = �;

Here, � is a rendering of CBMC’s non-deterministic assignment…

15 © 2019 Arm Limited

Modelling all address translations

Firmware uses a (potentially failing) function with this prototype to translate addresses:

paddr_t translate_va_to_pa(vaddr_t va)

Our strategy is to replace the implementation of this function (that does Arm v8A AT) with

our own address translation implementation

Rather than model Arm AT, however, we model all such potential address translations and

show firmware implements correct pre-/postcondition functionality in all cases

Stronger property, and also easier to verify

16 © 2019 Arm Limited

Using uninterpreted functions

We can model all such functions using two uninterpreted functions:

bool UF_translate_va_to_pa_status(vaddr_t addr)
paddr_t UF_translate_va_to_pa(vaddr_t addr)

First signals that address translation at VA addr failed, the second computes the AT

Don’t know return value of functions, but will always be same whenever same input given

CBMC allows us to attach explicit assumptions to these functions, constraining behaviour

17 © 2019 Arm Limited

Assuming address translation into life

We now ”assume a translation into existence”, by having this in our testbench preamble:

if(UF_translate_va_to_pa_status(footprint.va)) {
assume(footprint.pa == UF_translate_va_to_pa(footprint.va))

}

Footprint’s PA and VA’s linked by AT if AT succeeds. We implement the firmware AT API:

paddr_t translate_va_to_pa(vaddr_t va) {
return UF_translate_va_to_pa(va);

}

18 © 2019 Arm Limited

Mocking physical memory

Firmware abstracts physical memory with read/write API for each metadata object type, S:

void readS(paddr_t addr, struct S* const obj)
void writeS(paddr_t addr, const struct S* const obj)

Raw pointers into physical memory are never dereferenced other than via this API

Strategy: implement this API in order to observe what physical memory reads/writes a

command is doing, write CBMC assertions over the contents of physical memory

Bonus: we can use CBMC’s static analysis to guarantee that the firmware is only writing to

memory via these functions, and not arbitrarily dereferencing raw pointers

19 © 2019 Arm Limited

Modelling physical memory

Can pin down a command’s access to memory tightly:

void readS(paddr_t addr, struct S* const obj) {
if(addr == footprint.pa) { *obj = s; }
else { UNREACHABLE; }

}

CBMC checks UNREACHABLE really is for a command: if not the command is doing

something weird. This can be really pinned down:

• If object is only read, not written, the write function is UNREACHABLE for all inputs

• If a command only needs to access field f in a struct, then we can check this, too

20 © 2019 Arm Limited

Property checking

What we actually check

For any number of metadata objects, for all translations, for the full address space:

• Commands implement the declarative pre-/postconditions specification detailed in the

common JSON specification,

• If a command takes locks, then all locks are released,

• If a command fails then it rolls back all state changes,

• All pre-/postconditions are reachable and there is no over-constraining (using CBMC’s

reachability checking), moreover testbench assumptions are not contradictory (by

asking CBMC to prove false within the testbench context)

• Commands terminate on all inputs (using CBMC’s unwinding assertion checking, loops

are bounded, no recursion)

• Firmware code is free of some undefined behaviours (using CBMC static analysis)

21 © 2019 Arm Limited

Are we really checking the right thing?

Testbenches require additional code: are we really checking the right thing, then?

Key idea: deliberately inject bugs into firmware codebase to test a testbench

In our case, interested in whether potential bugs trigger a testbench assert failure:

• Mutants that fail indicate the asserts are capturing the right functionality

• Mutants that do not fail indicate our properties may not be strong enough

Some simple mutations are enough to capture some interesting bugs:

• Flipping conditional checks, removing continue statements, decrementing rather than

incrementing, etc.

22 © 2019 Arm Limited

Bug caught using mutation testing

Assumptions on address translation too strong. Previously:

assume(footprint.pa == UF_translate_va_to_pa(footprint.va))

Now:

if(UF_translate_va_to_pa_status(footprint.va)) { assume(…) }

Ensures that if firmware ignores the translation status and attempts to use the output PA

then the testbench will fail when we try to manipulate the object at the bogus PA

23 © 2019 Arm Limited

Deployment

All of this machinery is in active use with our product group:

• CBMC is integrated into Jenkins CI: a CBMC smoketest consisting of a static analysis run

and reachability checking is run on every pull request, with a full verification run nightly

• One-day course on CBMC delivered to engineering teams by Nathan, Dominic

• JSON specification file and testbenches for new commands managed by product

group engineers

• Caught some very interesting bugs in both implementation and specification.

