
Proceedings of Machine Learning Research 1:1–24, 2024 5th Workshop on Learning and Automata (LearnAut)

DFAMiner: Mining minimal separating DFAs from labelled
samples

Daniele Dell’Erba dde@liverpool.ac.uk

Yong Li liyong@liverpool.ac.uk

Sven Schewe svens@liverpool.ac.uk

University of Liverpool, UK

Abstract

We propose DFAMiner, a passive learning tool for learning minimal separating deterministic
finite automata (DFA) from a set of labelled samples. Separating automata are an interest-
ing class of automata that occurs generally in regular model checking and has raised interest
in foundational questions of parity game solving. We first propose a simple and linear-time
algorithm that incrementally constructs a three-valued DFA (3DFA) from a set of labelled
samples given in the usual lexicographical order. This 3DFA has accepting and rejecting
states as well as don’t-care states, so that it can exactly recognise the labelled examples.
We then apply our tool to mining a minimal separating DFA for the labelled samples by
minimising the constructed automata via a reduction to solving SAT problems. Empirical
evaluation shows that our tool outperforms current state-of-the-art tools significantly on
standard benchmarks for learning minimal separating DFAs from samples. Progress in the
efficient construction of separating DFAs can also lead to finding the lower bound of parity
game solving, where we show that DFAMiner can create optimal separating automata for
simple languages with up to 7 colours. Future improvements might offer inroads to better
data structures.

Keywords: Separating DFAs, Passive Learning, Three-valued DFAs, Parity Game Solving

1. Introduction

The task of inferring a minimum-size separating automaton from two disjoint sets of sam-
ples has gained much attention from various fields, including computational biology (de la
Higuera, 2005), inference of network invariants (Grinchtein et al., 2006), regular model
checking (Neider, 2012), and reinforcement learning (Lauffer et al., 2022). More recently,
this problem has also arisen in the context of parity game solving (Bojańczyk and Cz-
erwiński, 2018), where separating automata can be used to decide the winner. The break-
through quasi-polynomial algorithm (Calude et al., 2017), for example, can be viewed as
producing such a separating automaton, and under additional constraints, quasi-polynomial
lower bounds can be established, too (Czerwinski et al., 2019; Calude et al., 2017). These
applications can be formalised as seeking the minimum-size of DFAs, known as the Min-DFA
inference problem, from positive and negative samples.

The Min-DFA inference problem was first explored in (Biermann and Feldman, 1972;
Gold, 1978). Due to its high (NP-complete) complexity, researchers initially focused on
either finding local optima through state merging techniques (Lang et al., 1998; Oncina and
Garcia, 1992; Bugalho and Oliveira, 2005), or seeking theoretical aspects such as reduction

© 2024 D. Dell’Erba, Y. Li & S. Schewe.

ar
X

iv
:2

40
5.

18
87

1v
1

 [
cs

.F
L

]
 2

9
M

ay
 2

02
4

Dell’Erba Li Schewe

to graph colouring problems (Coste and Nicolas, 1997). Notably, it has been shown that
there is no efficient algorithm to find approximate solutions (Pitt and Warmuth, 1993).

With the increase in computational power and efficiency of Boolean Satisfiability (SAT)
solvers, research has shifted towards practical and exact solutions to the Min-DFA inference
problem. Several tools have emerged in the literature, including ed-beam/exbar (Heule and
Verwer, 2010), FlexFringe (Verwer and Hammerschmidt, 2017), DFA-Inductor (Ulyantsev
et al., 2015; Zakirzyanov et al., 2019) and DFA-Identify (Lauffer et al., 2022).

The current practical and exact solutions to the Min-DFA inference problem typically
involve two steps: (1) Construct the augmented prefix tree acceptor (APTA (Coste and
Nicolas, 1998)) that recognises the given samples, and (2) minimise the APTA to a Min-
DFA by a reduction to SAT (Heule and Verwer, 2010). Recent enhancements of this ap-
proach focus on the second step, including techniques like symmetry breaking (Heule and
Verwer, 2010; Ulyantsev et al., 2015) and compact SAT encoding (Heule and Verwer, 2010;
Zakirzyanov et al., 2019). Additionally, there is an approach on the incremental SAT solv-
ing technique specialised for the Min-DFA inference problem, where heuristics for assigning
free variables have also been proposed (Avellaneda and Petrenko, 2019). However, their
implementation relies heavily on MiniSAT (Eén and Sörensson, 2003). We believe that, in
order to take advantage of future improvements of SAT solvers, it is better to use a SAT
solver as a black-box tool. We note that the second step has also been encoded as a Satis-
fiability Modulo Theories problem (Smetsers et al., 2018), which can also be improved by
our contribution to the first step.

The second step is typically the bottleneck in the workflow. It is known that the number
of boolean variables used in the SAT problem is polynomial in the number of states of the
APTA. Smaller APTAs naturally lead to easier SAT problems. This motivates our effort
to improve the first step of the inference problem to obtain simpler SAT instances. While
previous attempts have aimed at reducing the size of APTAs (Lang et al., 1998; Oncina and
Garcia, 1992; Bugalho and Oliveira, 2005), we introduce a new and incremental construction
of the APTAs that comes with a minimality guarantee for the acceptor of the given samples.

Contributions. We propose employing the (polynomial-time) incremental construction
of minimal acyclic DFA learning algorithm (Daciuk et al., 2000) for minimal DFAs from a
given set of positive samples. We offer two constructions based on it. The first consists of
building two minimal DFAs, D+ and D−, for the positive samples S+ and the negative ones
S−, respectively. When composing them, we set as rejecting the accepting states of D− and
use the DFA pair (D+,D−) as the acceptor of S = (S+, S−). For the second construction,
our algorithm directly learns an APTA from S, hence considering both sets of positive and
negative samples at the same time. As a consequence, we extend the algorithm to support
APTA learning from the pair of labelled samples S. The obtained APTA is guaranteed to
be the minimum-size deterministic acceptor for S.

We have implemented these techniques in our new tool DFAMiner and compared it
with the state-of-the-art tools DFA-Inductor (Ulyantsev et al., 2015; Zakirzyanov et al.,
2019) and DFA-Identify (Lauffer et al., 2022), on the benchmarks generated as described
in (Ulyantsev et al., 2015; Zakirzyanov et al., 2019). Our experimental results demonstrate
that DFAMiner builds smaller APTAs and is therefore significantly faster at minimising the
DFAs than both DFA-Inductor and DFA-Identify.

2

DFAMiner: Mining minimal DFAs

To test the limitation of our technique, we employed it to extract deterministic safety
or reachability automata as witness automata for parity game solving. With DFAMiner, we
have established the lower bounds on the size of deterministic safety automata for parity
games with up to 7 colours. In this case, the main bottleneck is no longer solving the
Min-DFA inference problem, but the generation of the labelled samples, whose number is
exponential in the length and the number of colours. To the best of our knowledge, this
is the first time that Min-DFA inference tools have been applied to parity game solving.
If they eventually scale, this may lead to new insights into the actual size of the minimal
safety automata for solving parity games.

2. Preliminaries

In the whole paper, we fix a finite alphabet Σ of letters. A word is a finite sequence of letters
in Σ. We denote with ε the empty word and with Σ∗ the set of all finite words. When
discarding the empty word, we restrict the set of words to Σ+ = Σ∗ \ {ε}. A subset of Σ∗

is a finitary language. Given a word u, we denote by u[i] the i-th letter of u. For two given
words u and w, we denote by u · w (uw, for short) the concatenation of u and w. We say
that u is a prefix of u′, denoted as u ⪯ u′, if u′ = u · v for some word v ∈ Σ∗. We denote
by prefixes(u) the set of the prefixes of u, i.e., { v ∈ Σ∗ | v ⪯ u }. We also extend function
prefixes to sets of words, i.e., we have prefixes(S) =

⋃
u∈S prefixes(u).

