Mechanised Owicki-Gries Proofs for C11

Brijesh Dongol University of Surrey

Joint work with

Sadegh Dalvandi (University of Surrey) Simon Doherty (University of Sheffield) Heike Wehrheim (University of Paderborn) John Derrick (University of Sheffield)

K ロ ▶ K 리 ▶ K 콘 ▶ K 콘 ▶ - 콘 → 9 Q Q

A weak memory talk

 ${talk = weak_memory}$ $\texttt{reaction} := \texttt{listen}(\texttt{talk})$ ${ \{ reaction = \textcircled{\tiny \lor\ reaction = \textcircled{\tiny \%}\}}$

K □ ▶ K @ ▶ K ミ X K ミ X _ ミ Y Q Q Q

A weak memory talk

$$
{\begin{array}{c}\n\{{\tt talk} = {\tt weak.memory}\} \\
 {\tt reaction} := {\tt listen}({\tt alk}) \\
\{{\tt reaction} = \mathbb{G} \lor {\tt reaction} = \mathbb{G}\}\n\end{array}}\quad {\begin{array}{c}\n\{{\tt this}({\tt talk})\} \\
\{{\tt reaction} = \mathbb{G}\}\n\end{array}}
$$

A weak memory talk

$$
{\begin{array}{c}\n\{{\tt talk} = {\tt weak.memory}\} \\
 {\tt reaction} := {\tt listen}({\tt alk}) \\
\{{\tt reaction} = \mathbb{G} \lor {\tt reaction} = \mathbb{G}\}\n\end{array}}\quad {\begin{array}{c}\n\{{\tt this}({\tt talk})\} \\
{\tt this}({\tt talk})\n\end{array}}
$$

Turning \mathbb{R} into $\mathbb{\Theta}$ — relate weak memory semantics to Hoare logic and Owicki-Gries style proof rules

KOKK@KKEKKEK E DAQ

Outline

C11 Axiomatic Semantics

C11 Operational Semantics

C11 Owicki-Gries Proofs in Isabelle

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ │ 君│ め Q Q <mark>◇</mark>

C11 Axiomatic Semantics

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ _ 할 _ K 9 Q @

Example (Message Passing).

Kロメ K団 K K ミメ K ミメ / ミー YO Q C

Example (Message Passing).

Init: $f := 0; d := 0;$ **thread** 1 **thread** 2 $d := 5;$
 $f := 1;$
 $\left| \begin{array}{ccc} \text{do } r1 \leftarrow f \\ \text{until } r1 = \end{array} \right|$ until $r1 = 1$; $r2 \leftarrow d;$

In C11, r2 can have a final value 0 — the execution below is allowed

イロトメ団 トメミトメミトン

重

 $2Q$

Example (Message Passing).

Init: $f := 0; d := 0;$ **thread** 1 **thread** 2 d := 5;

f := 1;
 $\left|\begin{array}{cc} d & \text{do } r1 \leftarrow f \\ f & \text{until } r1 = \end{array}\right|\right|$ until $r1 = 1$; $r2 \leftarrow d;$

In C11, r2 can have a final value 0 — the execution below is allowed

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○君

 OQ

Example (Message Passing).

In C11, r2 can have a final value 0 — the execution below is allowed

Corrected Message Passing.

Init: $f := 0$; $d := 0$;		
thread 1	thread 2	
$d := 5;$	do $r1 \leftarrow^{A} f$	
$f :=^R 1;$	until $r1 = 1$;	
	$r2 \leftarrow d$;	

K ロ ▶ K 伊 ▶ K 君 ▶ K 君 ▶

重

 OQ

Example (Message Passing).

In C11, r2 can have a final value 0 — the execution below is allowed

Corrected Message Passing.

Init: $f := 0$; $d := 0$;	
thread 1	thread 2
$d := 5;$	do $r1 \leftarrow^{A} f$
$f :=^R 1$;	until $r1 = 1$;
	$r2 \leftarrow d$;

The following execution is now disallowed

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ │ 君 OQ

Example (Message Passing).