Interestingly: code had been code-reviewed by two/three engineers…

• Combination of Hardware Model Checker and CBMC seemed to work very well: worked

on different parts of product, worked in slightly different ways, caught different things

• Software verification, and CBMC, proved its worth…

© 2019 Arm Limited

Veracruz

Privacy-preserving

compute

Derek Miller, Dominic Mulligan, Hugo Vincent,

Shale Xiong

25 © 2019 Arm Limited

Veracruz in a slide

Experimental privacy-preserving compute infrastructure in Arm Research

Most general setting:

• Secret data can be fed into,

• secret programs, which are offloaded to,

• third parties who host the computation, and produce

• secret results, retrievable by an agent specified in a global policy

In this setting, everybody is mutually distrusting and has individual concerns:

• Data and program owners want to retain their secrets,

• Host does not want machine to be damaged by programs they cannot audit or monitor

Uses "Enclaves" (based on a hardware-provided TEE) and sandboxing VM to achieve this…

26 © 2019 Arm Limited

Secure Enclaves, a brief overview

A kind of "inverse sandbox”–––enforces confidentiality, integrity of contents

• Arm TrustZone was first widely-deployed hardware support for Trusted Execution Environments

• Also Intel SGX, Sanctum and Keystone (RISC-V), AEGIS, Komodo, and others…

• Arm looking into standardized enclave abstraction on AArch64

Common adversary model, package of features:

Wider execution environment considered hostile, buggy, compromised

• Including operating system, hypervisor, and other systems software

Hardware protected regions of memory

• Protect programs from unauthorized accesses/modifications by privileged code, device DMA accesses

• Some enclave schemes offer stronger guarantees (e.g. memory encryption and integrity protection)

Cryptographic measurement and attestation protocol

• Establishes (remote) enclave correctly initialized with expected program, configuration parameters

27 © 2019 Arm Limited

Remote attestation, conceptually

Attestation Service Challenging Party Verifying Party

Prove that program P with hash H

is installed in a genuine Enclave

with settings S on your machine
Instructs hardware to compute

attestation report containing hash

of code loaded into Enclave, details

of settings, signed by manufacturer

provisioned keys

Tell me if this report:

• Is from genuine hardware you

manufactured?

• States that code with hash H is

installed in the Enclave?

• States the Enclave was

configured with settings, S?

Validates or rejects the report

as genuine, or not

corresponding to H, and S

28 © 2019 Arm Limited

Building little islands of trust

Aim to establish “island of trust” on an untrusted remote machine:

1. Upload program to remote machine

2. Remote machine configures and initializes Secure Enclave

3. Demand proof that Enclave contains expected contents, parameters acceptable

4. Validate proof

Now safe* to communicate secrets to Enclave:

• Attestation protocol establishes Enclave contents, configuration as expected

• Guarantees of implementation ensure privacy and integrity of computation

* Providing you trust the hardware and attestation process…

29 © 2019 Arm Limited

System design

Enclave Owner’s Machine

Veracruz Instance

Secure Enclave

VM

Command/Control

TLS Endpoint

Attestation Service

Program Owner Data Owner

TLS EndpointTLS Endpoint

Transport Client Transport Client

U
n

tr
u

st
e

d
 S

e
rv

e
r/

B
ri

d
g

e

30 © 2019 Arm Limited

What does this have to do with verification?

Secure Enclaves are not magic…

• Privacy and integrity guarantees provided are conditional on software being “well-

written” (for some specific value of “well-written” detailed in a threat model)

• In particular, memory errors, synchronization errors, side-channels, have all been used

to attack Enclaved systems

When building a system using Enclaves there’s therefore a strong incentive to have:

• As little code as possible running in the Enclave,

• What code there is should be statically analyzed for memory errors and other issues, or

written in “memory-safe” languages like Rust,

• What code there is should be simple, and easily auditable by hand…

31 © 2019 Arm Limited

…moreover

Consider Veracruz’s threat model: everybody is assumed hostile to everybody else, only

point of trust in system being the hardware and attestation process

Means the program owner, collaborating with the host, is trying to steal secret data

provisioned into the Enclave. How could they do this?

