Verified Software Workshop 2019

Separation Logic Goes

Joost-Pieter Katoen

Verified Software Workshop, Isaac Newton Institute, Cambridge 2019

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Background and Introduction

Overview

@ Background and Introduction

Joost-Pieter Katoen Separation Logic Goes

Perspective in Nature

“There are several reasons why probabilistic programming could prove

to be revolutionary for machine intelligence and scientific modelling.”

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Background and Introduction

Probabilistic Programming

Scea'c

Popular PPL: STAN (> 10,000 active users, 33 releases)
Almost every PL has a probabilistic version!
probabilistic-programming.org

Joost-Pieter Katoen Separation Logic Goes

y
Today’s Focus

“Randomised skip list algorithms have the same asymptotic expected time bounds
as balanced trees and are simpler, faster, and use less space.”

[Pugh, 1989]

“The expected running time of randomised splay trees
is smaller than deterministic variants”

[Albers and Karpinski, 2002]

Joost-Pieter Katoen Separation Logic Goes

y
Today’s Focus

Can we formally prove programs
that flip coins and manipulate pointers?

At the source code level.
No “descend” in some operational model.
No ad-hoc arguments.
Enabling mechanised certification.

Joost-Pieter Katoen Separation Logic Goes

Practical Relevance

[Pugn, Cacm /\333]

Joost-Pieter Katoen Separation Logic Goes

Practical Relevance

Ccobin ek ol.) CACM 204b]

Joost-Pieter Katoen Separation Logic Goes

Practical Relevance

ER»\'\'&-\:Q-J & Prefber \ ‘LO\H]

Joost-Pieter Katoen Separation Logic Goes

Array Randomisation

randomise(array,n) {

i = 0;
while (0 <= i < n) {
j := uniform(i,n-1);
swap(array,i,j);
i++
+

. . .1
Is the probability of any fixed array configuration m?

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Background and Introduction

Faulty Garbage Collector

delete(x) {
if (x '=0) {{
skip // fails with probability p
} [p]l { // flip biased coin
left := <x> ; right := <x+1>;
delete(left) ;
delete(right) ;

P8
free(x) ; free(x+1)
. T

AN

lett r\'S\r\'\Z

+

Joost-Pieter Katoen Separation Logic Goes

Faulty Garbage Collector

delete(x) A{
if (x '= 0) {{
skip // fails with probability p
Y [p]l { // flip biased coin
left := <x> ; right := <x+1>;
delete(left) ;
delete(right);
free(x) ; free(x+1)

+}

What is the probability that on termination the heap is empty?

Joost-Pieter Katoen Separation Logic Goes

Pointers = Problematic

Dereferencing null pointers, aliasing, memory leaks, ...

Joost-Pieter Katoen Separation Logic Goes

Probabilities = Problematic Too

“In no other branch of mathematics
is it so easy to make mistakes
as in probability theory”

[Henk Tijms, Understanding Probability, 2004]

Joost-Pieter Katoen Separation Logic Goes

Mission Impaossible? Not Quite!

We will develop a weakest precondition calculus a la Dijkstra that:

1. combines discrete probabilities with pointers

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Background and Introduction

Mission Impaossible? Not Quite!

We will develop a weakest precondition calculus a la Dijkstra that:
1. combines discrete probabilities with pointers

2. mixes probabilistic choices and unbounded nondeterminism

3. preserves virtually all properties of both:

» separation logic, and
> weakest pre-expectations (aka: quantitative preconditions)

though things can easily break in both worlds ...

4. is applicable to reason about actual randomised algorithms

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Separation Logic

Overview

© Separation Logic

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019

“The Hoare Logic for Pointers”

SEPARATION LOGIC

John Reynolds and Peter O'Hearn

Separation Logic Goes

Heaps

EN>O
States=S = {(s,h)|s: Vars> Z, h:dom(h) > Z}
valuation hevap

Joost-Pieter Katoen Separation Logic Goes

Deficiency of Hoare Logic: Pointers

{P} C{Q} and Mod(C) n Vars(R) =@
{PAR}C{QA R}

becomes unsound for pointers, e.g.,

(x>0} (x) :=1{xm 1}
(xPO0Ayp0}(x)=1{x»1Ay>0}

is not valid as y could alias x

Joost-Pieter Katoen Separation Logic Goes

The Frame Rule

{P} C{Q} and Mod(C) n Vars(R) =@
{Px R} C{Qx R}

for any heap R that is unaffected by program C.