In C11, r2 can have a final value 0 — the execution below is allowed

Corrected Message Passing.

Init: $f := 0$; $d := 0$;	
thread 1	thread 2
$d := 5;$	do $r1 \leftarrow^{A} f$
$f :=^R 1$;	until $r1 = 1$;
	$r2 \leftarrow d$;

The following execution is now disallowed

 DQ

Example (Message Passing).

In C11, r2 can have a final value 0 — the execution below is allowed

Corrected Message Passing.

Init: $f := 0$; $d := 0$;	
thread 1	thread 2
$d := 5;$	do $r1 \leftarrow^{A} f$
$f :=^R 1$;	until $r1 = 1$;
	$r2 \leftarrow d$;

The following execution is now disallowed

 OQ

What about verification?

- \blacktriangleright Axiomatic semantics useful for certain forms of verification, e.g., SMT, BMC, ...
- \triangleright But how can we link with existing works — Hoare Logic, Owicki/Gries, Rely/Guarantee ?

We need an operational semantics for C11

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ _ 할 _ K 9 Q @

C11 Operational Semantics

KOKK@KKEKKEK E DAQ

Point of departure

- \triangleright Start with operational semantics by Doherty et al (2019) — proved sound and complete with respect to RC11
- \blacktriangleright For the experts: restrict attention to a fragment of C11
	- I All operations are either *relaxed*, *write-releasing*, or *read-acquiring*
	- I Do **not** model *fences* or *release-sequences*
	- **If** Assume *no-thin-air*, i.e., sb \cup rf acyclic
- \triangleright Strategy: construct valid C11 graphs by stepping through program in thread order (without consulting axioms)
- ▶ Brings us back to well understood (programmer friendly) notion

Concurrency = Interleaving of threads

- \blacktriangleright What's different?
	- \blacktriangleright More non-determinism in choosing the next C11 state
	- **IDED** Both reads and writes may change state configuration

K ロ X K @ X K 할 X K 할 X - 할 X YO Q @

Observing a C11 state

Key point.

- \blacktriangleright Each thread has its own observable set of writes
- \triangleright Observable writes can be determined from the current C11 state

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ _ 할 _ K 9 Q @

Observing a C11 state

Key point.

- \triangleright Each thread has its own observable set of writes
- \triangleright Observable writes can be determined from the current C11 state

Example. Restricting mo \cup rf \cup fr to a single variable, we have:

- If Thread t_1 can observe w_3 , w_4 , w_5
- If Thread t_2 can observe w_2 , w_3 , w_4 , w_5
- If Thread t_3 can observe w_5

K ロ ▶ K 伊 ▶ K ミ ▶ する♪ ₿ OQ

Observing a C11 state

Key point.

- \triangleright Each thread has its own observable set of writes
- \triangleright Observable writes can be determined from the current C11 state

Example. Restricting mo \cup rf \cup fr to a single variable, we have:

If Thread t_1 can observe w_3 , w_4 , w_5

- If Thread t_2 can observe w_2 , w_3 , w_4 , w_5
- If Thread t_3 can observe w_5

Observable set changes as threads interact with the C11 state

K 御 ▶ K 君 ▶ K 君 ▶

重

 $2Q$

 \leftarrow \Box

Message passing with "bad" transition

Pre-state

イロト (個) (変) (変) (変) 三重 DQ

Message passing with "bad" transition

Pre-state

Thread 2 can observe both writes to *d*

> メロトメ団 トメミトメミト 三重 DQ

Message passing with "bad" transition

Pre-state

Possible post-state

Thread 2 can observe both writes to *d*

"Bad" transition with read from $wr(d, 0)$ is possible

> **≮ロト ⊀母 ト ⊀ ミト ⊀ ミト** $2Q$ E

Message passing with release/acquire annotations

Pre-state

イロトメ団 トメミトメミト 三重 $2Q$

Message passing with release/acquire annotations

Pre-state

Thread 2 can only observe $wr_1(d, 5)$

> **K ロ ▶ K 伊 ▶ K 君 ▶ K 君 ▶** - 로 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$

