
Mechanised Owicki-Gries Proofs for C11

Brijesh Dongol

University of Surrey

Joint work with

Sadegh Dalvandi (University of Surrey)
Simon Doherty (University of Sheffield)

Heike Wehrheim (University of Paderborn)
John Derrick (University of Sheffield)

A weak memory talk

{talk = weak memory}
reaction := listen(talk)

{reaction = _ reaction = }

Turning into — relate weak memory semantics to Hoare
logic and Owicki-Gries style proof rules

A weak memory talk

{talk = weak memory}
reaction := listen(talk) this(talk)

{reaction = _ reaction = }
{ reaction = }

Turning into — relate weak memory semantics to Hoare
logic and Owicki-Gries style proof rules

A weak memory talk

{talk = weak memory}
reaction := listen(talk) this(talk)

{reaction = _ reaction = }
{ reaction = }

Turning into — relate weak memory semantics to Hoare
logic and Owicki-Gries style proof rules

Outline

C11 Axiomatic Semantics

C11 Operational Semantics

C11 Owicki-Gries Proofs in Isabelle

C11 Axiomatic Semantics

Axiomatic C11 semantics

Example (Message Passing).

Init: f := 0; d := 0;

thread 1 thread 2
d := 5; do r1 f
f := 1; until r1 = 1;

r2 d;

In C11, r2 can have a final value 0
— the execution below is allowed

wr1(d, 5)

wr1(f, 1)

rd2(f, 1)

rd2(d, 0)

wr(f, 0), wr(d, 0)

sb sb

sb sb

mo

mo

rf

rf

fr

Corrected Message Passing.

Init: f := 0; d := 0;

thread 1 thread 2
d := 5; do r1 A f
f :=R 1; until r1 = 1;

r2 d;

The following execution is now
disallowed

wr1(d, 5)

wr

R
1 (f, 1)

rd

A
2 (f, 1)

rd2(d, 0)

wr(f, 0), wr(d, 0)

sb

sb

mo

mo

rf

sw

fr

mo

mo

rf

sw

fr

Axiomatic C11 semantics

Example (Message Passing).

Init: f := 0; d := 0;

thread 1 thread 2
d := 5; do r1 f
f := 1; until r1 = 1;

r2 d;

In C11, r2 can have a final value 0
— the execution below is allowed

wr1(d, 5)

wr1(f, 1)

rd2(f, 1)

rd2(d, 0)

wr(f, 0), wr(d, 0)

sb sb

sb sb

mo

mo

rf

rf

fr

Corrected Message Passing.

Init: f := 0; d := 0;

thread 1 thread 2
d := 5; do r1 A f
f :=R 1; until r1 = 1;

r2 d;

The following execution is now
disallowed

wr1(d, 5)

wr

R
1 (f, 1)

rd

A
2 (f, 1)

rd2(d, 0)

wr(f, 0), wr(d, 0)

sb

sb

mo

mo

rf

sw

fr

mo

mo

rf

sw

fr

Axiomatic C11 semantics

Example (Message Passing).

Init: f := 0; d := 0;

thread 1 thread 2
d := 5; do r1 f
f := 1; until r1 = 1;

r2 d;

In C11, r2 can have a final value 0
— the execution below is allowed

wr1(d, 5)

wr1(f, 1)

rd2(f, 1)

rd2(d, 0)

wr(f, 0), wr(d, 0)

sb sb

sb sb

mo

mo

rf

rf

fr

Corrected Message Passing.

Init: f := 0; d := 0;

thread 1 thread 2
d := 5; do r1 A f
f :=R 1; until r1 = 1;

r2 d;

The following execution is now
disallowed

wr1(d, 5)

wr

R
1 (f, 1)

rd

A
2 (f, 1)

rd2(d, 0)

wr(f, 0), wr(d, 0)

sb

sb

mo

mo

rf

sw

fr

mo

mo

rf

sw

fr

Axiomatic C11 semantics

Example (Message Passing).

Init: f := 0; d := 0;

thread 1 thread 2
d := 5; do r1 f
f := 1; until r1 = 1;

r2 d;

In C11, r2 can have a final value 0
— the execution below is allowed

wr1(d, 5)

wr1(f, 1)

rd2(f, 1)

rd2(d, 0)

wr(f, 0), wr(d, 0)

sb sb

sb sb

mo

mo

rf

rf

fr

Corrected Message Passing.