Then:
{x >0} (x) =1 {xp 1}
{xP0xyr0}(x) =1{x»1xymr 0}

is valid as the separation conjunction excludes aliasing of x and y

The frame rule is the key to compositional reasoning.

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Separation Logic

Pointer Programs
Heap manipulation commands:

x := new(E) allocation
free(E) deallocation
x = (E) lookup
(E):= E' mutation

Operational semantics:
u € Nyg \dom(h) and E(s)=v
(x :=new(E), s, h) > (term, s[x/u], hw{u = v})
E(s) = u € dom(h) and h(u)=v
(x :=(E), s, h) > (term, s[x/v], h)
E(s) = u ¢ dom(h) and h(u)=v
(x :=(E), s, h) —» (fault, s, h)

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Separation Logic

Elementary SL Formulas

@
{s(x)} and h(s(x)) = s(y)

(s, h) E emp iff dom(h)
(s,h) E[x > y] iff dom(h)

_\W? _\w "\QA\F

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Separation Logic

Separation Conjunction
s,hEFxG iff 3hy,hhb:h=hiwhyands,hi EF and s, hh EG

3 |EF |FG =T
-G

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Separation Logic

Separation Implication

s,hE F— G iff Vh':(h#h and s,h' E F) impliess,hw h' E G

-

=17 F
i ¥

=0 W

EG

Joost-Pieter Katoen Separation Logic Goes

Separation Implication

s,hE F— G iff Vh':(h#h and s,h'E F) impliess,hw h' E G

— (
Adjointness of * and —: =F
= =F
(FxG) => R iff G = (F—=R) J + +
G G
Modus ponens: = \\ h
Fx(F—=%G) = G L

Joost-Pieter Katoen Separation Logic Goes

Example SL Proof

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Probabilistic Weakest Preconditions

Overview

© Probabilistic Weakest Preconditions

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Probabilistic Weakest Preconditions

“Dijkstra’s Weakest Preconditions Go Random”

WEAKEST PRE-EXPECTATIONS

Dexter Kozen, Annabelle Mclver, and Carroll Morgan

Separation Logic Goes

Verified Software Workshop 2019 Probabilistic Weakest Preconditions

Weakest Precondition Reasoning

Use an inductively defined backwards moving predicate transformer
S S
wp(C) : 2" - 27

Joost-Pieter Katoen Separation Logic Goes

From Predicates to Quantities

1. Let program C be:
x := b [4/5] x := 10

The expected value of x on C's termination is: =-5 + %-10 =6

5

=}
x+5 [4/5] x := 10

1 _4X
510—?4'6

alld

The expected value of x on C''s termination is: =+(x+5) +

3. The probability that x = 10 on C''s termination is:

-[><+5=10]+%.1 =

ol

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Probabilistic Weakest Preconditions

Expectations

Classical predicates:

A predicate F maps program states onto Booleans.

Let F<Gifandonlyif F = G.

Quantitative predicates: expectations:

An expectation1 (aka: factor) f maps program states
onto the non-negative reals extended with infinity.

Let f < g if and only if f(s) < g(s) for all states s.

The set of expectations under < is a complete lattice.

L+ expectations in probability theory.

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Probabilistic Weakest Preconditions

Expectation Transformers

Classical predicate transformer:

Maps predicates onto predicates.
Dijkstra’s weakest preconditions are an instance of this.