Automata. An automaton on finite words is called a 3-valued (deterministic) finite au-
tomaton (3DFA). A 3DFA A is formally defined as a tuple (Q, ι, δ, F,R), where Q is a finite
set of states, ι ∈ Q is the initial state, δ : Q×Σ → Q is a transition function, and F,R and
D = Q \ (F ∪R) form a partition of Q where F ⊆ Q is the set of accepting states, R ⊆ Q is
the set of rejecting states and D is the set of don’t-care states. 3DFAs map all words in Σ∗

to three values, i.e., accepting (+), rejecting (−) and don’t-care (?). This is why we call it
a 3DFA.

A run of a 3DFA A on a not empty finite word u of length n is a sequence of states
ρ = q0q1 · · · qn ∈ Q+ such that, for every 0 ≤ i < n, qi+1 ∈ δ(qi, u[i]). As usual, a finite word
u ∈ Σ∗ is accepted (respectively, rejected) by a 3DFA A if there is a run q0 · · · qn over u such
that qn ∈ F (respectively, qn ∈ R). Naturally, a 3DFA A can be seen as a classification
function in Σ∗ → {+,−, ?}. The usual deterministic finite automaton (DFA) is a 3DFA
with R = Q\F , i.e., a word is mapped to either + or −. Both the classes of words accepted
and rejected by 3DFAs are known to be regular languages.

We remark that the 3DFAs are very standard model for representing positive and neg-
ative samples in the literature. In (Alquezar and Sanfeliu, 1995), 3DFAs are called deter-
ministic unbiased finite state automata.

For a given regular language, the Myhill-Nerode theorem (Myhill, 1957; Nerode, 1958)
helps to obtain the minimal DFA. Similarly, it is suggested in (Chen et al., 2009) that we
can identify equivalent words that reach the same state in the minimal 3DFA of a given
function L : Σ∗ → {+,−, ?}. Let x, y be two word in Σ∗ and L ∈ (Σ∗ → {+,−, ?}) be a
function. We define an equivalence relation ∼L⊆ Σ∗ × Σ∗ as below:

x ∼L y if, and only if, ∀v ∈ Σ∗, L(xv) = L(yv).

3

Dell’Erba Li Schewe

We denote by | ∼L | the index of ∼L, i.e., the number of equivalence classes defined by L.
Let S be a given finite set of labelled samples. We can also see S as a classification function
and it also induces an equivalence relation ∼S . Further, we define S

+ = {u ∈ S : S(u) = +},
S− = {u ∈ S : S(u) = −} and S? = Σ∗ \ S = {u ∈ S : S(u) =?}. Finally, we conclude
with a straightforward proposition that follows from the fact that | ∼S | is bounded by the
number of prefixes of S, i.e., |prefixes(S)|.

Fact 1:
Let S be a finite set of labelled samples. Then the index of ∼S is also finite.

3. Overview of DFAMiner

Problem definition. Let S = (S+, S−) be the given set of labelled samples. Our goal
in this paper is to find a minimal DFA (Min-DFA) D for S such that for all u ∈ Σ∗, if
S(u) = $, where $ ∈ {+,−}, then D(u) = $. We call the target DFA a minimal separating
DFA1 for S.

The passive learner for separating DFAs (Heule and Verwer, 2010; Zakirzyanov et al.,
2019) usually works as follows: (1) Construct a 3DFA M recognising S and (2) Minimise
the 3DFA M to a Min-DFA using a SAT solver. Our work mainly differs from the APTA
construction for the first step. We will first describe the APTA construction in Section 3.1
and then give our proposal for the tool architecture in Section 3.2. In the remainder of the
paper, we let S = (S+, S−) be the given labelled sample set.

3.1. The construction of 3DFAs

Prior works (Zakirzyanov et al., 2019; Ulyantsev et al., 2015; Heule and Verwer, 2010) con-
struct an automaton called augmented prefix tree acceptor (APTA) (Alquezar and Sanfeliu,
1995; Coste and Nicolas, 1998; Coste and Fredouille, 2003)2 P that recognises S. The APTA
P = (Q, ε, δ, F,R) is formally defined as a 3DFA where Q = prefixes(S) is the set of states,
ε is the initial state, F = S+ is the set of accepting states, R = S− is the set of rejecting
states, and δ(u, a) = ua for all u, ua ∈ Q and a ∈ Σ. As mentioned in the introduction,
the number of boolean variables and clauses used in the SAT problem is polynomial in the
number of states of P. The main issue is that the size of P increases dramatically with the
growth of the number of samples in S and the length of the samples, This is not surprising,
given that P maps every word in prefixes(S) to a unique state. To show this growth, we
considered samples from parity game solving. Table 1 shows the size comparison between
the APTA and its minimal 3DFA (Min-3DFA) representation. With 5 and 6 letters (in this
case colours), we can observe that the Min-3DFAs can be much smaller than their corre-
sponding APTA counterparts. In other words, there are a lot of equivalent and redundant
states in APTAs that can be merged together.

In fact, since APTAs are acyclic (i.e., there are no cycles), we can minimise them with
a linear-time backward traversal (Daciuk et al., 2000). The crucial step is how to identify
whether two states are equivalent in the backward traversal (Daciuk et al., 2000). Our

1. In (Chen et al., 2009), the 3DFA that recognises S is called separating DFA for S.
2. APTAs are called prefix tree unbiased finite state automata in (Alquezar and Sanfeliu, 1995) and they

are also similar to the prefix-tree Moore Machines in (Trakhtenbrot and Barzdin, 1973).

4

DFAMiner: Mining minimal DFAs

|Σ| Length Min-3DFA APTA

5 7 438 53,277
5 8 541 209,721
5 9 644 835,954
5 10 747 3,369,694

6 7 1279 199,397
6 8 1807 930,870
6 9 2170 4,369,362
6 10 2533 20,689,546

Table 1: Size comparison between Min-3DFA and APTA on part of benchmarks for parity
game solving.

solution is to use the equivalence relation ∼S . Based on the definition of ∼S , we define that
two states p, q ∈ Q are equivalent, denoted p ≡ r if, and only if,

1. they have the same acceptance status, i.e., they are both accepting, rejecting or don’t-
care states;

2. for each letter a ∈ Σ, either they both have no successors or their successors are
equivalent.

In the implementation, since we only store one representative state for each equivalence
class, the second requirement can be changed as follows:

2’. for each letter a ∈ Σ, either they both have no successors or the same successor.

Therefore, it is easy to come up with an algorithm to minimise the given APTA tree P
by doing the following:

1. We first collapse all accepting (respectively, rejecting) states without outgoing transi-
tions to one accepting (respectively, rejecting) state without outgoing transitions, and
put the two states in a map called Register that stores equivalence relation of states.

2. Then we perform backward traversal of states and check if there is a state whose
successors are all in Register. For such states, we identify equivalent states by Rule
2’, replace all equivalent states with their representative and put their representative
in Register.

3. We repeat step 2 until all states, including the initial state, are in Register.

In this way, we are guaranteed to obtain the minimal 3DFA M that correctly recognises
the given set S.

Further, we do not have to construct the APTA P in order to obtain the minimal 3DFA
for the given samples. We have shown that it is possible to construct the minimal 3DFA on
the fly, given that the samples are in the usual lexicographic order. If the samples are not
in the lexicographic order, we will first order them and then proceed to the construction of
its 3DFA. The details of the construction are deferred to Appendix A.

5

Dell’Erba Li Schewe

S+, S− Min-3DFA M
SAT Encoding
SAT Solving

Minimiser

Min-DFA

Figure 1: Workflow of DFAMiner with 3DFAs

Theorem 1 The incremental construction produces the minimal 3DFA recognising exactly
the sample set S.

3.2. Our proposal

Our tool DFAMiner follows the classic two-step workflow. The advantage of DFAMiner over
prior works is that DFAMiner has an access to an incremental construction that produces the
minimal 3DFA M of S with respect to ∼S . With the incremental construction, a natural
workflow of DFAMiner is to first construct the minimal 3DFA M from S = (S+, S−) and
then find a minimal separating DFA D from M using a SAT solver. This approach is
depicted in Figure 1. All the components labelled in green or blue are novel contributions
made in our tool. We use the standard SAT-based minimal separating DFA extractions
from APTAs (and hence 3DFAs) described in (Ulyantsev et al., 2015).