Init: f := 0; d := 0;

thread 1 thread 2
d := 5; do r1 A f
f :=R 1; until r1 = 1;

r2 d;

The following execution is now
disallowed

wr1(d, 5)

wr

R
1 (f, 1)

rd

A
2 (f, 1)

rd2(d, 0)

wr(f, 0), wr(d, 0)

sb

sb

mo

mo

rf

sw

fr

mo

mo

rf

sw

fr

Axiomatic C11 semantics

Example (Message Passing).

Init: f := 0; d := 0;

thread 1 thread 2
d := 5; do r1 f
f := 1; until r1 = 1;

r2 d;

In C11, r2 can have a final value 0
— the execution below is allowed

wr1(d, 5)

wr1(f, 1)

rd2(f, 1)

rd2(d, 0)

wr(f, 0), wr(d, 0)

sb sb

sb sb

mo

mo

rf

rf

fr

Corrected Message Passing.

Init: f := 0; d := 0;

thread 1 thread 2
d := 5; do r1 A f
f :=R 1; until r1 = 1;

r2 d;

The following execution is now
disallowed

wr1(d, 5)

wr

R
1 (f, 1)

rd

A
2 (f, 1)

rd2(d, 0)

wr(f, 0), wr(d, 0)

sb

sb

sb

sb

mo

mo

rf

sw

fr

mo

mo

rf

sw

fr

Axiomatic C11 semantics

Example (Message Passing).

Init: f := 0; d := 0;

thread 1 thread 2
d := 5; do r1 f
f := 1; until r1 = 1;

r2 d;

In C11, r2 can have a final value 0
— the execution below is allowed

wr1(d, 5)

wr1(f, 1)

rd2(f, 1)

rd2(d, 0)

wr(f, 0), wr(d, 0)

sb sb

sb sb

mo

mo

rf

rf

fr

Corrected Message Passing.

Init: f := 0; d := 0;

thread 1 thread 2
d := 5; do r1 A f
f :=R 1; until r1 = 1;

r2 d;

The following execution is now
disallowed

wr1(d, 5)

wr

R
1 (f, 1)

rd

A
2 (f, 1)

rd2(d, 0)

wr(f, 0), wr(d, 0)

sb

sb

sb

sb

mo

mo

rf

sw

fr

mo

mo

rf

sw

fr

Axiomatic C11 semantics

Example (Message Passing).

Init: f := 0; d := 0;

thread 1 thread 2
d := 5; do r1 f
f := 1; until r1 = 1;

r2 d;

In C11, r2 can have a final value 0
— the execution below is allowed

wr1(d, 5)

wr1(f, 1)

rd2(f, 1)

rd2(d, 0)

wr(f, 0), wr(d, 0)

sb sb

sb sb

mo

mo

rf

rf

fr

Corrected Message Passing.

Init: f := 0; d := 0;

thread 1 thread 2
d := 5; do r1 A f
f :=R 1; until r1 = 1;

r2 d;

The following execution is now
disallowed

wr1(d, 5)

wr

R
1 (f, 1)

rd

A
2 (f, 1)

rd2(d, 0)

wr(f, 0), wr(d, 0)

sb

sb

sb

sb

mo

mo

rf

sw

fr

mo

mo

rf

sw

fr

What about verification?

I Axiomatic semantics useful for certain forms of verification, e.g., SMT,
BMC, ...

I But how can we link with existing works
— Hoare Logic, Owicki/Gries, Rely/Guarantee ?

We need an operational semantics for C11

C11 Operational Semantics

Point of departure

I Start with operational semantics by Doherty et al (2019)
— proved sound and complete with respect to RC11

I For the experts: restrict attention to a fragment of C11
I All operations are either relaxed, write-releasing, or read-acquiring

I Do not model fences or release-sequences

I Assume no-thin-air, i.e., sb [rf acyclic

I Strategy: construct valid C11 graphs by stepping through program in
thread order (without consulting axioms)

I Brings us back to well understood (programmer friendly) notion

Concurrency = Interleaving of threads

I What’s different?
I More non-determinism in choosing the next C11 state
I Both reads and writes may change state configuration

Observing a C11 state
Key point.

I Each thread has its own observable set of writes
I Observable writes can be determined from the current C11 state

Example. Restricting mo [rf [fr to a single variable, we have:

w1 w2 w3 w4 w5

r1

r

0
1

r

00
1

r2

r

0
2

r3 r4

r

0
4

mo mo mo

rf fr rf fr

mo

rf fr rf fr

t1 Hidden
t2 Hidden
t3 Hidden

I Thread t1 can observe w3, w4, w5

I Thread t2 can observe w2, w3, w4, w5

I Thread t3 can observe w5

Observable set changes as threads interact with the C11 state

Observing a C11 state
Key point.