=
A =3
Expectation transformer: S I

Maps expectations onto expectations.
Characterising equation of a Kozen's weakest pre-expectation:

wp(C)(F) = As. /S £ dC.

with C; the distribution over C's final states when running C on state s

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Probabilistic Weakest Preconditions

Pictorially

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Probabilistic Weakest Preconditions

Quantitative Weakest Pre-condition Semantics

For expectation f, programs C, the wp(C)(f) is defined by:

skip f

x:=FE f[x/E]

Ci; G wp(C1)(wp(Co)(f))

if B{G} else {(y} [B] - wp(Cy)(f) + [=B] - wp(Co)(f)
G lp] G p - wp(Cy)(f) + (1-p) - wp(Co)(f)

while(B)C) o X. [~B]- +[B]- wp(C')(X)

Y

loop unrolling

Ifp is the least fixed point operator wrt. the ordering < on expectations.

Extensions with recursion, conditioning, liberal wp, negative expectations.

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Probabilistic Weakest Preconditions

Examples

1. Let program C be:
x := 5 [4/5] x := 10

For f = x, we have
wp(C, x) = %-Wp(x :=5)(x) + %-Wp(x :=10)(x) = g-5 + %-10 =6

2. Let program C' be:
x = x+b5 [4/5] x := 10

For f = x, we have:

Z.wp(x = 10)(x) =

alld

(x+5)+310 = & +6

wp(C')(x) = %-Wp(x +:=5 -

3. For program C' (again)’and f =[x = 10], we have:

wp(C')([x=10]) = = -wp(x := x+5)([x=10]) + % - wp(x :=10)(x=10])

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Probabilistic Weakest Preconditions
Properties

For all programs C and expectations f, g it holds:

» Continuity: wp(C)(+) is continuous.

» Monotonicity: f < g implies wp(C)(f) < wp(P)(g)

» Feasibility: ¥ < k implies wp(C)(f) < k

» Linearity: wp(C)(r-f +g) = r-wp(C)(f)+ wp(C)(g) for every r € Ry

» Strictness: wp(C)(0) =0

Good to know: wp(C)(1) = termination probability of program C

Joost-Pieter Katoen Separation Logic Goes

Practical Relevance

» Formal verification of randomised algorithms

» Exact inference for Bayesian networks

» Deciding program equivalence

» Proving program transformations

» Expected resource consumption

» Proving almost-sure termination

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

Overview

@ Quantitative Separation Logic

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

P Assertion language

» wp-Calculus

» Theorems

» Case studies

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

Assertion Language: States and Expectations

D

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019

Quantitative Separation Logic

Example QSL Specifications

Postexpectation f

A(s, h). 1
| x|
[emp]

len(x, y)

Joost-Pieter Katoen

Weakest pre-expectation wp(C)(f)

Probability of memory-safe termination
Expected absolute value of x
Probability of termination with an empty heap

Expected length of list segment from x to y

Separation Logic Goes

Quantitative Conjunction

Classical conjunction

FAG

Quantitative conjunction

f-g = Xs, h).f(s, h)-g(s, h)

Note:

[F A~ G] = [F]-[G]

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

Quantitative Cefijunction
Dis i
Classical}o-njunction

FXG
Vv

Quantitative conjunction

g = Ms,h). Herbstorh)
o § £01), §Gm)3

Note:

v (T3 S' TF]) 3 [G:\'}

Joost-Pieter Katoen Separation Logic Goes

Separating Conjunction

Classical separation conjunction:

(S, h) FE Fx G iff th, h2. h = hl * h2 and (S, hl) F F and (S, h2) F G

~ WV o~ v Sy e e
W ""\ \"‘L \f‘,\ \"2,
= F«G FF &G FF &6

Joost-Pieter Katoen Separation Logic Goes

Separating Conjunction

Classical separation conjunction:

(S, h) FE Fx G iff th, h2. h = hl * h2 and (S, hl) F F and (S, h2) F G

Quantitative separation conjunction:

frxg = Ms, h). sup{f(s, hy)*g(s, hy) | h=hy»hy}

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

Separating Implication

Classical separation implication:

