
Compositional Security Analysis of Dynamic Component-based
Systems

Narges Khakpour
narges.khakpour@newcastle.ac.uk

Newcastle University
Newcastle, United Kingdom

Linnaeus University
Växjö, Sweden

Charilaos Skandylas
charilaos.skandylas@liu.se

Linköping University
Linköping, Sweden
Linnaeus University

Växjö, Sweden

ABSTRACT
To reason about and enforce security in dynamic software
systems, automated analysis and verification approaches are
required. However, such approaches often encounter scalabil-
ity issues, particularly when employed for runtime analysis,
which is necessary in software systems with dynamically
changing architectures, such as self-adaptive systems. In this
work, we propose an automated formal approach for security
analysis of component-based systems with dynamic archi-
tectures. This approach leverages formal abstraction and
incremental analysis techniques to reduce the complexity
of runtime analysis. We have implemented and evaluated
our approach against ZNN, a widely known self-adaptive
system exemplar. Our experimental results demonstrate the
effectiveness of our approach in addressing scalability issues.

CCS CONCEPTS
• Security and privacy → Formal security models; Software
security engineering; • Software and its engineering → Model
checking; • Computer systems organization → Self-organizing
autonomic computing.

KEYWORDS
Security Analysis, Model Checking, Runtime Security
ACM Reference Format:
Narges Khakpour and Charilaos Skandylas. 2024. Compositional
Security Analysis of Dynamic Component-based Systems. In 39th
IEEE/ACM International Conference on Automated Software
Engineering (ASE ’24), October 27-November 1, 2024, Sacra-
mento, CA, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3691620.3695499

1 INTRODUCTION
Today’s software landscape moves towards heterogeneous
and dynamic systems to cope with a frequently changing
environment and user requirements. Due to the adapting na-
ture and various sources of uncertainty in such systems, new

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1248-7/24/10.
https://doi.org/10.1145/3691620.3695499

security threats that are unknown at design time can arise.
Such threats can lead to exposing a larger attack surface
throughout a system’s lifetime compared to systems with a
static architecture and might introduce new opportunities
for vulnerability exploitation. Further, cyber-attacks grow in
scale, sophistication and frequency, as new vulnerabilities are
introduced and novel exploitation techniques and strategies
are discovered [2, 17, 45]. Conventional offline security analy-
sis approaches might be of limited effectiveness, as they may
fail to consider security threats introduced as the system’s
behavior and attack surface evolve at runtime.

Key Challenges. Changes in self-adaptive systems can hap-
pen at the architectural level or in the components’ behavior.
In systems where the system architecture and its vulnera-
bilities are dynamic and unknown a priori at design-time,
automated security analysis and enforcement approaches are
required to continuously analyse security at runtime and
react to security-affecting changes to protect the system
(C1). Online methods to analyze security [5, 6, 34, 54] of-
ten rely on runtime monitoring [5, 6, 54], where an observer
monitors the executions of a software system to verify if its
behavior adheres to a set of formal specifications [39]. These
approaches only check the current execution to detect se-
curity violations which makes the analysis incomplete and
thus are unsuitable for security threat analysis, since not
all possible execution paths are verified (C2). Skandylas et
al. [53] proposed a formal approach using model checking for
runtime security analysis of component-based self-adaptive
systems that considers the probabilistic attacker behaviour
and runtime architectural changes but it suffers from scalabil-
ity issues. Abstraction is a technique to reduce the analysis
complexity by abstracting away details. One way to abstract
away details is to perform the analysis at the architectural
level where the internal behaviour of the components is omit-
ted [32]. Even though architecture-level security analysis can
reduce complexity, the scalability of formal techniques such as
model checking is limited when analysing component-based
systems due to the state space explosion problem [42] (C3).
Modular verification is a common method to tackle complex-
ity that aims to reduce the verification problem into verifying
smaller subproblems. Modular analysis approaches have been
used to analyse component-based systems in the past, e.g.,
incremental [9, 32, 38], on-the-fly [25, 51] and compositional
verification [10], and assume-guarantee reasoning [46].

1232

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-0377-5595
https://orcid.org/0000-0002-5057-2790
https://doi.org/10.1145/3691620.3695499
https://doi.org/10.1145/3691620.3695499
https://doi.org/10.1145/3691620.3695499
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695499&domain=pdf&date_stamp=2024-10-27

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Narges Khakpour and Charilaos Skandylas

To address challenges C1-C3, there is a need for automated
security analysis approaches that (i) consider uncertainties
in the attacker behaviour, (ii) use modular analysis to scale
up the reasoning to realistic systems, and (iii) perform the
security analysis at runtime to cope with architectural changes
or newly discovered avenues of attack.

The method proposed in [53] designs self-protecting sys-
tems using runtime threat analysis and addresses C1-C2,
however, it suffers from scalability issues. To capture the
uncertainty involved in the attacker behaviour, it employs a
probabilistic modelling approach (C1), and given the system
architecture and its vulnerabilities, it automatically builds
and analyzes the security model(C2). This paper builds upon
[53] and proposes a new automated approach for security
threat analysis of component-based self-adaptive systems
that utilizes a combination of techniques to tackle complex-
ity, including formal abstraction, and incremental security
model construction and verification.

Contributions. We propose a two-layer probabilistic secu-
rity model. The high-level layer is an abstraction over the
lower-level layer (See Figure 2). The lower layer formalizes
a probabilistic attack scenario and the attacker’s interac-
tions with the component-based system. We propose a sound
algorithm to build the abstract layer that automatically par-
titions the low-level layer into fragments, verifies probabilistic
properties on them, and uses the results to build the prob-
abilistic abstract layer. Verification is then performed on
the high-level layer, to reduce the analysis complexity and
improve scalability. We use the PRISM [29] model checker for
verification, and PCTL (Probabilistic Computation Temporal
Logic) [28] to specify properties. Our approach is sound, in
the sense that model checking a subset of PCTL formulas
against the high-level model and the low-level model leads
to identical results.

To improve the scalability of our approach for runtime
analysis, we employ incremental model update and verifica-
tion. When a component-based system changes at runtime,
often only a subset of its components are altered. We identify
the components and fragments affected by a change, recon-
struct and reverify the modified fragments of the low-level
model, and update the corresponding parts of the high-level
layer automatically. We have automated the whole approach
and conducted experiments to study the effects of modular-
ization and incremental update on the analysis complexity.
The contributions of this paper include:

● [Scalability, C3] We exploit formal abstraction and
modular analysis to automatically build a two-level
formal security model. This model enables us to prob-
abilistically reason about the security threats at an
abstract level, either statically or at runtime, to tackle
the analysis complexity. We employ a probabilistic ap-
proach to model and reason about uncertainty.

● [Automation, C1] The security model is automatically
built from the system architecture described in an
Architecture Description Language (ADL) [24] and the
formal specification of its vulnerabilities. The security

model is incrementally updated at runtime to reflect
the changes, e.g., when new architectural changes or
new avenues of attack are discovered.

● [Soundness, C2] We use model checking at runtime to
analyze threats against the system. and formally prove
that our approach is sound.

● [Experiments] We implement and apply our approach
on a case study, and conduct experiments to study
its performance. The results show that it reduces the
complexity of the security analysis and offers an im-
provement in scalability.