Message passing with release/acquire annotations

Only possible post-state

Thread 2 can only observe $wr_1(d, 5)$

Only the "good" transition is available

K ロ ▶ K 御 ▶ K ミ ▶ K ミ ▶ $2Q$ 重

C11 Owicki-Gries Proofs in Isabelle

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → K Q Q @

Init: $d := 0; f := 0;$

$$
d := 5;
$$
\n
$$
\mathbf{f} :=^R 1;
$$

KOKK@KKEKKEK E DAQ

Init:
$$
d := 0; f := 0;
$$

\n
$$
\{d = 1 \ 0 \land d = 2 \ 0 \land f = 1 \ 0 \land f = 2 \ 0\}
$$
\n
$$
\{\neg(f \approx_2 1) \land d = 1 \ 0\} \qquad \{\[f = 1]_2(d = 5)\}\]
$$
\n
$$
d := 5;
$$
\n
$$
\{\neg(f \approx_2 1) \land d = 1 \ 5\} \qquad \{d = 2 \ 5\}
$$
\n
$$
f :=^R 1;
$$
\n
$$
\{true\}
$$
\n
$$
\{r2 = 5\}
$$
\n
$$
\{r2 = 5\}
$$

KOKK@KKEKKEK E DAQ

Init:
$$
d := 0
$$
; $f := 0$;
\n $\{d = 1 \ 0 \land d = 2 \ 0 \land f = 1 \ 0 \land f = 2 \ 0\}$
\n $\{\neg(f \approx_2 1) \land d = 1 \ 0\}$ $\{\[f = 1]_2(d = 5)\}\]$
\n $d := 5$;
\n $\{\neg(f \approx_2 1) \land d = 1 \ 5\}$ $\[d = 2 \ 5\}$
\n $f :=^R 1$;
\n $\{true\}$
\n $\{r2 = 5\}$

Recall the Owicki-Gries technique:

 $P \neq P_1 \wedge P_2$ $Q_1 \wedge Q_2 \Rightarrow Q_1 \wedge Q_2 \Rightarrow Q_2$ \vdash { P } ({ P_1 } C_1 { Q_1 }||{ P_2 } C_2 { Q_2 }) { Q } $\begin{array}{r} {+ \{P_1\}C_1\{Q_1\} \text{ is interference free wrt } C_2} \end{array}$ $\overline{P_1\{P_2\}C_2\{Q_2\}}$ *{* $\overline{P_2\}C_2\{Q_2\}$ is interference free wrt C_1 $\vdash \{P_1\}C_1\{Q_1\}$ || $\{P_2\}C_2\{Q_2\}$

K ロ ▶ K 御 ▶ K 콜 ▶ K 콜 ▶ │ 콜 │ ◆ 9 Q ⊙

Init:
$$
d := 0
$$
; $f := 0$;
\n $\{d = 1 \ 0 \land d = 2 \ 0 \land f = 1 \ 0 \land f = 2 \ 0\}$
\n $\{\neg(f \approx_2 1) \land d = 1 \ 0\}$
\n $d := 5$;
\n $\{\neg(f \approx_2 1) \land d = 1 \ 5\}$
\n $f :=^R 1$;
\n $\{true\}$
\n $\{r2 = 5\}$
\n $\{r2 = 5\}$

- \blacktriangleright The C11 state is a special implicit variable in the program
- Assertions are predicates over program states (including the C11 states)