I Each thread has its own observable set of writes
I Observable writes can be determined from the current C11 state

Example. Restricting mo [rf [fr to a single variable, we have:

w1 w2 w3 w4 w5

r1

r

0
1

r

00
1

r2

r

0
2

r3 r4

r

0
4

mo mo mo

rf fr rf fr

mo

rf fr rf fr

t1 Hidden
t2 Hidden
t3 Hidden

I Thread t1 can observe w3, w4, w5

I Thread t2 can observe w2, w3, w4, w5

I Thread t3 can observe w5

Observable set changes as threads interact with the C11 state

Observing a C11 state
Key point.

I Each thread has its own observable set of writes
I Observable writes can be determined from the current C11 state

Example. Restricting mo [rf [fr to a single variable, we have:

w1 w2 w3 w4 w5

r1

r

0
1

r

00
1

r2

r

0
2

r3 r4

r

0
4

mo mo mo

rf fr rf fr

mo

rf fr rf fr

t1 Hidden
t2 Hidden
t3 Hidden

I Thread t1 can observe w3, w4, w5

I Thread t2 can observe w2, w3, w4, w5

I Thread t3 can observe w5

Observable set changes as threads interact with the C11 state

Message passing with “bad” transition

Init: f := 0; d := 0

thread 1 thread 2
d := 5; do r1 f until r1 = 1;
f := 1; r2 d;

Pre-state

wr1(d, 5)

wr1(f, 1)

rd2(f, 1)

wr(f, 0), wr(d, 0)

sb sb

sb

mo

mo

rf

Thread 2 can observe
both writes to d

Possible post-state

wr1(d, 5)

wr1(f, 1)

rd2(f, 1)

rd2(d, 0)

wr(f, 0), wr(d, 0)

sb sb

sb sb

mo

mo

rf

rf

fr

“Bad” transition with read
from wr(d, 0) is possible

Message passing with “bad” transition

Init: f := 0; d := 0

thread 1 thread 2
d := 5; do r1 f until r1 = 1;
f := 1; r2 d;

Pre-state

wr1(d, 5)

wr1(f, 1)

rd2(f, 1)

wr(f, 0), wr(d, 0)

sb sb

sb

mo

mo

rf

Thread 2 can observe
both writes to d

Possible post-state

wr1(d, 5)

wr1(f, 1)

rd2(f, 1)

rd2(d, 0)

wr(f, 0), wr(d, 0)

sb sb

sb sb

mo

mo

rf

rf

fr

“Bad” transition with read
from wr(d, 0) is possible

Message passing with “bad” transition

Init: f := 0; d := 0

thread 1 thread 2
d := 5; do r1 f until r1 = 1;
f := 1; r2 d;

Pre-state

wr1(d, 5)

wr1(f, 1)

rd2(f, 1)

wr(f, 0), wr(d, 0)

sb sb

sb

mo

mo

rf

Thread 2 can observe
both writes to d

Possible post-state

wr1(d, 5)

wr1(f, 1)

rd2(f, 1)

rd2(d, 0)

wr(f, 0), wr(d, 0)

sb sb

sb sb

mo

mo

rf

rf

fr

“Bad” transition with read
from wr(d, 0) is possible

Message passing with release/acquire annotations

Init: f := 0; d := 0

thread 1 thread 2
d := 5; do r1 A 1 until r1 = 1;
f :=R 1; r2 := d;

Pre-state

wr1(d, 5)

wr

R
1 (f, 1)

rd

A
2 (f, 1)

wr(f, 0), wr(d, 0)

sb

sb

sb

mo

mo

sw

Thread 2 can only
observe wr1(d, 5)

Only possible post-state

wr1(d, 5)

wr

R
1 (f, 1)

rd

A
2 (f, 1)

rd2(d, 5)

wr(f, 0), wr(d, 0)

sb

sb

sb

sb

mo

mo

rf

sw

Only the “good” transition
is available

Message passing with release/acquire annotations

Init: f := 0; d := 0

thread 1 thread 2
d := 5; do r1 A 1 until r1 = 1;
f :=R 1; r2 := d;

Pre-state

wr1(d, 5)

wr

R
1 (f, 1)

rd

A
2 (f, 1)

wr(f, 0), wr(d, 0)

sb

sb

sb

mo

mo

sw

Thread 2 can only
observe wr1(d, 5)

Only possible post-state

wr1(d, 5)

wr

R
1 (f, 1)

rd

A
2 (f, 1)

rd2(d, 5)

wr(f, 0), wr(d, 0)

sb

sb

sb

sb

mo

mo

rf

sw

Only the “good” transition
is available

Message passing with release/acquire annotations

Init: f := 0; d := 0

thread 1 thread 2
d := 5; do r1 A 1 until r1 = 1;
f :=R 1; r2 := d;