An earlier version of this work, with detailed examples, algo-
rithms, and an additional case evaluation is available at [52].

The rest of the paper is structured as follows. Section 2
presents a running example that we use for demonstrative pur-
poses throughout this paper. Section 3 discusses the required
preliminaries. Section 4 formally introduces our two-level
security model. Section 5 details the modular generation,
incremental update and verification of our model. Section 6
provides a proof of soundness for our abstraction. Section 7
discusses the evaluation of our approach. Section 8 discusses
related work, and Section 9 concludes the paper.

2 RUNNING EXAMPLE
A component-based system is composed of a set of compo-
nents where a component provides interfaces to be invoked by
other components. Interfaces might contain security vulnera-
bilities, i.e., weaknesses that can be exploited to attack the
system. Figure 1 shows an example system called Insecure-
Store that we use in this paper as a running example.The user
can add, remove and lookup documents in this document han-
dling system. InsecureStore includes five initial components:
Frontend, Backend, UserMgr, FileMgr, and Database.

InsecureStore is capable of altering its architecture at
runtime to better meet its goals. An example architectural
change is shown in Figure 1(b) where a FileServer compo-
nent is added to the system to improve its efficiency when
dealing with a large number of document retrieval queries.
Instead of retrieving documents from the Database compo-
nent, the FileMgr component now requests a document from
the newly added file server. The security characteristics of
these two architectures are different. An attack exploiting
sql_injection that was available in the architecture of Fig-
ure 1(a) by invoking the exec_query interface of the Database
from the FileMgr component is no longer possible. However, a
new path of exploitation has been uncovered in Figure 1(b),
i.e., the get_document interface of the FileServer is callable and
vulnerable to path injection.

3 PRELIMINARIES
This section introduces probabilistic model checking and
attack modeling for component-based systems.

3.1 Probabilistic model checking
The goal of verification is to check whether a system model
𝒯 satisfies a specification 𝜓. Probabilistic model checking

1233

Compositional Security Analysis of Dynamic Component-based Systems ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

UserMgrFrontend

Database

FileMgr

Backend
Connect

cmd injection

Disconnect

search_file

login
auth bypass

logout

doc_lookup
user spoofing

fetch_user
query injection

register
auth bypass

fetch_document
query injection

add_document
auth bypass

exec_query
sql injection

Component VulnerabilityInterface
Legend

Interaction

(a) Initial InsecureStore architecture
UserMgr

FileServer

Frontend Database

FileMgr

Backend
Connect

cmd injection

Disconnect

search_file

login
auth bypass

logout

doc_lookup
user spoofing

fetch_user
query injection

register
auth bypass

fetch_document
query injection

add_document
auth bypass

exec_query
sql injection

get_document
path injection

(b) InsecureStore architecture after adaptation
Figure 1: Two possible InsecureStore architectures

is a technique to verify quantitative properties of a system
that exhibits stochastic behavior [36]. We specify the system
behaviour using Probabilistic Transition Systems (PTS).

Definition 1 (PTS). A probabilistic transition system is a
tuple 𝒯 = (𝑉,𝑉0,T) where 𝑉 is a set variables, 𝑉0 shows the
initialization of the variables, and T is a set of probabilistic
transitions. A transition is a tuple (𝜑,D𝑈) where 𝜑 is the
transition guard, a Boolean expression over 𝑉 , and D𝑈 is
a discrete probability distribution function over the set of
updates 𝑈 .

Initially, 𝒯 is in its initial state. A transition is fired if its
guard is satisfied, and when fired the variables are updated
according to its update functions. The semantics of PTS is
defined as a Discrete-Time Markov Chain (DTMC).

Definition 2 (DTMC). A DTMC is defined as a tuple 𝒟 =
(𝑆,𝑉, Σ, 𝑠0,P,ℒ). 𝑆 is the set of states defined over the set
of variables 𝑉 . Σ is a set of actions including the internal
action 𝜏 . 𝑠0 ∈ 𝑆 is the initial state. P ∶ 𝑆 × 𝑆 → (︀0,1⌋︀ is the
transitions probability matrix where ∑

𝑠′∈𝑆
P(𝑠, 𝑠′) = 1 for all

𝑠 ∈ 𝑆, and ℒ is a labelling function that assigns to each state
a set of atomic propositions over V that hold in that state.

PCTL [28] is a logic for probabilistic reasoning about
temporal properties of a system with stochastic behaviour,
for example: "Is the probability that the attacker compromises
the network less than 0.5?"? This logic contains state formulas
𝜑 and path formulas 𝜓, the syntax of which is given by the
following grammar:

𝜑 ∶∶= ⊺ ⋃︀ 𝛼 ⋃︀ ¬𝜑 ⋃︀ 𝜑 ∧ 𝜑 ⋃︀ P&𝑝(︀𝜓⌋︀
𝜓 ∶∶= X𝜑 ⋃︀ 𝜑1U𝜑2 ⋃︀ F𝜑

where ⊺ denotes "true", 𝛼 is a proposition, & ∈ {<,≤,>,≥},
and 𝑝 ∈ (︀0,1⌋︀. The operators X ("next"), U ("until") and F
("eventually") are the standard temporal operators. Infor-
mally, P&𝑝(︀𝜓⌋︀ states that the path formula 𝜓 will be satisfied
with a probability meeting the bound &𝑝. P=?(︀𝜓⌋︀ denotes
computing the probability of satisfying the property 𝜓. We
write 𝑠 ⊧ 𝜓 to indicate that state 𝑠 of 𝒟 satisfies the formula
𝜓, and write 𝒟 ⊧ 𝜓 if 𝑠0 ⊧ 𝜓. A property is satisfied by a
PTS, if and only if it is satisfied by its semantics described
as a DTMC.

3.2 Component-based System Attack Modeling
We define a software architecture as as a collection of com-
ponents and interactions between them. Each component
satisfies parts of the system’s functionality which is exposed
to the rest of the system via a number of interfaces that can be
invoked to facilitate communication between the components.

A security-aware architecture [53] is a software architecture
enhanced with security-related information including the
vulnerabilities associated with each component, the interfaces
that can be invoked to exploit those vulnerabilities and how
vulnerabilities can be combined to form more complex attacks
that allow the attacker to compromise the system further.
Figure 1 depicts two possible security-aware architectures
of InsecureStore. A security-aware architecture 𝐴 = ∐︀𝐶,𝑅̃︀
is a pair where a component 𝑐 ∈ 𝐶 is defined as (𝐼,𝒱), 𝐼 is
the set of 𝑐’s interfaces used for communication with other
components, and 𝒱 ∶ 𝐼 → 2𝑉 is a function mapping each
interface 𝑖 ∈ 𝐼 to a possibly empty set of vulnerabilities in 𝑉 ,
and 𝑉 is the set of all vulnerabilities. Further, 𝑅 is a set of
component interactions. An interaction 𝑟 is a triple (𝑐′, 𝑖, 𝑐)
where 𝑐, 𝑐′ ∈ 𝐶 are interacting components and 𝑖 ∈ 𝐼 is an
interface provided by 𝑐. This means that the component 𝑐′
invokes the interface 𝑖 of the component 𝑐.