KOKK@KKEKKEK E DAQ

Init:
$$
d := 0
$$
; $f := 0$;
\n $\{d = 1 \ 0 \land d = 2 \ 0 \land f = 1 \ 0 \land f = 2 \ 0\}$
\n $\{\neg(f \approx_2 1) \land d = 1 \ 0\}$
\n $d := 5$;
\n $\{\neg(f \approx_2 1) \land d = 1 \ 5\}$
\n $f :=^R 1$;
\n $\{true\}$
\n $\{r2 = 5\}$
\n $\{r2 = 5\}$

- \blacktriangleright The C11 state is a special implicit variable in the program
- \triangleright Assertions are predicates over program states (including the C11 states)
- \triangleright We define special assertions on C11 state:

 $x \approx_t v \iff$ Thread *t* possibly observes value *v* for *x* $x =_t v \leftrightarrow$ Thread *t* definitely observes value *v* for *x* $[x = u]_t(y = v) \Leftrightarrow$ If thread *t* observes $x = u$ then it will definitely observe $y = v$

Hoare-style axioms

- \blacktriangleright Rules for compound statements are exactly as in Hoare logic
- In But have a new set of basic axioms for (atomic) reads and writes (76 at last count), e.g.,

d obs WrX set ${x = t u}$ ${x = v}_t$ ${x = t v}$

not pobs RdA pres $\{\neg(x \approx_t u)\}\[v \leftarrow^{\mathbf{A}} y]_{\mathbf{t'}} \{\neg(x \approx_t u)\}$

c obs WrR pres *z* 6= *y z* 6= *x x* 6= *y* $\{[x = u]_t(y = v)\}$ $[\mathbf{z} := \mathbf{R} \mathbf{w}]_t$ $\{[x = u]_t(y = v)\}$

Hoare-style axioms

- \blacktriangleright Rules for compound statements are exactly as in Hoare logic
- But have a new set of basic axioms for (atomic) reads and writes $(76$ at last count), e.g.,

d_obs_WrX_set
$$
\frac{u}{x = t u} [x := v]_t \{x = t v\}
$$

not pobs RdA pres $\{\neg(x \approx_t u)\}\[v \leftarrow^{\mathbf{A}} y]_{\mathbf{t'}} \{\neg(x \approx_t u)\}$

c obs WrR pres *z* 6= *y z* 6= *x x* 6= *y* $\{[x = u]_t(y = v)\}$ $[\mathbf{z} := \mathbf{R} \mathbf{w}]_t$ $\{[x = u]_t(y = v)\}$

• All basic axioms verified in Isabelle, e.g., **corollary** d_obs_RdX_other: "wfs $\sigma \implies x \neq y \implies$ $[x =_{t} u] \sigma \implies \sigma [v \leftarrow y]_{t} \sigma' \implies [x =_{t} u] \sigma'$ " **by** (metis RdX_def avar.simps(1) d_obs_other)

4 ロ > 4 団 > 4 ミ > 4 ミ > ニ = 0 Q Q

C11 Owicki-Gries in Isabelle

 \triangleright Owicki-Gries theory is included in standard Isabelle distribution (Nieto and Nipkow, 2002)

KOKK@KKEKKEK E DAQ

C11 Owicki-Gries in Isabelle

- \triangleright Owicki-Gries theory is included in standard Isabelle distribution (Nieto and Nipkow, 2002)
- \blacktriangleright We have extended Nieto-Nipkow's WHILE language with relaxed / release-acquire statements
- \triangleright C11 state is embedded in the standard state, e.g., for message passing **record** MP = d :: V f :: V r1 :: V
	- r2 :: V σ :: C11_state
- \triangleright C11 states updated w.r.t. our operational semantics