We observe that the minimal separating DFA finding algorithm (Ulyantsev et al., 2015)
does not necessarily work only on 3DFAs, but also on multiple 3DFAs; see Appendix B for
our formulation. This motivates us to ask a question: can we construct multiple 3DFAs for
S? We give a affirmative answer to this question.

Our construction of double 3DFAs (dDFAs) from S = (S+, S−) is formalised as follows:
(1) Construct the minimal 3DFAs D+ and D− for (S+, ∅) and (S−, ∅), respectively; (2)
Make sure that D+ and D− do not share the same state names; (3) Combine the two
3DFAs into a dDFA N where the initial states of S are the initial states of both D+ and
D−, the transitions between states remain unchanged and we make the accepting states of
D− as rejecting states. The workflow of this construction is depicted in Figure 2. In this
way, we obtain a dDFA N that recognises exactly the given set S. The empirical evaluation
shows that the two types of workflows are incomparable and both have their place in the
learning procedure.

The SAT encoding of the minimiser component is fairly standard and has been deferred
to Appendix B. We can then gradually increase the number of states in the proposed
separating DFA for S until the constructed SAT formula is satisfiable. It immediately
follows that:

Theorem 2 Our tool DFAMiner will output a minimal separating DFA for S.

We remark that in (Alquezar and Sanfeliu, 1995), non-incremental and incremental con-
structions were also proposed to find small and even minimal 3DFAs M such that for each
u ∈ S$, it holds that M(u) = $ where $ ∈ {+,−}. These two constructions are based
on state merging techniques given in (Oncina and Garcia, 1992), with the worst-time com-
plexity being O(|prefixes(S)|3), while the size of the intermediate 3DFA constructed by our
incremental construction will not exceed |prefixes(S)|. Furthermore, the resultant 3DFA M

6

DFAMiner: Mining minimal DFAs

S+

S−

dDFA N

DFA D+

DFA D−

SAT En-
coding

SAT Solving

Minimiser

Min-DFA
D

Figure 2: Workflow of DFAMiner with dDFAs

may accept (respectively, reject) more words than S+ (respectively, S−), while our incre-
mental construction produces a minimal 3DFA recognising S exactly. As a consequence,
their constructed 3DFA can be smaller (or even larger) than ours, and can no longer be
used to extract the minimal separating DFA for S.

4. Evaluation

To further demonstrate the improvements of DFAMiner3 over the state of the art, we con-
ducted comprehensive experiments on standard benchmarks (Ulyantsev et al., 2015; Za-
kirzyanov et al., 2019). We compared with DFA-Inductor (Zakirzyanov et al., 2019) and
DFA-Identify 4 (Lauffer et al., 2022), the state of the art tools publicly available for pas-
sive learning tasks. Unlike DFAMiner and DFA-Inductor, DFA-Identify uses a SAT encoding
of graph coloring problems (Heule and Verwer, 2010) and the representative DFAs in the
second step (Ulyantsev et al., 2015). Like DFA-Inductor, DFAMiner is also implemented in
Python with PySAT (Ignatiev et al., 2018). We delegate all SAT queries to the SAT solver
CaDical 1.5.3 in all tools (Biere et al., 2020). DFAMiner accepts the samples formalised in
Abbadingo format5.

The experiments of Table 2 were carried on an Intel i7-4790 3.60 GHz processor. Each
index N, reports the results of 100 benchmark instances of random samples. Each bench-
mark has 50×N samples. For every index, we show the average time and the percentage of
instances solved within 1200 seconds. The alphabet for the samples has two symbols while
the size of the generated DFA is N . We compare four approaches to inferring Min-DFAs:
DFA-Inductor, DFA-Identify, DFAMiner with 3DFA (DFA-MIN), and DFAMiner with double
DFA (dDFA-MIN). An extended version of the table is reported in Appendix A.3. Both
dDFA-MIN and 3DFA-MIN perform better than DFA-Inductor and DFA-Identify, on average
they are three times faster. DFA-Inductor can minimise within 20 minutes instances up to
level 13, while the two variants of DFAMiner can scale one more level and minimise one
third of the instances of level 15. On these random samples the double DFA approach is
slightly faster than the 3DFA one.

Figures 3 and 4 reports the comparison on the size of the APTA/dDFA (on the left) and
minimisation time (on the right) for the previous benchmark. In these two figures, instead
of the mean data, we show the individual data of each sample. Both DFA-Inductor and
DFA-Identify build the same APTA (they differ for the encoding step), and as shown in

3. DFAMiner is publicly available at https://github.com/liyong31/DFAMiner
4. https://github.com/mvcisback/dfa-identify
5. https://abbadingo.cs.nuim.ie/

7

https://github.com/liyong31/DFAMiner
https://github.com/mvcisback/dfa-identify
https://abbadingo.cs.nuim.ie/

Dell’Erba Li Schewe

DFA-Inductor DFA-Identify dDFA-MIN 3DFA-MIN

N avg % avg % avg % avg %

4 0.12 100 0.09 100 0.03 100 0.02 100
5 0.29 100 1.38 100 0.06 100 0.05 100
6 0.67 100 2.33 100 0.30 100 0.18 100
7 1.81 100 4.12 100 0.80 100 0.73 100
8 3.57 100 9.70 100 1.29 100 1.25 100
9 10.84 100 20.76 100 3.83 100 3.78 100
10 50.91 100 44.57 100 17.88 100 16.80 100
11 154.73 100 128.69 100 55.12 100 59.46 100
12 399.52 96 373.65 99 144.27 100 162.39 100
13 850.04 74 785.93 82 390.10 99 418.62 97
14 1125.59 19 1099.92 23 809.88 76 861.10 69
15 1182.98 6 1197.61 1 1060.18 37 1062.02 34
16 1188.17 1 1184.82 3 1167.58 4 1164.02 5

Table 2: Comparison for the minimisation of DFAs from random samples of DFAMiner with
DFA inductor. For each approach we report the mean minimisation time and the
percentage of DFAs minimised within the time limit.

0 500 1000 1500 2000
APTA

0

500

1000

1500

2000

dD
FA

3x

2x

4x

Figure 3: figure
Scatter plot on automata size

0 200 400 600 800 1000 1200
DFA-Inductor

0

200

400

600

800

1000

1200

DF
AM

in
er

-d
DF

A

3x

2x

4x

Figure 4: figure
Scatter plot on runtime (secs)

Figure 3, its size is three times larger than the dDFA built by DFAMiner, no matter how big
is the final DFA. Figure 4, instead, shows that when using a double DFA, DFAMiner always
performs better than DFA Inductor, on average three times faster with peaks of more than
four times faster. We provide additional details and comparisons on minimisation time and
3DFA size in Appendix A.3.

8

DFAMiner: Mining minimal DFAs

Colours 2 3 4 5 6

DFA Size 3 3 5 5 9

Length 3 5 7 11 15

#Pos 3 130 1,645 9,375,269 4,399,883,736
#Neg 5 31 5,235 1,009,941 38,871,920,470

Table 3: Samples required to learn the minimal separating automata for solving parity
games.

5. Application in parity game solving

It has been shown that the first quasi-polynomial parity game solving algorithm (Calude
et al., 2017) essentially builds a separating automaton of quasi-polynomial size to distinguish
runs with only winning cycles (cycles closed in a parity game where the highest colour
occurring is even) from runs that contain only odd cycles (where the highest colour occurring
is odd) (Czerwinski et al., 2019).

Without going into detail, we note that the hardest case occurs when the colours are
unique (occur only once, hence, the colour identifies a node, thing that helps to detect
cycles), and have implemented this as follows: we fix an alphabet with c different colours,
a length ℓ > c, and a highest colour c. We must accept a word if all cycles are winning
(e.g. 001212), rejecting it if all cycles are losing (e.g. 13123312). Words with winning and
losing cycles (e.g. 21232) are don’t-care words. A cycle occurs when a colour has repeated
at least twice.