We rely on an architectural model of the system that
is maintained at runtime to support incremental updating
of our security model. The architectural model contains
the concrete security-aware architecture, component types,
vulnerabilities, attack rules to chain vulnerabilities to cre-
ate attacks and their effects. Vulnerabilities, and the rules
for complex attacks and security impact are modeled as
opaque architectural properties, and include the required
attack probabilities. When the system architecture changes,
the corresponding changes are reflected to the architectural
model of the system automatically.

A logical attack graph is used to illustrate and analyze
the exploitation of security weaknesses and vulnerabilities
to compromise a system. Figure 4(a) shows an example at-
tack graph. A logical attack graph shows different strategies
to reach a final goal, and comprises three types of nodes:
primitive nodes (rectangles) that state the initial known facts
about the attack, derived nodes (diamonds) which correspond
to derived knowledge, and rule nodes (ellipses) that are rules
used to derive new derived nodes via resolution [43]. When
the preconditions of a rule node hold (i.e., its predecessors),

1234

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Narges Khakpour and Charilaos Skandylas

the rule is enabled and the attacker can gain the rule’s con-
sequence (i.e., its successor), which is a derived node. To
generate the logical attack graph, we use a set of rules, con-
tained in the architectural model, to specify vulnerability
exploitation, the security-aware architecture and the attack
goal, which are then fed to a tool called MulVAL [44] to
generate a logical attack graph.

4 SECURITY MODEL
4.1 Scope and Overview

Scope. Our approach targets component-based systems
with dynamic software architectures and can be used by
designers and operators of such systems to analyze their se-
curity. This approach can be deployed alongside the system
at runtime to continuously monitor and evaluate its security.
Although in this paper we primarily focus on self-adaptive
component-based systems, our approach is also applicable to
other types of software systems, the architectures of which
can be modeled as a graph of components and connectors [18],
whose vulnerabilities can be identified. Examples of such ar-
chitectures include microservice and container-based systems.
We consider threats that are modeled as exploitable vulner-
abilities in the components’ interfaces. New threats to the
system can arise from architectural changes that introduce
or remove attack paths through component invocations or
from discovering new vulnerabilities. Further, our approach
offers a viable method for analyzing security in systems with
known vulnerabilities that have not been remediated. Note
that recent research results [48, 57] and industry security
reports [12, 56] show that systems are often deployed with
known vulnerabilities for various reasons.

We employ probabilities to capture uncertainties in the
attacker and system behavior. Sources of uncertainty include,
among others: (i) the attacker’s skill level and budget to carry
out attacks, (ii) the attacker’s initial knowledge of the sys-
tem and exploitation capabilities, (iii) the complexity of the
exploitation, (iv) the effectiveness of defense mechanisms in
detecting or preventing attacks, and (v) interactions between
exploits or system behaviors that depend on the runtime
state, e.g., they are timing/memory order dependent.

Security Model Overview. We employ a two-tier model
shown in Figure 2 to describe and analyse the security of a
system. The bottom layer, called the low-level layer, describes
the attacker behaviour and her interactions with the system
components, i.e., actions by the attacker or by the system that
contribute to attacks and the consequences of those actions
on the system or attacker behaviour. The top layer is the high-
level layer that abstracts away the details of the low-level layer.
This layer is constructed based on the verification results
of the low-level layer that describe under which conditions
security violations can occur and the consequences of such
violations. Security properties are then verified against the
high-level abstract model, instead of the large low-level model,
to tackle analysis complexity. We construct an initial model
compositionally, and incrementally update it at runtime to

. . .

. . .

Low-Level Layer

ℳ 1

ℳ 2

ℳ 3

ℳ 𝑘

ℳ 𝑛−3

ℳ 𝑛−2

ℳ 𝑛−1

𝑐
𝑘

𝑠 0

𝑠 3

𝑠 2

𝑠 1

𝑠 𝑛−1

𝑠 𝑛−2

𝑠 𝑛−3

𝑠 𝑘

. . .

𝛿

High-Level Layer

A
bs

tr
ac

tio
n

𝑐3

𝑐2

𝑐2

𝑐1

𝑐𝑗

𝑐 𝑙

Figure 2: The Two-Level Security Model where ℳ𝑖 is a frag-
ment model, 𝛿 is a deadlock state showing that the attacker
gave up on the attack

reflect changes in its architecture and exploitability, allowing
us to modularly reason about security as the system evolves.

4.2 Low-level Layer
An attack scenario describes different strategies an attacker
may follow to reach a specific goal. We decompose an at-
tack scenario into four attack phases: discovery, exploitation,
impact and system security. Each attack phase is further
decomposed into a number of attack fragments. An attack
fragment is a set of actions taken by the attacker to reach a
possibly intermediate goal. Figure 3(a) and Figure 3(b) show
two attack scenarios where the boxes correspond to attack
fragments, the dotted areas correspond to phases, and the
arrows between the boxes show the dependencies between at-
tack fragments. In the discovery phase, the attacker identifies
the interactions among the system components to gain infor-
mation about the active components, their exposed interfaces
and their interactions. The exploitation phase describes the
process by which the attacker interacts with the system under
attack. It comprises three steps: (i) vulnerability discovery,
i.e., identifying the vulnerable interfaces and available ex-
ploits of the active components, (ii) vulnerability exploitation,
i.e., exploiting a single vulnerable interface which we call a
single-exploit attack, and (iii) combining multiple exploits to
perform more complex attacks, which we call multi-exploit
attacks. The impact phase models the impact of exploitation
on each component based on which fundamental security
property among confidentiality, integrity and availability is
violated. The system security phase, describes the conditions
upon which the whole system is rendered non-functional.

We employ a capability-based approach to model the at-
tacker behavior. An attacker capability is the ability to per-
form a certain set of actions, and is obtained by succeeding in

1235

Compositional Security Analysis of Dynamic Component-based Systems ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Discovery Fragment

S-Frontend-
cwe77

S-Backend-
cwe288

S-Backend-
cwe290

S-UserMgr-
cwe20

M-Backend-
authbypass

I-Frontend-
confidential

I-Backend-
confidential

I-Backend-
integrity

I-UserMgr-
integrity

System Security Fragment

𝑔
1

𝑔
2

𝑔
3

𝑔
4

𝑔5

𝑔
5

𝑔
9

𝑔
6

𝑔
7

𝑔
8

𝑔
10

𝑔
11

𝑔
12

𝑔
13

D
is

co
ve

ry
E

xp
lo

ita
tio

n
Im

pa
ct

Sy
st

em
Se

cu
rit

y
Attack Fragment Attack Phase
Dependency Newly Added Fragment

(a) Before adaptation

Discovery Fragment

S-Frontend-
cwe77

S-Backend-
cwe288

S-Backend-
cwe290

S-UserMgr-
cwe23

S-FileMgr-
cwe20

M-Backend-
autbypass

M-FileMgr-
leakfileinfo

I-Frontend-
confidential

I-Backend-
confidential

I-Backend-
integrity

I-FileMgr-
confidential

System Security Fragment

𝑔
1

𝑔
2

𝑔
3

𝑔
19

𝑔
18

𝑔5

𝑔
5

𝑔
9

𝑔
16

𝑔
6

𝑔
7

𝑔
15

𝑔14

𝑔
10

𝑔
11

𝑔
12

𝑔
17

D
is

co
ve

ry
E

xp
lo

ita
tio

n
Im

pa
ct

Sy
st

em
Se

cu
rit

y

(b) After adaptation
Figure 3: Attack phases and the corresponding attack frag-
ments before and after the adaptation where an element with
the prefix ’S-‘, ’M-‘, ’I-‘ respectively shows a single-exploit,
multi-exploit and security impact fragment. Goal capabilities,
that serve as prerequisites to fragments are prefixed with 𝑔.