(s,h) E F— G iff Vh with h#hand (s,h)EF: (s,hxh)EG

=F

= F

=G = G

“and not f(s, h') = 0o = g(s, h* h')

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

Separating Implication

Classical separation implication:

(s,h) E F— G iff Vh with h#hand (s,h)EF: (s,hxh)EG

Quantitative separation implication:

f—g = s, h).inf {g(s'h*h) | h'4th and f(s, ') > 0}2
f(s, h')
Note that:
[Fl—g = s, h).inf {g(s,h*h)| h'#hand (s, h) E F}

?and not f(s, h') = 00 = g(s, h* h')

Joost-Pieter Katoen Separation Logic Goes

Adjointness

Classical adjointness:

(FxG) = J iff (F = (G—J))

Quantitative adjointness:

(Fxg)<j iff (f = (g—)))

Calculus:
a—b<c iff a<b+c

+ virtually all properties in [Ishtiag & O'Hearn 2001, Reynolds 2002]

Joost-Pieter Katoen Separation Logic Goes

Probabilistic wp for Memory Allocation

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

Probabilistic wp for Memory Allocation

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

Probabilistic wp for Memory Allocation

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

Probabilistic wp for Memory Allocation

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

Probabilistic wp for Memory Allocation

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

Probabilistic wp for Memory Allocation

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

Probabilistic wp for Memory Allocation

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

Probabilistic wp for Memory Allocation

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

Probabilistic wp for Memory Allocation

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

QSL’s Weakest Pre-expectation Calculus
For expectation f in QSL, program C, the wp(C)(f) is defined by:

skip f

x:=E fx/E]

G G wp(G)(wp(G)(f))

if B{G} else {G} [B]- wp(G1)(f) + [~B] - wp(G)(f)
while(B){C'} Ifo X.[=B]-f +[B]- wp(C)(X)
Glp]l G p - wp(Ci)(f) + (1-p) - wp(C)(f)

x := new(E) inf,en[v > E]— f[x/v]

free(E) [E- =] f

x = (E) sup,ez [E = v]* ([E» v]—f[x/v])
(E):= E' [E —]*([Em E']—f)

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

Heap Manipulation: SL versus QSL
For predicate F in SL, wp(C)(F) is:

x = new(E) Yv.ve E— F[x/v]

free(E) Er—-xF

x = (E) Av.E vx(Ew v— F[x/v])
(E):=E' Er—-x(Em E —F)

For expectation f in QSL, wp(C)(f) is:

x := new(E) infoen[v P E]— f[x/v]

free(E) [E-> =] f

x = (E) supyez [E P v]* ([E = v]— f[x/v])
E):=FE [E =]1*([Ew E']—f)

Joost-Pieter Katoen Separation Logic Goes

A Small Example

Joost-Pieter Katoen Separation Logic Goes

Theorem 1: Conservativity

QSL conservatively extends both SL and weakest preexpectations.

Let F, G be SL formulas and [[F]| and [[G]| be their corresponding
expectations.

For all states (s, h) and all non-randomised pointer programs:

(s,h) E F if and only if [F](s,h) = 1

(FYC{G} ifandonlyif [F] < wp(C)[G])

Joost-Pieter Katoen Separation Logic Goes

Theorem 2: Soundness

QSL's wp is equivalent to a simple operational model.

For all programs C, expectation f and state (s, h):

wp(C)(f)(s, h) = expected reward w.r.t. f to reach success in MDP of C

©

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

Theorem 3: The Quantitative Frame Rule

The classical frame rule:

For all SL formulas F, G and R with Mod(C) n Vars(R) = @:

{F} C{G}
{Fx R} C{G » R}

For F = wp(C)(G), this reduces to:|wp(C)(G) x R = wp(C)(G x R)

The quantitative frame rule:

For all expectations g, r with Mod(C) n Vars(r) = @ it holds:

wp(C)(g) * r = wp(C)(g * r)

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Quantitative Separation Logic