The resulting automata are always safety that reject all words that have not seen a
winning cycle after (at most) ℓ steps, as well as some words that have seen both, winning
and losing cycles (don’t-care word), or, alternatively, reachability automata that accept all
words that have not seen a losing cycle after at most ℓ steps (again, except don’t-care ones).
Thus, the size of the Min-DFA falls when increasing the sample length ℓ, and eventually
stabilises. Using such a separating automaton reduces solving the parity game to solving a
safety game (Bojańczyk and Czerwiński, 2018).

Separating automata build with the current state-of-the-art construction (Calude et al.,
2017) grow quasi-polynomially, and since it is not known whether these constructions are
optimal, we applied DFAMiner to learn the most succinct separating automata for the parity
condition.

Table 3 shows the application of DFAMiner to the parity condition up to 7 colours
(from 0 to 6). For each maximal colour we report the length required to build the minimal
separating automaton, the size of the obtained DFA, and the number of all the positive
and negative samples generated. Although most words have both wining and losing cycles
(don’t-care words), the positive and negative samples grow exponentially, too, which is why
we stopped at 7 colours.

While the APTA size constructed by DFA-Inductor grows exponentially, the sizes of
dDFAs and 3DFAs seem to grow only constantly when increasing the length of the samples
for a fixed colour number. We report the details in Table 6 in Appendix C.1. Consequently,
all versions of DFA-Inductor were only able to solve cases with at most 4 colours, while

9

Dell’Erba Li Schewe

DFAMiner can manage to solve cases up to 6 colours and length 16. To further push the
limit of DFAMiner for parity game solving, we have also provided an efficient SAT encoding
for parity games (in Appendix C.2). With the constructions for both 3DFAs and dDFAs and
the efficient encoding, the bottleneck of the whole procedure is no longer solving the Min-
DFA inference problem, but the generation of samples. With a better sample generation
approach, we believe that this application can give insights on the structure of minimal
safety automata for an arbitrary number of colours.

6. Discussion and Future Work

We propose a novel and more efficient way to build APTAs for the Min-DFA inference
problem. Our contribution focuses on a compact representation of the positive and negative
samples and, therefore, provides the leeway to benefit from further enhancements in solving
the encoded SAT problem.

Natural future extensions of our approach include implementing the tight encoding of
symmetry breaking (Zakirzyanov et al., 2019). Another easy extension of our construction
is to learn a set of decomposed DFAs (Lauffer et al., 2022), thus improving the overall
performance as well. A more complex future work is to investigate whether or not one can
similarly construct a deterministic Büchi automaton based on ω-regular sets of accepting,
rejecting, and don’t-care words that provides a minimality guarantee for a given set of
labelled samples.

References

R Alquezar and A Sanfeliu. Incremental grammatical inference from positive and negative
data using unbiased finite state automata. In Shape, Structure and Pattern Recognition,
Proc. Int. Workshop on Structural and Syntactic Pattern Recognition, SSPR, volume 94,
pages 291–300, 1995.

Florent Avellaneda and Alexandre Petrenko. Learning minimal DFA: taking inspiration
from RPNI to improve SAT approach. In Peter Csaba Ölveczky and Gwen Salaün, editors,
Software Engineering and Formal Methods - 17th International Conference, SEFM 2019,
Oslo, Norway, September 18-20, 2019, Proceedings, volume 11724 of Lecture Notes in
Computer Science, pages 243–256. Springer, 2019. doi: 10.1007/978-3-030-30446-1\ 13.
URL https://doi.org/10.1007/978-3-030-30446-1_13.

Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL,
Kissat, Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In
Tomas Balyo, Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda,
editors, Proc. of SAT Competition 2020 – Solver and Benchmark Descriptions, volume
B-2020-1 of Department of Computer Science Report Series B, pages 51–53. University
of Helsinki, 2020.

Alan W. Biermann and Jerome A. Feldman. On the synthesis of finite-state machines
from samples of their behavior. IEEE Trans. Computers, 21(6):592–597, 1972. doi:
10.1109/TC.1972.5009015. URL https://doi.org/10.1109/TC.1972.5009015.

10

https://doi.org/10.1007/978-3-030-30446-1_13
https://doi.org/10.1109/TC.1972.5009015

DFAMiner: Mining minimal DFAs

M. Bojańczyk and W. Czerwiński. An Automata Toolbox. unpublished, 2018.

Miguel M. F. Bugalho and Arlindo L. Oliveira. Inference of regular languages using state
merging algorithms with search. Pattern Recognit., 38(9):1457–1467, 2005. doi: 10.1016/
J.PATCOG.2004.03.027. URL https://doi.org/10.1016/j.patcog.2004.03.027.

C.S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding Parity Games
in Quasipolynomial Time. In Symposium on Theory of Computing 17, pages 252–263.
Association for Computing Machinery, 2017.

Yu-Fang Chen, Azadeh Farzan, Edmund M. Clarke, Yih-Kuen Tsay, and Bow-Yaw Wang.
Learning minimal separating dfa’s for compositional verification. In Stefan Kowalewski
and Anna Philippou, editors, Tools and Algorithms for the Construction and Analysis of
Systems, 15th International Conference, TACAS 2009, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29,
2009. Proceedings, volume 5505 of Lecture Notes in Computer Science, pages 31–45.
Springer, 2009. doi: 10.1007/978-3-642-00768-2\ 3. URL https://doi.org/10.1007/

978-3-642-00768-2_3.

François Coste and Daniel Fredouille. Unambiguous automata inference by means of state-
merging methods. In Nada Lavrac, Dragan Gamberger, Ljupco Todorovski, and Hendrik
Blockeel, editors, Machine Learning: ECML 2003, 14th European Conference on Ma-
chine Learning, Cavtat-Dubrovnik, Croatia, September 22-26, 2003, Proceedings, volume
2837 of Lecture Notes in Computer Science, pages 60–71. Springer, 2003. doi: 10.1007/
978-3-540-39857-8\ 8. URL https://doi.org/10.1007/978-3-540-39857-8_8.

François Coste and Jacques Nicolas. Regular inference as a graph coloring problem. In
IWGI, 1997.

François Coste and Jacques Nicolas. How considering incompatible state mergings may
reduce the DFA induction search tree. In Vasant G. Honavar and Giora Slutzki, editors,
Grammatical Inference, 4th International Colloquium, ICGI-98, Ames, Iowa, USA, July
12-14, 1998, Proceedings, volume 1433 of Lecture Notes in Computer Science, pages
199–210. Springer, 1998. doi: 10.1007/BFB0054076. URL https://doi.org/10.1007/

BFb0054076.

W. Czerwinski, L. Daviaud, N. Fijalkow, M. Jurdzinski, R. Lazic, and P. Parys. Universal
Trees Grow Inside Separating Automata: Quasi-Polynomial Lower Bounds for Parity
Games. In Symposium on Discrete Algorithms 19, page 2333–2349. SIAM, 2019.

Jan Daciuk, Stoyan Mihov, Bruce W. Watson, and Richard E. Watson. Incremental con-
struction of minimal acyclic finite state automata. Comput. Linguistics, 26(1):3–16, 2000.
doi: 10.1162/089120100561601. URL https://doi.org/10.1162/089120100561601.

Colin de la Higuera. A bibliographical study of grammatical inference. Pattern Recognit.,
38(9):1332–1348, 2005. doi: 10.1016/J.PATCOG.2005.01.003. URL https://doi.org/

10.1016/j.patcog.2005.01.003.

11

https://doi.org/10.1016/j.patcog.2004.03.027
https://doi.org/10.1007/978-3-642-00768-2_3
https://doi.org/10.1007/978-3-642-00768-2_3
https://doi.org/10.1007/978-3-540-39857-8_8
https://doi.org/10.1007/BFb0054076
https://doi.org/10.1007/BFb0054076
https://doi.org/10.1162/089120100561601
https://doi.org/10.1016/j.patcog.2005.01.003
https://doi.org/10.1016/j.patcog.2005.01.003

Dell’Erba Li Schewe

Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Enrico Giunchiglia and
Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, 6th In-
ternational Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Se-
lected Revised Papers, volume 2919 of Lecture Notes in Computer Science, pages 502–518.
Springer, 2003. doi: 10.1007/978-3-540-24605-3\ 37. URL https://doi.org/10.1007/

978-3-540-24605-3_37.