KO K K @ K K E K K E K Y G K Y K W K W K

Proof of message passing in Isabelle

```
lemma MessagePassing:
  || - | (wfs \sigma ´f ´d) \wedge [ \sigma =<sub>1</sub> 0 ] \sigma \wedge [ \sigma =<sub>2</sub> 0 ] \sigma\wedge [ \uparrow =<sub>1</sub> 0 ] \uparrow \sigma \wedge [ \uparrow =<sub>2</sub> 0 ] \uparrow \sigma |}
COBEGIN \{ (wfs \sigma <sup>\tau</sup> \{ \alpha) \land \neg[ \{ \approx_2 1 ]\sigma \land [ \{ \{ =_1 0 ]\sigma \}\leq d [ \sigma] :=<sub>1</sub> 5> ;;
              {| (wfs ´ ´f ´d) ^ ¬[ ´f ⇡2 1 ]´ ^ [ ´d =1 5 ]´ |}
              \mathbf{\hat{f}} \mathbf{f} [\mathbf{\hat{\sigma}}]^{R} :=<sub>1</sub> 1>
              \{ [ 3 \pm 1 \ 5 \} \ \sigma \}\parallel{| (wfs ´ ´f ´d) ^ [ ´f=1]2(| ´d=5 |)´ |}
              DO {| (wfs \sigma ´f ´d) \wedge [ \tau = 1]<sub>2</sub>(| \sigma = 5 |)\sigma }
                   \langle \texttt{r1} [\sigma]^A \leftarrow_2 \texttt{f} \rangleUNTIL ´r1 = 1
              INV \{ (wfs \sigma <sup>\tau</sup> ´d) \wedge [ \tau = 1]<sub>2</sub>(| \sigma = 5 |)\sigma\wedge (\text{r1} = 1 \rightarrow [ \text{d} =_2 5 \text{ } ] \text{ } \sigma) \}OD;; \{ (wfs \sigma <sup>\tau</sup> d) \wedge [ \sigma =<sub>2</sub> 5 ]\sigma \}\langle \texttt{r2} [\sigma] \leftarrow_2 \texttt{d} \rangle{| ´r2 = 5 |}
COEND
{| ´r2 = 5 |}"
   apply oghoare
   apply auto
   using d_obs_diff_false zero_neq_numeral
   by blast+K ロ ▶ K 伊 ▶ K 君 ▶ K 君 ▶ │ 君│ め Q Q ◇
```
Case study 2: Peterson's mutual exclusion

 $Init:$ $flag_1 := false; flag_2 := false; turn = 1$ **thread** 1 **thread** 2 $flag_1 := true;$ \nparallel $flag_2 := true;$ $\mathbf{swap}^{\text{RA}}(\text{turn}, 2); \quad || \quad \mathbf{swap}^{\text{RA}}(\text{turn}, 1);$ do do $r1 \leftarrow^{\text{A}} \text{flag}_2;$ $r2 \leftarrow \text{turn};$ $r4 \leftarrow \text{turn};$ $r2 \leftarrow \text{turn};$
until $\neg r1 \vee r2 = 1;$ until \neg r1 \lor r2 = 1; until \neg r3 \lor r4 = 2;
//CS1; \neg //CS2; *//*CS1; *//*CS2; $\texttt{flag}_1 :=^R \texttt{false};$ \qquad \qquad \qquad $\texttt{flag}_2 :=^R \texttt{false};$

- \blacktriangleright Encoded and verified in Isabelle
- Requires new types of assertions describing the C11 state
- \triangleright Same auxiliary variable as proof in sequentially consistent setting (Apt and Olderog, 2009)
- I However, proof requires more work beyond oghoare and auto — currently investigating ways to speed this up

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q @

Conclusions

- \triangleright Operational semantics by Doherty et al (2019) makes deductive verification possible for (a realistic fragment of) C11
- In Verification based on well-understood Owicki-Gries theory
- **In Straightforward extension of Nieto and Nipkow's** mechanisations of Owicki-Gries in Isabelle
- \blacktriangleright Paper describing these works is forthcoming
- \blacktriangleright Currently investigating links with distributed correctness (with Philippa Gardner)
- ▶ Any questions, please e-mail: b.dongol@surrey.ac.uk

K ロ ▶ K 리 ▶ K 콘 ▶ K 콘 ▶ - 콘 → O Q @