performing the actions in the associated attack fragment. For
example, in order for the attacker to gain unauthorized entry
to the system in our running example, she needs a capability
to exploit the Backend component via an authentication bypass
vulnerability and once successful in bypassing authentication,
she can make use of Backend as a staging point to gain further
capabilities. When an attacker gains a capability, i.e., she
succeeds in achieving a sub-goal, her exploitation capabilities
grow. Capabilities show the extent to which the attacker has
succeeded in taking over the system and enable her future
actions by defining her available exploitation options.

An attack fragment 𝑓 comprises a set of related activities
that are carried out to gain a specific capability called the
fragment goal. The capabilities are of three types: prerequisite
capabilities denoted by 𝒞𝑃 , internal capabilities denoted by
𝒞𝐼 , and a goal capability denoted by 𝑔𝑓 . Internal capabilities
are local to the fragment, while a goal capability can be
a prerequisite capability of another fragment. Prerequisite
capabilities serve as the requirements for gaining internal

and/or goal capabilities, while a goal capability is the result of
achieving the goal of the attack fragment. An attack fragment
might have multiple prerequisite capabilities but will only
have a single goal capability. For example, the attack fragment
S-Frontend-cwe77 in Fig. 3 is used to gain a capability 𝑔5 that
enables the attacker to exploit the connect interface on the
Frontend component to perform command injection on it.
Command injection in turn allows the attacker to perform
a multi exploit attack to achieve authentication bypass on
the Backend component, i.e., to gain the capability 𝑔9 in M-
Backend-authbypass, in addition to affecting the confidentiality
of the Frontend component. A fragment name is composed
of its fragment type, the affected component and its goal
name where the goal name shows either the CWE (Common
Weakness Enumeration) [41] identifier where applicable, or
the capability gained by the attacker otherwise.

An attack fragment is specified as a PTS that models
how the attacker actions affect the security of the system
components. We refer to that PTS as a fragment model.

Definition 3 (Fragment model). An attack fragment 𝑓 is
modeled using a PTS ℳ= ∐︀𝑉,𝑉0,T̃︀ where:

● 𝑉 = 𝒞𝑃 ∪𝒞𝐼∪{𝑔, 𝛿} where 𝒞𝑃 and 𝒞𝐼 are sets of Boolean
variables used to show the prerequisites and the internal
capabilities, 𝑔 is the fragment goal capability, and 𝛿
is a boolean variable to indicate whether the attacker
quit without achieving the goal 𝑔,

● each internal/goal capability 𝑐 is associated with a
probabilistic transition (𝜑𝑐,D𝑈) in T where 𝜑𝑐 is the
prerequisites to gain 𝑐, and 𝑈 = {{𝑐 ∶= ⊺},∅,{𝛿 ∶= ⊺}}
is the set of possible updates by this transition. The
transition states that when the prerequisites to gain a
capability 𝑐 hold (formula 𝜑𝑐), one of the three updates
in 𝑈 is applied with a probability: either (i) the attacker
succeeds and 𝑐 is gained (i.e., the update {𝑐 ∶= ⊺}), or
(ii) the attacker fails and can retry (i.e., the update ∅),
or (iii) the attacker gives up on trying the attack in
future (i.e., the update {𝛿 ∶= ⊺}.

Only transitions that lead to the attacker achieving the
goal have a probability of giving up greater than zero. That
is based on the assumption that the attacker gives up on the
goal altogether rather than on performing a specific attack
action. The internal actions of a fragment are local to it,
i.e., they do not affect the rest of the fragments and are not
considered in the high-level model. Thus, the precise internal
capability that the attacker failed to gain and gave up is not
relevant, as it does not affect the behavior of the high-level
model or of any other fragments.

Figure 4(b) shows the transitions of a fragment model. A
transition 𝑡 is written as [𝑡] 𝜑𝑐 → p1 ∶ {𝑐 ∶= ⊺} + p2 ∶ {𝛿 ∶=
⊺} + p3 ∶ ∅, which states when the condition 𝜑𝑐 holds, then
with probability p1 the transition 𝑎 will be taken to set 𝑐
to ⊺, otherwise 𝛿 will be set to ⊺ with probability p2, or no
effect will occur with probability p3 (i.e., the attack failed).
Note that each fragment has a unique goal and the internal
capabilities of two attack fragments are disjoint, i.e., 𝑔 ≠ 𝑔′,
and 𝒞𝐼 ∩ 𝒞′𝐼 = ∅ where 𝑓 ≠ 𝑓 ′. However, the goal capability

1236

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Narges Khakpour and Charilaos Skandylas

𝑐1 𝑔2

Rule 1:0.8

𝑐5

Rule 3:0.7

𝑔7

𝑐3 𝑔4

Rule 2:0.9

𝑐6

Rule 4:0.7
Internal capability
Internal capability
Prerequisite capability
Goal Capability

(a) Fragment graph
[Rule1] 𝑐1 & 𝑔2 & not 𝑐5 → 0.8 : (𝑐5 = ⊺) + 0.2: ∅
[Rule2] 𝑐3 & 𝑔4 & not 𝑐6 → 0.9 : (𝑐6 = ⊺) + 0.1: ∅
[Rule3] not 𝛿𝑓 & 𝑐5 & not 𝑔7 → 0.7 : (𝑔7 = ⊺)

+ 0.15 : (𝛿𝑓 = ⊺)
+ 0.15: ∅

[Rule4] not 𝛿𝑓 & 𝑐6 & not 𝑔7 → 0.7 : (𝑔7 = ⊺)
+ 0.15 : (𝛿𝑓 = ⊺)
+ 0.15: ∅

(b) Fragment model (ℳ𝑓)
[] not 𝛿𝑓 & not 𝑔7 & (𝑔2 or 𝑔4) → 0.8235:(𝑔7 = ⊺) + 0.1765:(𝛿𝑓 = ⊺)

(c) High-level layer ℋ (Partial)
Figure 4: Transformation of a fragment graph into a fragment
model, and its high-level abstraction

of a fragment can be a prerequisite capability of another
fragment which establishes a dependency between the two
fragments. Further, we assume the attacker only attempts
to gain a capability if she does not already hold it.

Definition 4 (Low-level Layer). Let 𝐹 = {𝑓0, . . . , 𝑓𝑛} be the
set of attack fragments of an attack scenario. The low-level
layer model ℳ is defined as the parallel composition of its
fragment models, i.e., ℳ0 ∥ ⋅ ⋅ ⋅ ∥ ℳ𝑛 where ℳ𝑖,0 ≤ 𝑖 ≤ 𝑛 is
the fragment model of 𝑓𝑖.