Assuming no overt way of doing this is provided by the VM (!), the two have to exploit

some unforeseen aspect of the VM’s design to ”escape the sandbox” to achieve this

32 © 2019 Arm Limited

Building trust through verification

Strategy: use verification and static analysis of key components in the Enclave as:

• A means of eliminating memory errors and other trivial language-level bugs: so that

Veracruz code cannot be easily undermined using e.g. ROP-attacks by a hostile host,

• Building trust: here’s what we think the code should be doing, and here’s proof that it’s

doing it–––you can check too, if you don’t trust us,

• Ensuring auditability of Veracruz’s code: code that’s easy to verify also tends to be easy

to manually audit: verification tools struggle on code-bases that are too large, too

messy, too clever. So do humans…

Code that is not verified should be written in a memory-safe language, like Rust, and if

something can feasibly be outside the Enclave, then it should be

33 © 2019 Arm Limited

Veracruz implementation

Sandbox VM prototype implemented in C, Zocalo bytecode opcodes taken from WASM:

• VM (~7,000 LOC), uses a simple fetch-decode-execute cycle, easy to understand, audit,

and retarget compilers to

• Sandboxes program and insulates host machine from running program: no ability to e.g.

perform I/O or other side-effects (other than sample a random source)

• Veracruz Executable (VX) files loaded by machine, simplified version of ELF

• Future: have VM enforce dynamic policies on running program, e.g. resource limits,

trace properties of program, explore impact of/defences against Rowhammer, etc.

34 © 2019 Arm Limited

CBMC verification

Mostly due to Shale Xiong

Again, we use CBMC to verify properties of VM:

• Static analysis: no memory issues, no undefined behaviours,

• Verification: VM fetch-decode behaves as expected, VM (non-floating point) instruction

semantics behaves as expected, various reachability properties of code, various

invariants are always maintained (e.g. program counter always points inside code

memory)

About 12,000 lines of testbench, takes around 24 hours to verify to completion

Also in the process of getting TIS-interpreter set up on the VM codebase, exploring fuzzing

35 © 2019 Arm Limited

Future work

A few strands of ongoing/potential future work:

1. Ongoing: generalizing to N-sources of secret data to support multi-party computations

• Opens up some interesting applications of Veracruz, e.g. private map-reduce, private federated

machine learning, etc.

2. Speed: bytecode is interpreted at the moment, and incurs a runtime overhead

• For small computations, this is acceptable but can try and JIT the bytecode in the Enclave

• Challenge: do this in a high-assurance way…

3. Further reductions in TCB

• Only the VM is verified at the moment. TLS library is not: could try to reuse existing verified TLS

implementations in the Enclave

4. Applications: what can we do with Veracruz?

• Lots of potential in building more complex systems on top of Veracruz, using it as a component…

© 2019 Arm Limited

Conclusions

37 © 2019 Arm Limited

Conclusions

Arm are applying more verification techniques, both in products and R&D projects:

• Hardware verification techniques are already extensively used

• Software verification techniques are starting to be deployed, too

Some of these have originated in the Security Group in Arm Research, but:

• Product groups are adopting this capability,

• …and independently developing their own capability, too

Projects described in this talk are just a few of our verification-related projects, e.g.…

38 © 2019 Arm Limited

Secure-M: the missing case-study

Formal validation of the Arm v8-M microcontroller architecture

• Project led by Alastair Reid (now at Google)

Two sub-projects built around custom model-checking techniques using SMT:

• Information flow tracking to detect confidentiality and integrity violations: requires

dynamic labelling and explicit declassification and endorsement policies to adequately

capture information flow in a microprocessor without false positives

• Internal consistency checks of the v8-M architecture, ensuring inline assertions are not

invalidated, and translating English-language rules into formal assertions

• See “Who guards the guards? Formal validation of the ARM v8-M architecture

specification”, OOPSLA 2017, by Alastair for more information on rule-checking

39 © 2019 Arm Limited

Collaboration and internship opportunities

Thank You

Danke

Merci

��
�����

Gracias

Kiitos

감사합니다
ध"यवाद

ارًكش
הדות

© 2019 Arm Limited