E. Mark Gold. Complexity of automaton identification from given data. Inf. Control., 37
(3):302–320, 1978. doi: 10.1016/S0019-9958(78)90562-4. URL https://doi.org/10.

1016/S0019-9958(78)90562-4.

Olga Grinchtein, Martin Leucker, and Nir Piterman. Inferring network invariants automat-
ically. In Ulrich Furbach and Natarajan Shankar, editors, Automated Reasoning, Third
International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006,
Proceedings, volume 4130 of Lecture Notes in Computer Science, pages 483–497. Springer,
2006. doi: 10.1007/11814771\ 40. URL https://doi.org/10.1007/11814771_40.

Marijn Heule and Sicco Verwer. Exact DFA identification using SAT solvers. In José M.
Sempere and Pedro Garćıa, editors, Grammatical Inference: Theoretical Results and Ap-
plications, 10th International Colloquium, ICGI 2010, Valencia, Spain, September 13-16,
2010. Proceedings, volume 6339 of Lecture Notes in Computer Science, pages 66–79.
Springer, 2010. doi: 10.1007/978-3-642-15488-1\ 7. URL https://doi.org/10.1007/

978-3-642-15488-1_7.

Alexey Ignatiev, António Morgado, and João Marques-Silva. Pysat: A python toolkit
for prototyping with SAT oracles. In Olaf Beyersdorff and Christoph M. Wintersteiger,
editors, Theory and Applications of Satisfiability Testing - SAT 2018 - 21st Interna-
tional Conference, SAT 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10929 of Lecture Notes in Com-
puter Science, pages 428–437. Springer, 2018. doi: 10.1007/978-3-319-94144-8\ 26. URL
https://doi.org/10.1007/978-3-319-94144-8_26.

Kevin J. Lang, Barak A. Pearlmutter, and Rodney A. Price. Results of the abbadingo one
DFA learning competition and a new evidence-driven state merging algorithm. In Vas-
ant G. Honavar and Giora Slutzki, editors, Grammatical Inference, 4th International Col-
loquium, ICGI-98, Ames, Iowa, USA, July 12-14, 1998, Proceedings, volume 1433 of Lec-
ture Notes in Computer Science, pages 1–12. Springer, 1998. doi: 10.1007/BFB0054059.
URL https://doi.org/10.1007/BFb0054059.

Niklas Lauffer, Beyazit Yalcinkaya, Marcell Vazquez-Chanlatte, Ameesh Shah, and San-
jit A. Seshia. Learning deterministic finite automata decompositions from exam-
ples and demonstrations. In Alberto Griggio and Neha Rungta, editors, 22nd For-
mal Methods in Computer-Aided Design, FMCAD 2022, Trento, Italy, October 17-21,
2022, pages 1–6. IEEE, 2022. doi: 10.34727/2022/ISBN.978-3-85448-053-2\ 39. URL
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_39.

John Myhill. Finite automata and the representation of events. In Technical Report WADD
TR-57-624, page 112–137, 1957.

12

https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1007/11814771_40
https://doi.org/10.1007/978-3-642-15488-1_7
https://doi.org/10.1007/978-3-642-15488-1_7
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/BFb0054059
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_39

DFAMiner: Mining minimal DFAs

Daniel Neider. Computing minimal separating dfas and regular invariants using SAT and
SMT solvers. In Supratik Chakraborty and Madhavan Mukund, editors, Automated Tech-
nology for Verification and Analysis - 10th International Symposium, ATVA 2012, Thiru-
vananthapuram, India, October 3-6, 2012. Proceedings, volume 7561 of Lecture Notes in
Computer Science, pages 354–369. Springer, 2012. doi: 10.1007/978-3-642-33386-6\ 28.
URL https://doi.org/10.1007/978-3-642-33386-6_28.

Daniel Neider and Nils Jansen. Regular model checking using solver technologies and
automata learning. In Guillaume Brat, Neha Rungta, and Arnaud Venet, editors,
NASA Formal Methods, 5th International Symposium, NFM 2013, Moffett Field, CA,
USA, May 14-16, 2013. Proceedings, volume 7871 of Lecture Notes in Computer Sci-
ence, pages 16–31. Springer, 2013. doi: 10.1007/978-3-642-38088-4\ 2. URL https:

//doi.org/10.1007/978-3-642-38088-4_2.

Anil Nerode. Linear automaton transformations. In American Mathematical Society, page
541–544, 1958.

Jos’e Oncina and Pedro Garcia. Inferring regular languages in polynomial updated time.
In Pattern recognition and image analysis: selected papers from the IVth Spanish Sympo-
sium, pages 49–61. World Scientific, 1992.

Charles P. Pfleeger. State reduction in incompletely specified finite-state machines. IEEE
Trans. Computers, 22(12):1099–1102, 1973. doi: 10.1109/T-C.1973.223655. URL https:

//doi.org/10.1109/T-C.1973.223655.

Leonard Pitt and Manfred K. Warmuth. The minimum consistent DFA problem cannot be
approximated within any polynomial. J. ACM, 40(1):95–142, 1993. doi: 10.1145/138027.
138042. URL https://doi.org/10.1145/138027.138042.

Rick Smetsers, Paul Fiterau-Brostean, and Frits W. Vaandrager. Model learning as a sat-
isfiability modulo theories problem. In Shmuel Tomi Klein, Carlos Mart́ın-Vide, and
Dana Shapira, editors, Language and Automata Theory and Applications - 12th Interna-
tional Conference, LATA 2018, Ramat Gan, Israel, April 9-11, 2018, Proceedings, volume
10792 of Lecture Notes in Computer Science, pages 182–194. Springer, 2018. doi: 10.1007/
978-3-319-77313-1\ 14. URL https://doi.org/10.1007/978-3-319-77313-1_14.

Boris Avraamovich Trakhtenbrot and Ya M Barzdin. Finite automata: Behavior and syn-
thesis. Elsevier, 1973.

Vladimir Ulyantsev, Ilya Zakirzyanov, and Anatoly Shalyto. Bfs-based symmetry break-
ing predicates for DFA identification. In Adrian-Horia Dediu, Enrico Formenti, Car-
los Mart́ın-Vide, and Bianca Truthe, editors, Language and Automata Theory and
Applications - 9th International Conference, LATA 2015, Nice, France, March 2-6,
2015, Proceedings, volume 8977 of Lecture Notes in Computer Science, pages 611–622.
Springer, 2015. doi: 10.1007/978-3-319-15579-1\ 48. URL https://doi.org/10.1007/

978-3-319-15579-1_48.

Sicco Verwer and Christian A. Hammerschmidt. flexfringe: A passive automaton learning
package. In 2017 IEEE International Conference on Software Maintenance and Evolution,

13

https://doi.org/10.1007/978-3-642-33386-6_28
https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.1109/T-C.1973.223655
https://doi.org/10.1109/T-C.1973.223655
https://doi.org/10.1145/138027.138042
https://doi.org/10.1007/978-3-319-77313-1_14
https://doi.org/10.1007/978-3-319-15579-1_48
https://doi.org/10.1007/978-3-319-15579-1_48

Dell’Erba Li Schewe

ICSME 2017, Shanghai, China, September 17-22, 2017, pages 638–642. IEEE Computer
Society, 2017. doi: 10.1109/ICSME.2017.58. URL https://doi.org/10.1109/ICSME.

2017.58.

Ilya Zakirzyanov, António Morgado, Alexey Ignatiev, Vladimir Ulyantsev, and João
Marques-Silva. Efficient symmetry breaking for sat-based minimum DFA inference. In
Carlos Mart́ın-Vide, Alexander Okhotin, and Dana Shapira, editors, Language and Au-
tomata Theory and Applications - 13th International Conference, LATA 2019, St. Pe-
tersburg, Russia, March 26-29, 2019, Proceedings, volume 11417 of Lecture Notes in
Computer Science, pages 159–173. Springer, 2019. doi: 10.1007/978-3-030-13435-8\ 12.
URL https://doi.org/10.1007/978-3-030-13435-8_12.