4.3 High-level Layer
The high-level layer abstracts away the internal behavior
of the attack fragments, i.e., the internal capabilities of the
attack fragments in the low-level layer, and the model only
captures the goal capabilities and prerequisite capabilities.

Definition 5 (High-Level Model). Let {𝑓0, . . . , 𝑓𝑛} be the
set of attack fragments in the low-level layer, and ℳ𝑖 =
(𝑉𝑖, 𝑉0𝑖,T𝑖) be the fragment model of 𝑓𝑖,0 ≤ 𝑖 ≤ 𝑛 where
𝑉𝑖 = 𝒞𝑃 ,𝑖 ∪ 𝒞𝐼 ,𝑖 ∪ {𝑔𝑖, 𝛿𝑖}. The high-level model is defined as
a PTS ℋ = (𝑉,𝑉 ℎ

0 ,→) where:
● 𝑉 = ⋃

0≤𝑖≤𝑛
𝑉𝑖/𝒞𝐼 ,𝑖 is the union of the variables of all

fragments except for their internal capabilities 𝒞𝐼 ,𝑖,
● each goal capability 𝑔𝑖 belonging to a fragment 𝑓𝑖 is

associated with a probabilistic transition (𝜑𝑔𝑖 ,D𝑈)
where 𝜑𝑔𝑖 is the prerequisite to gain the fragment goal
𝑔𝑖, and 𝑈 = {{𝑔𝑖 ∶= ⊺},{𝛿𝑖 ∶= ⊺}}. This transition states
when the prerequisites to gain the capability 𝑔𝑖 hold
(formula 𝜑𝑔𝑖), then either (i) the attacker succeeds to
reach the goal 𝑔𝑖, or (ii) the attacker gives up at some
stage of the attack. D𝑈 ({𝑔𝑖 ∶= ⊺}) is the probability of

reaching 𝑔𝑖 in its corresponding fragment model ℳ𝑖,
and D𝑈 ({𝛿𝑖 ∶= ⊺}) = 1 −D𝑈 ({𝑔𝑖 ∶= ⊺}).

5 AUTOMATED SECURITY MODEL
CONSTRUCTION AND INCREMENTAL
UPDATE

In this section, we discuss how we automatically partition
an attack scenario into fragments, modularly construct the
model and incrementally update it.

5.1 Automated Modular Model Construction
5.1.1 Low-level Layer Partitioning and Construction. To con-
struct the low-level layer automatically, we first generate a
logical attack graph [44] to describe each attack fragment,
called a fragment graph, and then transform this graph into a
fragment model ℳ= (𝑉,𝑉0,T) where 𝑉 is the set of derived
nodes and primitive nodes in the fragment graph that repre-
sent the attacker capabilities. All primitive capabilities are
initialized to true in 𝑉0 while the derived capabilities have
the initial values of false. This is due to the fact that the
attacker already holds the primitive capabilities, and follows
the attack strategy to gain the derived capabilities. According
to the semantics of rule nodes, when the attacker holds all the
predecessors of a rule node, she can apply the rule and gain
its successor derived node. Thus, we translate each rule node
𝑟 with the successor node 𝑐 to a transition ∐︀𝜑𝑐,D𝑈 ̃︀ where
𝜑𝑐 is the conjunction of the capabilities associated with 𝑟’s
predecessors, and D𝑈 is defined according to Definition 3
where the capability 𝑐 is the rule successor.

Example 1. Figure 4(a) shows a fragment graph, and Fig-
ure 4(b) is its corresponding model. The label of a rule node
shows its name separated by ":" from its success probability.
The goal capability of this fragment is the final node 𝑔7. For
instance, Rule 2 states that when the capabilities 𝑐3 and 𝑔4
(i.e., Rule 2’s predecessors) are held by the attacker, and she
does not hold the capability 𝑐6 (i.e., Rule 2’s successor), she
can use this rule and may gain 𝑐6 with probability 0.9 or fail.

The low-level layer generation is carried out modularly
using Algorithm 1 which partitions an attack scenario into
disjoint fragments and generates their models in parallel auto-
matically. Given an architectural model 𝐴, the algorithm first
generates a generic attack graph 𝒢 that includes all possible
attack patterns (line 2). The attack patterns correspond to
chains of rule applications that link a fragment’s prerequi-
site capabilities to its goal capability. An attack pattern is
represented by a Horn clause that specifies an attack rule.
The rules are parametric and if a rule’s parameters can be
valuated in a way to match the prerequisites of a fragment,
we can call it a matched attack pattern and the instantiated
attack pattern constitutes an attack fragment or a part of it.

To perform the instantiation, we employ an exhaustive
matching algorithm that will try to match all possible gener-
ated goal capabilities of the previous phases with prerequisites
of the fragments of the next phase. Then, we use the architec-
tural model 𝐴 and the generic attack graph 𝒢 to identify the

1237

Compositional Security Analysis of Dynamic Component-based Systems ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Algorithm 1: Modular Fragment Model Construction
Input: Architectural Model 𝐴
Output: Set of fragment models X
// The set of all generated fragment graphs

1 pFragGraphs = ∅, X = ∅
// Create the generic attack graph

2 𝒢=CreateGenericAttackGraph(A)
// Phase-by-phase fragment generation

3 for (depth = 0; depth < maxDepth; depth++) do
// find all depth-th level fragments given pFragGraphs

4 𝐹 =FindNewFragments(𝑑𝑒𝑝𝑡ℎ,𝒢,pFragGraphs)
// generate the fragment attack graphs in parallel

5 ParallelGraphGen(𝐹 ,𝒢,pFragGraphs)
6 end
7 for fragGraph ∈ pFragGraphs do in parallel

// build the fragment model from the fragment graph
8 ℳ𝑖 = ConstructFragModel(fragGraph,𝐴)
9 X = X ∪{ℳ𝑖}

10 end
11 return X
12 Function ParallelGraphGen(F,𝒢,pFrags) is
13 for 𝑓 ∈ 𝐹 do in parallel

// generate the formal specification of the fragment
14 spec = GenerateFormalSpec(𝑓 ,𝒢)

// generate the fragment attack graph
15 fragGraph=RunGraphGen(𝑓 ,spec)
16 pFrags=pFrags ∪{fragGraph}
17 end
18 end

fragments of each phase (line 4) and generate their fragment
graphs phase-by-phase (lines 3-6). The fragments of a phase
are identified by traversing 𝒢 to find matching fragments
𝐹 whose prerequisites fragments have been generated, i.e.,
those fragments that match the attack pattern specified by
the attack rules used to generate 𝒢. If a matching component
allocation is found, it means that the attack is possible in the
security-aware architecture and hence a fragment must be
created for it. The fragment graphs of 𝐹 are then generated
in parallel using the function ParallelGraphGen (lines 13-19).
This function automatically generates the specification of
each fragment based on the specification of the generic attack
patterns specified in first order logic in a similar fashion to
[53] (line 15), and then feeds the specification to a logical
attack graph generator to generate its graph (line 16). Once
all the fragment graphs are built, they are transformed to
fragment models in parallel, as discussed earlier (lines 7-10).