Pre-state

wr1(d, 5)

wr

R
1 (f, 1)

rd

A
2 (f, 1)

wr(f, 0), wr(d, 0)

sb

sb

sb

mo

mo

sw

Thread 2 can only
observe wr1(d, 5)

Only possible post-state

wr1(d, 5)

wr

R
1 (f, 1)

rd

A
2 (f, 1)

rd2(d, 5)

wr(f, 0), wr(d, 0)

sb

sb

sb

sb

mo

mo

rf

sw

Only the “good” transition
is available

C11 Owicki-Gries Proofs in Isabelle

Proof outline for message passing

Init: d := 0; f := 0;

{d =1 0 ^ d =2 0 ^ f =1 0 ^ f =2 0}
{¬(f ⇡2 1) ^ d =1 0} {[f = 1]2(d = 5)}

d := 5; do r1 A f until r1 = 1;

{¬(f ⇡2 1) ^ d =1 5} {d =2 5}

f :=R 1; r2 d;

{true} {r2 = 5}
{r2 = 5}

Proof outline for message passing

Init: d := 0; f := 0;
{d =1 0 ^ d =2 0 ^ f =1 0 ^ f =2 0}

{¬(f ⇡2 1) ^ d =1 0} {[f = 1]2(d = 5)}
d := 5; do r1 A f until r1 = 1;
{¬(f ⇡2 1) ^ d =1 5} {d =2 5}
f :=R 1; r2 d;
{true} {r2 = 5}

{r2 = 5}

Proof outline for message passing

Init: d := 0; f := 0;
{d =1 0 ^ d =2 0 ^ f =1 0 ^ f =2 0}

{¬(f ⇡2 1) ^ d =1 0} {[f = 1]2(d = 5)}
d := 5; do r1 A f until r1 = 1;
{¬(f ⇡2 1) ^ d =1 5} {d =2 5}
f :=R 1; r2 d;
{true} {r2 = 5}

{r2 = 5}

Recall the Owicki-Gries technique:

` {P1}C1{Q1}k{P2}C2{Q2} P) P1 ^ P2 Q1 ^Q2) Q

` {P} ({P1}C1{Q1}k{P2}C2{Q2}) {Q}

` {P1}C1{Q1} {P1}C1{Q1} is interference free wrt C2

` {P2}C2{Q2} {P2}C2{Q2} is interference free wrt C1

` {P1}C1{Q1}k{P2}C2{Q2}

Proof outline for message passing

Init: d := 0; f := 0;
{d =1 0 ^ d =2 0 ^ f =1 0 ^ f =2 0}

{¬(f ⇡2 1) ^ d =1 0} {[f = 1]2(d = 5)}
d := 5; do r1 A f until r1 = 1;
{¬(f ⇡2 1) ^ d =1 5} {d =2 5}
f :=R 1; r2 d;
{true} {r2 = 5}

{r2 = 5}

I The C11 state is a special implicit variable in the program
I Assertions are predicates over program states (including the C11

states)

I We define special assertions on C11 state:

x ⇡t v $ Thread t possibly observes value v for x
x =t v $ Thread t definitely observes value v for x

[x = u]t(y = v) $ If thread t observes x = u

then it will definitely observe y = v

Proof outline for message passing

Init: d := 0; f := 0;
{d =1 0 ^ d =2 0 ^ f =1 0 ^ f =2 0}

{¬(f ⇡2 1) ^ d =1 0} {[f = 1]2(d = 5)}
d := 5; do r1 A f until r1 = 1;
{¬(f ⇡2 1) ^ d =1 5} {d =2 5}
f :=R 1; r2 d;
{true} {r2 = 5}

{r2 = 5}

I The C11 state is a special implicit variable in the program
I Assertions are predicates over program states (including the C11

states)
I We define special assertions on C11 state:

x ⇡t v $ Thread t possibly observes value v for x
x =t v $ Thread t definitely observes value v for x

[x = u]t(y = v) $ If thread t observes x = u

then it will definitely observe y = v

Hoare-style axioms
I Rules for compound statements are exactly as in Hoare logic

I But have a new set of basic axioms for (atomic) reads and writes (76 at
last count), e.g.,

d obs WrX set
{x =t u} [x := v]t {x =t v}

not pobs RdA pres
{¬(x ⇡t u)} [v A y]t0 {¬(x ⇡t u)}

c obs WrR pres
z 6= y z 6= x x 6= y

{[x = u]t(y = v)} [z :=R w]t {[x = u]t(y = v)}

I All basic axioms verified in Isabelle, e.g.,
corollary d_obs_RdX_other:
"wfs � =) x 6= y =)