Remark
This variant of the frame rule is unsound:

wp(C)(g)xr = wp(C)(g *r)
Counterexample with Mod({x) :=0) n [x = 0] = @:
wp((x) := 0)([emp]) x [x > 0] # wp((x) := 0)([emp] x [x = 0])

— —_— Y
g r gxr

Since:

wp((x) = 0)([emp]) =[x+ —]*([x - 0] — [emp])
=0

wp((x) := 0)([emp] x [x = 0]) =[x+~ —]*([x = 0] —([emp]+[x - 0])

Y

=[x>0]

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Case Studies

Overview

@ Case Studies

Joost-Pieter Katoen Separation Logic Goes

Example 1: Array Randomisation

randomise(array,n) {

i := 0;

while (0 <= i < n) {
j := uniform(i,n-1);
swap (array,i,j);
i++

+

+
. : : .1
The probability of any fixed array configuration is I
wp(randomise(array, n))(array » aq,...,Q,—1) =]

Joost-Pieter Katoen Separation Logic Goes

Example 2: Faulty Garbage Collector

delete (x) {
if (x '=0) {{
skip // fails with probability p
} [pl { // flip biased coin
left := <x> ; right := <x+1>;
delete(left) ;
delete(right);
free(x) ; free(x+1)
1}
}

The probability of deleting a tree with root x is at least (1—p)Slze of heap

wp(delete(x)([emp]) = [tree(X)].(]__p)Size

Joost-Pieter Katoen Separation Logic Goes

Proof Snapshot

Joost-Pieter Katoen Separation Logic Goes

Example 3: Lossy List Reversal

lossyReversal (hd) {

r := 0;

while (hd '= 0) {
t := <hd>;
{ <hd> := r; r := hd}
[0.5]
{ free(hd) };
hd := t

In expectation, the length of the reversed list r
is at most half the length of the input list

wp(lossyReversal(hd))(len(r,0)) < % -[hd # 0] - len(hd, 0)

Joost-Pieter Katoen Separation Logic Goes

Example 4: Randomised Meldable Heaps

A more formal proof of a less simple randomised data structure

randomLeaf (root) {

nextlL := <root>;

nextR := <root+1>;

if (nextL = 0 and nextR = 0) {
return root

} else {
{ next := nextlL }
[0.5]
{ next := nextR };

return randomLeaf (root)
} [Gambin and Malinowski, 1998]

Joost-Pieter Katoen Separation Logic Goes

A Textbook Proof

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Epilogue

Overview

Q@ Epilogue

Joost-Pieter Katoen Separation Logic Goes

Verified Software Workshop 2019 Epilogue

Mechanising QSL in

» The assertion language of QSL has been certified in IsabeIIe/HOL3

P quantitative separating connectives for general expectations
P algebraic properties (e.g., adjointness, modus ponens, monotonicity)
P conservative extension: embedding of SL into QSL

» =~ 2,000 lines of Isabelle/HOL code, a couple of man-months

» No errors were found; proofs could almost be taken one-to-one

» QSL'’s weakest pre-expectations have not been mechanised
» main challenge: unbounded nondeterminism (aka: memory allocation)

3courtesy Max Haslbeck, https://github.com/maxhaslbeck/QuantSepCon

Joost-Pieter Katoen Separation Logic Goes

Separation Logic goes Random

1. Combines discrete probabilities with pointers

2. Mixes probabilistic choices and unbounded nondeterminism

3. Preserves virtually all properties of both:

» Reynolds and O'Hearn’s separation logic, and
» Kozen, Mclver and Morgan's weakest pre-expectations

4. Elementary properties certified in Isabelle/HOL

5. Applicable to reason about actual randomised algorithms
» Next: verifying (dynamic) probabilistic graphical models

6. Future: quantitative symbolic heaps, entailment, concurrency, ...

Joost-Pieter Katoen Separation Logic Goes

A big thanks to my co-authors!

Hannah Arndt, Kevin Batz, Benjamin Kaminski,

Christoph Matheja, Thomas Noll

Further details: POPL 2019 and full version on arxiv

Joost-Pieter Katoen Separation Logic Goes