5.1.2 Automatic High-Level Model Construction via Formal
Abstraction. Algorithm 2 gives the steps to construct a high-
level model from a set of fragment models. The algorithm
receives as input the output of Algorithm 1, i.e., a set of
fragment models. For each fragment model ℳ𝑖, we first
retrieve its associated goal 𝑔𝑖 (line 3), add the goal to the
set of variables 𝑉 (line 4), instantiate said variables (line 5),
and model check the property, P=?(︀𝐹 𝑔𝑖⌋︀ to determine the
probability that the attacker succeeds in gaining the fragment
goal (line 6). Informally, this is equivalent to calculating the
probability 𝜌𝑔𝑖 that the attacker will eventually succeed in
gaining 𝑔𝑖. We generate a transition for each fragment at the
high-level model that either leads to gaining the fragment
goal with a probability, or giving up. We add the transition
to the set of transitions T (line 9). The transition guard is a
conjunction of the attacker not having previously succeeded

or given up on the goal (i.e., ¬𝑔𝑖 and ¬𝛿𝑖), and the set
of prerequisites that need to hold before the goal can be
attempted returned by the function GetPrerequisites. The
transition’s probability to take the update where the attacker
gains the goal (𝑔𝑖 = ⊺) is 𝜌𝑔𝑖 , while with probability 1 - 𝜌𝑔𝑖

the attacker gives up (𝛿𝑖 = ⊺). The function MakeTransition
receives as input the transition guard, the fragment goal 𝑔𝑖

and the probability that the attacker will succeed in gaining
the goal 𝜌𝑔𝑖 and generates a transition including the 𝛿𝑖 update
and its corresponding probability.
Algorithm 2: High-Level Model Construction

Input: A set of fragment models X
Output: The high-level model ℋ

1 T = ∅, 𝑉 = ∅
// For each fragment model

2 for ℳ𝑖 ∈ X do in parallel
// Retrieve the fragment model’s goal

3 𝑔𝑖 = GetFragmentGoal(ℳ𝑖)
4 𝑉 = 𝑉 ∪{𝑔𝑖} ∪ {𝛿𝑖}
5 𝑉0 = 𝑉0 ∪{𝑔𝑖 = �} ∪ {𝛿𝑖 = �}

// Compute the probability the goal will be met
6 𝜌𝑔𝑖

= ModelCheck(ℳ𝑖,’P
=?(︀𝐹 𝑔𝑖⌋︀’)

// Retrieve fragment graph for ℳ𝑖
7 fragGraph = getFragmentGraph(ℳ𝑖)

// Retrieve the fragment goal’s prerequisites
8 𝜑𝑔𝑖

= ¬𝑔𝑖 ∧ ¬𝛿𝑖∧GetPrerequisites(𝑔𝑖,fragGraph)
// Add the goal transition to the high-level model

9 T = T ∪{MakeTransition(𝜑𝑔𝑖
, 𝑔𝑖, 𝜌𝑔𝑖

)}
10 end
11 ℋ = (𝑉, 𝑉0,T)
12 return ℋ

Example 2. Figure 4 (c) shows the corresponding transition
of the fragment shown in Figure 4(b) in the high-level layer.
The fragment goal 𝑔7 can be reached via two paths: (i) Rule
1 and Rule 3, or (ii) Rule 2 and Rule 4. The prerequisites
for the first path are 𝑐1 and 𝑔2, and the prerequisites for
the second path are 𝑐3 and 𝑔4. 𝑔2 and 𝑔4 are fragment goals
of its predecessors fragments, while 𝑐1 and 𝑐2 are internal
capabilities that always hold and can be ignored. Hence, the
guard to gain 𝑔7 is holding 𝑔2 or 𝑔4, and not holding 𝑔7
or giving up. The probability 0.8235 is the model checking
result of P=?(︀𝐹 𝑔7⌋︀ against the fragment model shown in
Figure 4(b).

When an architectural change occurs, a subset of the com-
ponents and interactions are often altered, added or removed.
Thus, a part of the system model and consequently, a part
of the attacker behavior will remain unaffected, while the be-
havior related to the modified part of the system architecture
will evolve. Fig. 3(a) shows the state of the low-level layer
that evolves to Fig. 3(b) after an adaptation that adds a File-
manager component to the system. There are seven fragments
in Fig. 3(a) that belong to the exploitation and impact phases
fragment models for Frontend, and Backend. These fragments
models have not been altered by the adaptation, rather an
extra vulnerable component has been added which has intro-
duced three new fragments (See Fig. 3(b)). Therefore, instead
of re-generating the whole low-level model, we update the
model by updating the affected fragments that correspond
to the components affected by an adaptation. Since the high-
level model is constructed by verifying properties on the

1238

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Narges Khakpour and Charilaos Skandylas

[] ⊺ → 𝑝5 : (𝑔5=⊺) + (1−𝑝5) : (𝛿𝑔5=⊺)
[] ⊺ → 𝑝6 : (𝑔6=⊺) + (1−𝑝6) : (𝛿𝑔6=⊺)
[] ⊺ → 𝑝7 : (𝑔7=⊺) + (1−𝑝7) : (𝛿𝑔7=⊺)
[] ⊺ → 𝑝8 : (𝑔8=⊺) + (1−𝑝8) : (𝛿𝑔8=⊺)
[] 𝑔5 & 𝑔6 → 𝑝9 :(𝑔9=⊺)+(1−𝑝9):(𝛿𝑔9=⊺)
[] 𝑔5 → 𝑝10 : (𝑔10=⊺) + (1−𝑝10) : (𝛿𝑔10=⊺)
[] 𝑔9 → 𝑝11 : (𝑔11=⊺) + (1−𝑝11) : (𝛿𝑔11=⊺)
[] 𝑔7 → 𝑝12 : (𝑔12=⊺) + (1−𝑝12) : (𝛿𝑔12=⊺)
[] 𝑔8 → 𝑝13 : (𝑔13=⊺) + (1 − 𝑝13) : (𝛿𝑔13=⊺)

(a) Before Adaptation
[] ⊺ → 𝑝5 : (𝑔5=⊺) + (1−𝑝5) : (𝛿𝑔5=⊺)
[] ⊺ → 𝑝6 : (𝑔6=⊺) + (1−𝑝6) : (𝛿𝑔6=⊺)
[] ⊺ → 𝑝7 : (𝑔7=⊺) + (1-𝑝7) : (𝛿𝑔7 =⊺)

[] ⊺ → 𝑝8 : (𝑔8=⊺) + (1−𝑝8) : (𝛿𝑔8 = ⊺)
[] 𝑔5 & 𝑔6 → 𝑝9 : (𝑔9=⊺) + (1−𝑝9) : (𝛿𝑔9=⊺)
[] 𝑔5 → 𝑝10 : (𝑔10=⊺) + (1−𝑝10) : (𝛿𝑔10=⊺)
[] 𝑔9 → 𝑝11 : (𝑔11=⊺) + (1−𝑝11) : (𝛿𝑔11=⊺)
[] 𝑔7 → 𝑝12 : (𝑔12=⊺) + (1-𝑝12) : (𝛿𝑔12 =⊺)
[] 𝑔8 → 𝑝13 : (𝑔13=⊺) + (1 − 𝑝13) : (𝛿𝑔13=⊺)
[] ⊺ → 𝑝14 : (𝑔14=⊺) + (1-𝑝14) : (𝛿𝑔14 =⊺)
[] ⊺ → 𝑝15 : (𝑔15=⊺) + (1-𝑝15) : (𝛿𝑔15 =⊺)
[] 𝑔14 & 𝑔15 → 𝑝16 : (𝑔16=⊺) + (1-𝑝16) : (𝛿𝑔16 =⊺)
[] 𝑔16 → 𝑝17 : (𝑔17=⊺) + (1-𝑝17) : (𝛿𝑔17 =⊺)

(b) After Adaptation
Figure 5: Before and after adaptation high-level models

low-level model, changes in the low-level model need to be
propagated to the high-level model. See [52] for more details
about the incremental model update process.