Appendix A. Minimal APTA construction

The algorithm can be seen as the combination of the construction of the APTA and its
minimisation based on the backward traversal of the APTA tree. We will enumerate the
input samples S one by one in their lexicographical order; this is important for identi-
fying the states/nodes in the APTA tree that have been completely traversed and will
remain unchanged after some point, in order to obtain an on-the-fly minimisation. We will
highlight the two fundamental components: the minimisation and the backward traver-
sal/construction of the APTA tree in the sequel.

Let us consider a simpler situation where the full APTA tree P is already given. The
most important thing in the minimisation component is to decide whether two states p and
q are equivalent and it has already been described.

By using the equivalence relation we can obtain the minimal 3DFA M that correctly
recognises the given set S. Moreover, if we use a hash map for storing all representative
states in Register, the minimisation algorithm above runs in linear time with respect to
the number of states in P. However, as we can see in Table 1, the APTAs can be signif-
icantly larger than the corresponding minimal 3DFAs. Hence, it is vital to avoid the full
construction of the APTA tree P of S. The key to the on-the-fly construction is to know
when a state has been completely traversed during construction.

To this end, we can just assume that the samples are already ordered in the usual
lexicographical order. The comparison works as follows. Assume that we already have a
default order on the letters in Σ. For two words u and u′, we first compare their first
min(|u|, |u′|) letters: (1) if we find a word that has a smaller letter than the other at the
same position, then that word is smaller, (2) if all letters are the same and u has the same
length as u′, then they are equal, otherwise (3) the word that is longer than the other word
is greater.

Assume that S = u1, u2, · · · , uℓ is in order. We describe below how to tell when a
state is impossible to have more successors and it is ready to find its representative state.
Assume that current APTA is Pi = (Qi, {ι}, δi, Fi, Ri) and we now input the next sample
ui+1, where i ≥ 0.

When i = 0, P0 is of course minimal since P0 only has a state ι without any outgoing
transitions. For technical reason, we let u0 = ε, which may not appear in the sample set

14

https://doi.org/10.1109/ICSME.2017.58
https://doi.org/10.1109/ICSME.2017.58
https://doi.org/10.1007/978-3-030-13435-8_12

DFAMiner: Mining minimal DFAs

S. (Note that if there is an empty word ε in S, ι will be set to accepting or rejecting
accordingly.)

We first run ui+1 on Pi. We let ui+1 = x · yi+1 and assume that x ∈ prefixes(ui+1) be
the longest word such that δi(ι, x) ̸= ∅. Let p = δi(ι, x). Then, all states along the run of Pi

over x are not ready to find their representatives, as p needs to add more reachable states to
run the suffix yi+1. Moreover, we observe that x must be a prefix of ui, i.e., x ∈ prefixes(ui).
This is because every word that has a complete run in Pi must not be greater than ui. By
definition of the lexicographic order, if x is not a prefix of ui, then x must be smaller than
ui[0 · · · |x|]. This leads to the contradiction that ui is greater than ui+1. Let ui = x · yi and
ρ = p0 · · · p|ui| where p0 = ι and p|x| = p. We can show that all the states pk with k > |x|
in the run of Pi over ui = x · yi are ready to merge with their representative, as they must
not have more reachable states. Assume that there is a state pℓ with ℓ > |x| reached over
a sample uh with h > i, then it is easier to lead the contradiction that uh is smaller than
ui+1. Therefore, we can similarly identify the representatives for those states and merge
them in the usual backward manner. It follows that all the states except the ones in the run
of ui+1 in the 3DFA Pi+1 are already consistent with respect to ∼S ; thus, there is no need
to modify them afterwards. After we have input all the samples, we only need to merge
all states in the run over uℓ with their equivalent states. In this way, we are guaranteed to
obtain the minimal 3DFA S for S in the end.

The formal procedure of the above incremental construction of the minimal 3DFA from
S is given in Algorithm 1. Note that, when looking for the run from p over the last input
sample, we only need to find the successors over the maximal letter by the last child function.
In this way, when we reach the last state of the run, we then can begin to identify equivalent
states in a backward manner, as described in the subprocedure replace or register. Moreover,
in the function add suffix(p, y), we just create the run from p over y and set the last state to
be accepting or rejecting depending on the label of u. In fact, we only extend the equivalence
relation ≡ of (Daciuk et al., 2000) in replace or register to support the accepting, rejecting
and don’t-care states, as described before.

Theorem 3 Let S be a finite labelled set of ordered samples. Algorithm 1 returns the
correct and minimal 3DFA recognising S.

Proof The proof is basically an induction on the number of input samples and has been
overlapped with the intuition described above. We thus omit it here.

Appendix B. SAT Encoding

In this section, we show that how to obtain the minimal separating DFAs from 3DFAs/3NFAs.
It is known that minimising DFAs with don’t-care words is NP-complete (Pfleeger, 1973).
We will take the advantage of the current powerful solvers for Boolean Satisfiability (SAT)
problems to look for minimal DFAs.

B.1. SAT-based encoding of minimisation

We assume that we are given a dDFA N = (T , A,R), where T = (Q, I, δ) is obtained from
two DFAs D+ and D−. We look for a separating DFA D of n states for N such that for each

15

Dell’Erba Li Schewe

Algorithm 1: Incremental construction of the minimal 3DFA from S

procedure Main procedure(Sample Set U)
Register := ∅
while U has next sample u do
x := common prefix(u)
p := δ(ι, x) ▷ the last state over the common prefix x
y := u[|x| . . .] ▷ the remaining suffix of u
if has children(p) then

replace or register(p) ▷ merge/register all states after p
end

add suffix(p, y) ▷ create run to accept suffix y from p
end
replace or register(ι) ▷ merge the run over the last sample

procedure replace or register(p)
r := last child(p) ▷ obtain the successor over the maximal letter
if has children(r) then
replace or register(r) ▷ recursively obtain the run over last sample
end
if ∃q ∈ Q.(q ∈ Register ∧ q ≡ r) then
last child(p) := q ▷ merge with its representative
end
else
Register := Register ∪ {r} ▷ set the first state of each class as representative
end

16

DFAMiner: Mining minimal DFAs

u ∈ Σ∗, if N (u) = $, then D(u) = $, where $ ∈ {+,−}. Clearly the size of D is bounded by
the size of the TS, i.e. 0 < n ≤ |Q|, since we can obtain a DFA from the dDFA by simply
using D+ (or the complement of D−). Nevertheless, we aim at finding the minimal such
integer n.

To do this, we encode our problem as a SAT problem such that there is a separating
complete DFA D with n states if, and only if, the SAT problem is satisfiable. We apply the
standard propositional encoding (Neider, 2012; Neider and Jansen, 2013; Ulyantsev et al.,
2015; Zakirzyanov et al., 2019). For simplicity, we let {0, · · · , n − 1} be the set of states
of D, such that 0 is the initial one. To encode the target DFA D, we use the following
variables:

• the transition variable ei,a,j denotes that i
a−→j holds, i.e. ei,a,j is true if, and only if,

there is a transition from state i to state j over a ∈ Σ, and

• the acceptance variable fi denotes that i ∈ F , i.e. fi is true if, and only if, the state i
is an accepting one.

Once the problem is satisfiable, from the values of the above variables, it is easy to
construct the DFA D. To that end, we need to tell the SAT solver how the DFA should
look like by giving the constraints encoded as clauses. For instance, to make sure the result
DFA is indeed deterministic and complete, we need following constraints:

D1 Determinism: For every state i and a letter a ∈ Σ in D, we have that ¬ei,a,j ∨ ¬ei,a,k
for all 0 ≤ j < k < n.

D2 Completeness: For every state i and a letter a ∈ Σ in D,
∨

0≤j<n ei,a,j holds.

Moreover, to make sure the obtained DFA D is separating forN , we also need to perform
the product of the target DFA D and N . In order to encode the product, we use extra
variables dp,i, which indicates that the state p of N and the state i of D can both be
reached on some word u. The constraints we need to enforce that D is separating for N are
formalised as below:

D3 Initial condition: dι,0 is true for all ι ∈ I. (0 is the initial state of D.