[x =t u] � =) � [v y]t �’ =) [x =t u] �’"
by (metis RdX_def avar.simps(1) d_obs_other)

Hoare-style axioms
I Rules for compound statements are exactly as in Hoare logic

I But have a new set of basic axioms for (atomic) reads and writes (76 at
last count), e.g.,

d obs WrX set
{x =t u} [x := v]t {x =t v}

not pobs RdA pres
{¬(x ⇡t u)} [v A y]t0 {¬(x ⇡t u)}

c obs WrR pres
z 6= y z 6= x x 6= y

{[x = u]t(y = v)} [z :=R w]t {[x = u]t(y = v)}

I All basic axioms verified in Isabelle, e.g.,
corollary d_obs_RdX_other:
"wfs � =) x 6= y =)

[x =t u] � =) � [v y]t �’ =) [x =t u] �’"
by (metis RdX_def avar.simps(1) d_obs_other)

C11 Owicki-Gries in Isabelle

I Owicki-Gries theory is included in standard Isabelle distribution
(Nieto and Nipkow, 2002)

I We have extended Nieto-Nipkow’s WHILE language with relaxed /
release-acquire statements

I C11 state is embedded in the standard state, e.g., for message passing
record MP =
d :: V
f :: V
r1 :: V
r2 :: V
� :: C11_state

I C11 states updated w.r.t. our operational semantics

C11 Owicki-Gries in Isabelle

I Owicki-Gries theory is included in standard Isabelle distribution
(Nieto and Nipkow, 2002)

I We have extended Nieto-Nipkow’s WHILE language with relaxed /
release-acquire statements

I C11 state is embedded in the standard state, e.g., for message passing
record MP =
d :: V
f :: V
r1 :: V
r2 :: V
� :: C11_state

I C11 states updated w.r.t. our operational semantics

Proof of message passing in Isabelle
lemma MessagePassing:
"k- {| (wfs ´� ´f ´d) ^ [´d =1 0]´� ^ [´d =2 0]´�

^ [´f =1 0]´� ^ [´f =2 0]´� |}
COBEGIN {| (wfs ´� ´f ´d) ^ ¬[´f ⇡2 1]´� ^ [´d =1 0]´� |}

<´d [´�] :=1 5> ;;
{| (wfs ´� ´f ´d) ^ ¬[´f ⇡2 1]´� ^ [´d =1 5]´� |}
<´f [´�]R :=1 1>
{| [´d =1 5]´� |}

k
{| (wfs ´� ´f ´d) ^ [´f = 1]2(| ´d = 5 |)´� |}
DO {| (wfs ´� ´f ´d) ^ [´f = 1]2(| ´d = 5 |)´� |}

<´r1 [´�]A 2 ´f>
UNTIL ´r1 = 1
INV {| (wfs ´� ´f ´d) ^ [´f = 1]2(| ´d = 5 |)´�

^ (´r1 = 1 �! [´d =2 5]´�) |}
OD;; {| (wfs ´� ´f ´d) ^ [´d =2 5]´� |}
<´r2 [´�] 2 ´d>
{| ´r2 = 5 |}

COEND
{| ´r2 = 5 |}"

apply oghoare
apply auto
using d_obs_diff_false zero_neq_numeral
by blast+

Case study 2: Peterson’s mutual exclusion

Init: flag1 := false; flag2 := false; turn = 1

thread 1 thread 2
flag1 := true; flag2 := true;
swap

RA(turn, 2); swap

RA(turn, 1);
do do

r1 A flag2; r3 A flag1;
r2 turn; r4 turn;

until ¬r1 _ r2 = 1; until ¬r3 _ r4 = 2;
//CS1; //CS2;
flag1 :=

R false; flag2 :=
R false;

I Encoded and verified in Isabelle
I Requires new types of assertions describing the C11 state
I Same auxiliary variable as proof in sequentially consistent setting (Apt

and Olderog, 2009)
I However, proof requires more work beyond oghoare and auto

— currently investigating ways to speed this up

Conclusions

I Operational semantics by Doherty et al (2019) makes deductive
verification possible for (a realistic fragment of) C11

I Verification based on well-understood Owicki-Gries theory
I Straightforward extension of Nieto and Nipkow’s

mechanisations of Owicki-Gries in Isabelle
I Paper describing these works is forthcoming

I Currently investigating links with distributed correctness (with
Philippa Gardner)

I Any questions, please e-mail: b.dongol@surrey.ac.uk