Fig. 5 shows the high-level model for the configurations
in Fig. 3. The high-level model is updated with the four
new capabilities while the old capabilities associated with
the UserMgr component that are no longer present are re-
moved. In Fig. 5(b), additions are highlighted in bold, and
removals are shown in strikethrough. In the figure, all vari-
ables in the model are initialized to false and the proba-
bility associated with a goal capability 𝑔𝑖 is represented
by 𝑝𝑖. For readability, we omitted the negation of give up
from the transitions guards. For instance, the last transi-
tion in Fig. 5(b) basically represents the following transition:
(︀⌋︀ not 𝛿g17&g16 → p17 ∶ (g17 = ⊺) + (1 − p17) ∶ (𝛿g17 = ⊺).

5.2 Verification
We use our security model to perform quantitative security
threat analysis via probabilistic model checking. To tackle
the analysis complexity, verification of security properties is
performed against the high-level model. We express our secu-
rity properties in PCTL/𝑋 which is a subset of PCTL with
no next operator. We define an atomic proposition per goal
capability or give up variable (See Definition 5). Misusing
notation, we represent the atomic proposition that matches
a goal capability by the fragment from which the goal capa-
bility is derived. When a fragment is prefixed by ’Q’ then
we refer to the atomic proposition that matches the give_up
variable of the fragment. For example, the atomic proposition
ExploitedFrontendCWE77 represents the attacker gaining 𝑔5
in InsecureStore. We also define systemDown, a Boolean ex-
pression over atomic propositions which is defined per system
and represents the condition upon which the system can be

considered fully compromised to the extend that it can no
longer remain operational. We can express properties to as-
sess different security risks, e.g., (i) to determine the success
probability of different attacks to analyse their risks, (ii) the
probabilistic temporal dependencies among different threats
to identify the severity of exploiting vulnerabilities, (iii) the
probability of the system as a whole going down, etc. A few
examples of relevant properties on InsecureStore include:

(1) P=?(︀F systemDown⌋︀ to determine the probability that the
system will be compromised.

(2) P>0.8[F ExploitedFrontendCWE77] to check if the probabil-
ity that a the attacker will finally gain 𝑔5 by exploiting
cwe77 on the Frontend component is greater than 0.8.

(3) P=?(︀¬F ¬(QAttackBackendAuthbypass⇒ F systemDown)⌋︀
to find the probability that the system will be eventu-
ally be brought down even though the attacker gave
up on gaining 𝑔9.

6 SOUNDNESS
We prove that our approach is sound, i.e., the verification
results of a PCTL/𝑋 formula at the high-level model and
low-level model are identical. Let 𝒟ℓ = (𝑆ℓ, 𝑉ℓ, Σ, 𝑠0ℓ,Pℓ,ℒℓ)
be the semantics of the low-level model in terms of a DTMC,
and 𝒟ℎ = (𝑆ℎ, 𝑉ℎ, Σ, 𝑠0ℎ,Pℎ,ℒℎ) be the semantics of the
high-level layer where 𝑉ℎ ⊆ 𝑉ℓ. We will prove that for all
PCTL/𝑋 formulas 𝜓 defined over 𝑉ℎ, 𝒟ℓ ⊧ 𝜓 if and only if
𝒟ℎ ⊧ 𝜓. To prove this, we first show that 𝒟ℓ and 𝒟ℎ are
probabilistic weak bisimilar [3].

Definition 6 (Probabilistic Weak Bisimulation [3]). Let
𝒴(𝑠, 𝜏∗𝑎𝜏∗, 𝑡) be a function that shows the probability of
reaching the state 𝑡 from 𝑠 using internal actions 𝜏 and the
action 𝑎. A weak probabilistic bisimulation over the DTMC
𝒟 = (𝑆,𝑉, Σ, 𝑠0,P,ℒ) is an equivalence relation 𝑅 ⊆ 𝑆×𝑆 such
that for all (𝑠1, 𝑠2) ∈ 𝑅, 𝜆 ∈ Σ/{𝜏} ∪ {𝜀}, and all equivalence
classes 𝐶 ∈ 𝑆𝑅, 𝒴(𝑠1, 𝜏

∗𝜆𝜏∗,𝐶) = 𝒴(𝑠2, 𝜏
∗𝜆𝜏∗,𝐶).

Note that 𝜀 is an empty trace, 𝜀𝜋 = 𝜋, and 𝑆𝑅 shows
the set of equivalence classes defined by 𝑅. This relation
informally states that two probabilistic weak bisimilar states
have the same probability to reach an equivalence class. We
say two DTMCs 𝒟𝑖 = (𝑆𝑖, 𝑉𝑖, Σ𝑖, 𝑠0𝑖,P𝑖,ℒ𝑖), 𝑖 ∈ {1,2} are
probabilistic weak bisimilar, denoted by 𝒟1 ≈𝑝 𝒟2, if and
only if there exists a probabilistic weak bisimulation relation
𝑅 defined over their disjoint union such that (𝑠01, 𝑠02) ∈ 𝑅.
It has been proven that two probabilistic weak bisimilar
DTMCs coincide on PCTL/𝑋 [4]:

Theorem 1. Let 𝒟1 and 𝒟2 be two probabilistic weak bisimi-
lar DTMCs. For any PCTL/𝑋 formula 𝜓, 𝒟1 ⊧ 𝜓⇔𝒟2 ⊧ 𝜓.

Lemma 1. Let ℳ=ℳ0 ∥ ⋅ ⋅ ⋅ ∥ ℳ𝑛 be a low-level model, 𝒟𝑖

be the semantics of ℳ𝑖, 0 ≤ 𝑖 ≤ 𝑛, and 𝒟ℓ be the semantics
of ℳ. The fragment 𝒟𝑖 is probabilistic weak bisimilar to the
low-level model 𝒟ℓ, i.e., 𝒟𝑖 ≈𝑝 𝒟ℓ.

Lemma 2. The fragment 𝒟𝑖 = (𝑆𝑖, 𝑉𝑖, 𝑠0𝑖,P𝑖,ℒ𝑖) and the ab-
stract layer 𝒟ℎ = (𝑆ℎ, 𝑉ℎ, 𝑠0ℎ,Pℎ,ℒℎ) are probabilist weak
bisimilar, i.e., 𝒟ℎ ≈𝑝 𝒟𝑖.