D4 Acceptance condition: for each state i of D,

D4.1 Accepting states: dp,i ⇒ fi holds for all p ∈ A

D4.2 Rejecting states: dp,i ⇒ ¬fi holds for all p ∈ R;

D5 Transition relation: for a pair of states i, j in D, dp,i ∧ ei,a,j ⇒ dp′,j where p′ = δ(p, a)
for all p ∈ Q and a ∈ Σ.

Let ϕN
n be the conjunction of all these constraints. Then, we obtain the following theorem.

Theorem 4 Let N be a dDFA of S and n ∈ N. Then ϕN
n is satisfiable if, and only if, there

exists a complete DFA D with n states that is separating for N .

17

Dell’Erba Li Schewe

The formula ϕN
n contains O(n3 · |Σ|+ n2 · |Q| · |Σ|) constraints.

When looking for separating DFAs, the SAT solver may need to inspect multiple iso-
morphic DFAs that only differ in their state names for satisfiability. If those isomorphic
DFAs are not separating for N , then the SAT solver still has to prove this for each DFA.
To reduce the search space, it suffices to check only a representative DFA for all isomorphic
DFAs (Ulyantsev et al., 2015). We will describe the representative DFA in the following
section.

B.2. SAT encoding of the representative DFA

The representative DFA D is induced by restricting the structure of its breath-first search
(BFS) tree τ . In our setting, an edge of the BFS tree is a directed connection from one
node to another and it is labelled by a letter in Σ. In this section, we need to enforce an
order on the letters in Σ. For simplicity, we let Σ = {0, · · · , c− 1} where c > 0. Recall that
the set of nodes in the tree is the set of states of D. Below we list the requirements of the
BFS tree.

A1 Minimal parent:

A1.1 If there is an edge from node i to node j in the BFS tree, then i < j and i is the
minimal state that reaches j via a transition in D, and

A1.2 If j is a child node of i and j+1 is a child node of k, then, i < k. This is because
we enforce that smaller children must have smaller parents.

A2 Minimal letter edge:

A2.1 If the edge from i to j is labelled with letter a in the BFS tree, a must be the
minimal letter from i to j in D, and

A2.2 If there are edges from i to j over a1 and to k over a2 in the BFS tree, and
a1 < a2, then j < k. Note that it is impossible for a1 and a2 to be equal since D
is deterministic.

In order to encode the above requirements, we need the following three types of boolean
variables. For a pair of states 0 ≤ i, j < n and a letter 0 ≤ a < c:

• The edge variable mi,a,j of the BFS tree denotes that mi,a,j is true if, and only if, the
BFS tree has an edge from node i to node j labelled with the letter a.

• The parent variable pj,i indicates that pj,i is true if, and only if, node j is a child node
of node i in the BFS tree.

• The transition variable ti,j indicates that ti,j is true if, and only if, there is a transition
from state i to state j in D.

Now we can give the following constraints that are needed to represent the requirements
of the BFS tree below.

B1 Minimal parent:

18

DFAMiner: Mining minimal DFAs

DFA-Inductor dDFA-MIN DFA-MIN

N min avg max solved% min avg max solved% min avg max solved%

4 0.01 0.12 0.20 100 0.01 0.03 0.49 100 0.01 0.02 0.09 100
5 0.01 0.29 0.62 100 0.01 0.06 1.01 100 0.01 0.05 0.22 100
6 0.02 0.67 1.43 100 0.01 0.30 1.82 100 0.01 0.18 1.91 100
7 0.02 1.81 5.86 100 0.03 0.80 7.09 100 0.04 0.73 3.61 100
8 0.02 3.57 10.26 100 0.01 1.29 9.06 100 0.01 1.25 4.53 100
9 0.02 10.84 39.84 100 0.02 3.83 11.94 100 0.01 3.78 15.71 100
10 3.85 50.91 199.04 100 0.69 17.88 62.40 100 0.63 16.80 57.27 100
11 1.90 154.73 691.79 100 0.37 55.12 263.82 100 0.33 59.46 288.10 100
12 15.86 399.52 1200 96 4.30 144.27 536.74 100 5.12 162.39 705.19 100
13 84.84 850.04 1200 74 28.61 390.10 1200 99 15.86 418.62 1200 97
14 214.76 1125.59 1200 19 77.56 809.88 1200 76 68.03 861.10 1200 69
15 587.66 1182.98 1200 6 225.56 1060.18 1200 37 218.22 1062.02 1200 34
16 17.22 1188.17 1200 1 9.55 1167.58 1200 4 5.06 1164.02 1200 5

Table 4: Full experimental results on generated benchmarks

B1.1 for two nodes 0 ≤ i < j < n in the BFS tree, we have pj,i ⇔ ti,j ∧
∧

0≤k<i ¬tk,j ,
and

B1.2 for every triple 0 ≤ k < i < j < n, we have pj,i ⇒ ¬pj+1,k.

B2 Minimal letter edge:

B2.1 for every pair 0 ≤ i < j < n in the BFS tree and a letter a ∈ Σ, we have
mi,a,j ⇔ (ei,a,j ∧

∧
0≤b<a ¬ei,b,j).

B2.2 for every pair 0 ≤ i < j < n of nodes and a pair 0 ≤ a < b < c of letters, we
have pj,i ∧ pj+1,i ∧mi,b,j ⇒ ¬mi,a,j+1.

B3 Edge consistency: for each pair 0 ≤ i < j < n, ti,j ⇔
∨

0≤a<c ei,a,j holds.

B4 Existence of a parent: for each node 0 ≤ i < n in the BFS tree, we have that∨
0≤j<i pj,i holds.

Let ϕτ
n be the conjunction of all these constraints. Then we obtain the following theorem.

Theorem 5 Let N a dDFA of S and n ∈ N. Then, ϕN
n ∧ ϕτ

n is satisfiable if, and only if,
there exists a separating DFA D with n states, with respect to N .

We remark that the formula ϕτ
n contains O(n3 + n2 · |Σ|2) constraints.

Appendix C. More experimental results

In this section we provide additional experiments. Table 4 extends Table 2 by reporting
also the minimum and maximum running time for each technique. Since the samples are
randomly generated, the minimum and maximum values can show irregular peaks, while
the average tends to converge to the timeout value.

In Table 5 we report, on the same benchmark as the previous table, the minimum,
maximal, and average size of the APTA for DFA-Inductor and DFA-Identify (they build the
exact same APTA) and the size of the 3DFA for the two variants of DFAMiner, namely the
double DFA and 3DFA.

19

Dell’Erba Li Schewe

DFA-Inductor/DFA-Identify dDFA-MIN DFA-MIN

N min avg max min avg max min avg max

4 526 549 570 189 230 264 188 207 227
5 650 675 695 221 281 321 220 248 270
6 798 822 860 267 338 374 266 299 322
7 935 963 994 312 393 437 311 347 373
8 1073 1097 1126 347 439 481 346 389 418
9 1195 1225 1260 383 485 535 382 425 449
10 1322 1349 1378 454 528 571 427 461 485
11 1459 1496 1542 503 580 622 474 510 530
12 1602 1643 1683 563 638 679 520 559 586
13 1748 1791 1836 618 690 725 556 604 632
14 1887 1930 1968 664 741 777 605 648 670
15 2018 2063 2098 716 786 821 651 690 719
16 2159 2196 2230 647 827 873 632 726 755

Table 5: Full automata size results on generated benchmarks before the SAT minimisation

In the following figures we propose a pairwise comparison of all the techniques on the
minimisation time. Figure 5 shows DFAMiner and DFA-Inductor. Interestingly, in Figure 8,
the two variants of DFAMiner do not overlap, there are cases up to two times easier to
minimise for the double DFA variant and cases up to three times easier for the 3DFA
variant, which, as shown in Table 4, on average is slightly faster. In Figure 7 we compare
the double DFA variant of DFAMiner and DFA-Inductor 2 which employs a different, and
more efficient, encoding of DFA called tightDFS. This heuristic can also be applied to
our tool. Although the application of tight encoding, DFA-Inductor 2 is still slower that
DFAMiner up to four times slower. However, in some cases it can be slightly faster or
solve cases on which dDFA hit the timeout (seven cases with N=14). Similarly, Figure 7
compares the 3DFA variant of DFAMiner and DFA-Inductor 2. In this case the number of
DFAs not solved by DFAMiner are eight, all with N=14. Finally, Figures 9 and 10 show the
comparison of DFA-Identify and the two variants of DFAMiner.

C.1. Size growth of APTA, dDFA and 3DFA in parity game solving

In Table 6, we can see that the number of positive and negatives samples grow exponentially,
even if they eventually take up below 20% of all samples. On the other hand, we can see that
for a fixed colour number, the sizes of dDFAs and 3DFAs grow constantly when increasing
the word length by 1. For instance, for the colour number 6, the size of 3DFA increases
by at most 528 and eventually by 363, and dDFA by 363 when increasing the length by 1.
A huge save in the number of states representing the samples thus leads to a significantly
better performance in solving the Min-DFA inference problems for parity games.

20

DFAMiner: Mining minimal DFAs

0 200 400 600 800 1000 1200
DFA-Inductor

0

200

400

600

800

1000

1200

DF
AM

in
er

-3
DF

A

3x

2x

4x

Figure 5: Minimisation time of DFAMiner with double DFA and DFA inductor on 1,300
DFAs.

0 200 400 600 800 1000 1200
DFAMiner-dDFA

0

200

400

600

800

1000

1200

DF
AM

in
er

-3
DF

A

3x

2x

4x

3x 2x4x

Figure 6: Minimisation time of the two DFAMiner variants: the double DFA and 3DFA.

21

Dell’Erba Li Schewe

0 200 400 600 800 1000 1200
DFA-Inductor2

0

200

400

600

800

1000

1200

DF
AM

in
er

-d
DF

A
3x

2x

4x

3x 2x4x

Figure 7: Minimisation time of the DFA-Inductor 2 and DFAMiner with dDFA.

0 200 400 600 800 1000 1200
DFA-Inductor2

0

200

400

600

800

1000

1200

DF
AM

in
er

-3
DF

A

3x

2x

4x

3x 2x4x

Figure 8: Minimisation time of the DFA-Inductor 2 and DFAMiner with 3DFA.

0 200 400 600 800 1000 1200
DFA-Identify

0

200

400

600

800

1000

1200

DF
AM

in
er

-d
DF

A

3x

2x

4x

Figure 9: Minimisation time of the DFA-Identify and DFAMiner with dDFA.

22

DFAMiner: Mining minimal DFAs

0 200 400 600 800 1000 1200
DFA-Identify

0

200

400

600

800

1000

1200

DF
AM

in
er

-3
DF

A
3x

2x

4x

Figure 10: Minimisation time of the DFA-Identify and DFAMiner with 3DFA.

Colours Length dDFA 3DFA APTA Samples #Pos #Neg

2 3 12 8 15 23 3 5

3 4 28 23 111 34 51 20
3 5 38 33 266 35 130 31

4 5 84 82 1,083 45 274 488
4 6 117 122 3,311 46 669 1,599
4 7 150 155 10,076 47 1,645 5,235

5 6 269 301 13,634 56 7,233 3,067
5 7 372 438 53,277 57 30,332 9,625
5 8 475 541 209,721 58 127,194 30,456
5 9 578 644 835,954 59 533,305 97,228
5 10 681 747 3,369,694 510 2,236,023 312,568
5 11 784 850 13,704,486 511 9,375,269 1,009,941

6 7 986 1,279 199,397 67 53,556 104,095
6 8 1,349 1,807 930,870 68 216,298 517,590
6 9 1,712 2,170 4,369,362 69 878,823 2,573,621
6 10 2,075 2,533 20,689,546 610 3,595,591 12,795,642
6 11 2,438 2,896 - 611 14,799,059 63,616,339
6 12 2,801 3,259 - 612 61,192,124 316,286,133
6 13 3,164 3,622 - 613 253,881,602 1,572,522,807
6 14 3,527 3,985 - 614 1,055,948,048 7,818,368,374
6 15 3,890 4,348 - 615 4,399,883,736 38,871,920,470
6 16 4,253 4,711 - 616 18,357,865,115 193,266,275,998

Table 6: The size comparison between APTAs, 3DFAs and dDFAs for parity game solving.
Some of the missing data for APTA is due to the fact that there is no enough
RAM memory to build it.

23

Dell’Erba Li Schewe

C.2. Encoding of safety automata

In this section we outline the encoding employed for minimising safety automata from
parity samples. In particular, we introduce additional contraints to reduce the space of the
search of the DFA. Because of the huge number of samples, we have tweaked the encodings
described in the Section B for efficiency, taking properties of separating automata for parity
games into account.

Let c be the number of colours in the parity game, i.e. the set of the colours is [0, c−1].
We use the previously defined transition variables from a state i to j reading a letter (colour)
a as ei,a,j and the acceptance variables fi, with 0 ≤ i, j < n and 0 ≤ a < c. Moreover,
to make the SAT problem easier, we set 0 as the initial state and n − 1 as the sink state
(for safety or co-safety acceptance). Let ℓ be a positive integer. We denote by odd(ℓ)
(respectively, even(ℓ)) the set of odd (respectively, even) numbers in the set [0, ℓ − 1]. By
opp(c) we denote the set of colours having the opponent priority as the highest colour, i.e.
if c − 1 is even, then opp(c) = odd(c), and opp(c) = even(c) otherwise. The additional
constraints are as follow:

P1 Initial state loops. Whenever the initial state 0 reads a colour of the same parity as
the highest one, then it loops over itself. Therefore, if c − 1 is even, then we have∧

a∈even(c) e0,a,0, otherwise
∧

a∈odd(s) e0,a,0 holds.

P2 Initial state outgoing transitions. Whenever the initial state 0 reads a colour of the
opponent parity as c−1, it reaches a different state than 0 and n−1. Hence, we have∧

a∈opp(c)(
∨

0<i<n−1 e0,a,i).

P3 Sink state incoming transitions6. Whenever a state i ̸= n−1 reads a colour of the same
parity as the highest one, then it cannot reach the sink state n− 1. The constraint is
formalised as

∧
0≤i<n−1(

∧
a̸∈opp(c) ¬ei,a,n−1).

P4 Reset transitions. Whenever a state i ̸= n−1 reads the highest colour, then it reaches
the initial state 0. Then, we have that

∧
0≤i<n−1 ei,c−1,0 holds.

P5 Sink state loops. The sink state n − 1 makes exception to the previous rule, it can
only loop on itself. Formally,

∧
0≤a<c en−1,a,n−1.

P6 No loops on opponent colours. No states but the sink can loop whenever reading a
colour of the opponent parity as the highest one. Then, we have

∧
0≤i<n−1(

∧
a∈opp(c) ¬ei,a,i).

P7 Acceptance. If the highest colour is even, we look for a safety DFA (the sink state
is the only rejecting one), otherwise we build a co-safety DFA (the only accepting
state is the sink). Formally, if c − 1 is even, then (

∧
0≤i<n−1 fi) ∧ ¬fn−1, otherwise

(
∧

0≤i<n−1 ¬fi) ∧ fn−1.

For best performance of parity game solving problems, it is better to turn on the safety
encoding option when running DFAMiner.

6. This constraint may conflict with the requirement R4 for the representative DFA. So, we need to drop
those constraints of the representative DFA for state n− 1 that require the incoming transition to state
n− 1 to be over the maximal letter.

24

	Introduction
	Preliminaries
	Overview of DFAMiner
	The construction of 3DFAs
	Our proposal

	Evaluation
	Application in parity game solving
	Discussion and Future Work
	Minimal APTA construction
	SAT Encoding
	SAT-based encoding of minimisation
	SAT encoding of the representative DFA

	More experimental results
	Size growth of APTA, dDFA and 3DFA in parity game solving
	Encoding of safety automata