1239

Compositional Security Analysis of Dynamic Component-based Systems ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Proof Sketch. To prove this theorem, we should find a
relation 𝑅 ⊆ 𝑆𝑖 × 𝑆ℎ that is a witnessing probabilistic weak
bisimulation relation. We will show that the following relation
is a witnessing weak bisimulation relation and (𝑠0𝑖, 𝑠0ℎ) ∈ 𝑅:

𝑅 = {∐︀𝑠, 𝑠′̃︀ ⋃︀ 𝑠 ={𝛿𝑖,𝑔𝑖} 𝑠′}.

where 𝛿𝑖 and 𝑔𝑖 are respectively the give up and goal capabil-
ity of fragment 𝒟𝑖. The proof is similar to that of Lemma 1,
with the difference that we use the fact that the sum of the
probabilities of all paths to a goal state 𝑠′ where 𝑔𝑖 ∈ ℒ𝑖(𝑠′)
is equal to P=?(︀𝐹 𝑔𝑖⌋︀ according to the semantics of PCTL. ◻

Theorem 2. The low-level model 𝒟ℓ and the abstract layer
𝒟ℎ are probabilistic weak bisimilar, i.e., 𝒟ℎ ≈𝑝 𝒟ℓ.

Proof. Since probabilistic weak bisimulation is an equiva-
lence relation, it is also transitive. Hence, we conclude 𝒟ℎ ≈𝑝

𝒟ℓ from 𝒟ℎ ≈𝑝 𝒟𝑖 (Lemma 2) and 𝒟𝑖 ≈𝑝 𝒟ℓ (Lemma 1). □

Theorem 3 (Soundness). For all PCTL/𝑋 formulas 𝜓, 𝒟ℓ ⊧ 𝜓
iff 𝒟ℎ ⊧ 𝜓.

Proof. Since 𝒟ℓ ≈𝑝 𝒟ℎ according to Theorem 2 and
probabilistic weak bisimulation coincides with equivalence for
PCTL/𝑋 according to Theorem 1, we can conclude 𝒟ℓ ⊧ 𝜓
iff 𝒟ℎ ⊧ 𝜓 for any PCTL/𝑋 formula 𝜓. □

Theorem 3 proves the soundness of our approach.

7 EVALUATION
To study the scalability of our approach, we have conducted
a set of experiments on ZNN1, a well known self-adaptive
exemplar (See [52] for more experiments on an additional
case study). It is an implementation of a news service im-
plemented in a client-server architecture. ZNN’s components
include a set of servers managed by a load balancer that
acts as a middle point to facilitate communication between
the servers and clients. News are stored in a database and
fetched periodically by the servers. The adaptation opera-
tions include enabling or disabling a server, and increasing
or decreasing fidelity of one or multiple servers. For vulnera-
bility scanning, we employed Progpilot42 and OpenVAS3 to
scan ZNN’s attack surface which collectively discovered 54
vulnerabilities. ZNN is equipped with multiple adaptation
strategies. We selected three among them that cover a vary-
ing number of changes to the system architecture to use in
our experiments. ImproveOverallFidelity (A1) increases the
system fidelity by increasing the fidelity of all servers whose
fidelity is below a threshold. QuickReduceOverallCost (A2)
will remove a server from the system if its cost is above a
certain threshold. VariedReduceResponseTime (A3) adds a
server to the server pool and then lowers fidelity to reduce
response time.

1https://github.com/cmu-able/znn
2https://github.com/designsecurity/progpilot
3http://www.openvas.org/

Experiment Design. We consider three different types of
security analysis. In the first type, called sequential analysis,
there is no modularity, i.e., the analysis is performed on the
low-level model. This base analysis is similar to the analysis
performed in [53]. In the modular analysis case, we follow the
modular model construction and analysis approach presented
in Section 5. We do not, however, perform any incremental
model update and verification. In the incremental analysis
case, we perform modular model generation during the system
initialization and perform incremental model update and
verification upon an architectural change at runtime. We
design experiments to answer the following questions:
RQ1: How do the three analyses compare in terms of scala-

bility and performance overhead?
RQ2: How do the different steps of the approach compare in

terms of their performance overhead?
To analyze scalability, we study how different analysis

approaches perform under different initial system sizes and
how they handle different numbers of architectural changes.
We perform experiments with different numbers of initial
components and different adaptations. We consider an initial
size of 4, 6, 8, 10, 12 and 16 components. Further, we report
the interesting part of our results for brevity without loss of
generality, i.e., in some cases the data is partially reported in
the tables. The reason for considering different adaptations
is to study how the scope of changes affects performance. In
the rest of this section, we will refer to a specific experiment
by the number of its initial components and adaptation,
for example, 12-A2 refers to the experiment in which we
perform the adaptation actions associated with A2 on ZNN
for 12 components. The experiments are performed on an
Intel(R) Core(TM) i5-8265U CPU processor with 16GB of
RAM running Debian Linux. We use the model checker
PRISM version 4.7. In the following results, an experiment
corresponds to one run of our runtime analysis triggered due
to an adaptation. Each experiment was repeated five times
4. We verify the property P=?(︀F SystemDown⌋︀ unless stated
otherwise. SystemDown expands to the load balancer or any
of the servers being affected by an attack.

Model Statistics. In our experiments, there are 4 to 16
components and 24 to 151 fragments. Figure 6 shows the
number of states and transitions of the high-level model and
the low-level model vs the number of the components of the
initial architecture. The y axis uses a logarithmic scale which
entails that the growth rate of both the number of states and
number of transitions is almost exponential. As the number of
components grows, so do the number of states and transitions
of the models. Further, the low-level model failed to be built
due to state space explosion in the four architectures marked
with an X in Figure 6. The state size of the high-level model
is smaller, as it abstracts away the internal capabilities of
the low-level model. The large number of states, even for

4The full set of results alongside a virtual machine containing our
implementation and experiments is available at https://doi.org/10.
5281/zenodo.11524518.

1240

https://doi.org/10.5281/zenodo.11524518
https://doi.org/10.5281/zenodo.11524518

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Narges Khakpour and Charilaos Skandylas

4 6 8 10 12 14 16
100

104

108

1012

1016

#Initial Components

HL states HL transitions
LL states LL transitions
LL OOM

Figure 6: State space statistics

architectures with a small number of components, is due to
the multiple vulnerabilities present in the components.

Table 1: Analysis time of the different approaches
#C #A #F Security Model

Construction
(s)

Property Verifi-
cation (s)

Total Time (s)

Seq Mod Inc Seq Mod Inc Seq Mod Inc

4

A1 24 1.36 3.83 2.37 0.01 0.003 0.003 1.37 3.83 2.37
A2 24 0.54 3.60 0.59 0.01 0.003 0.003 0.55 3.60 0.59
A3 31 0.54 4.28 3.13 0.01 0.003 0.003 0.55 4.28 3.13

12

A1 104 OOM 24.52 17.26 OOM 5.93 2.14 OOM 30.45 19.40
A2 104 OOM 24.53 9.94 OOM 6.46 1.40 OOM 30.99 11.34
A3 111 OOM 27.13 17.59 OOM 5.98 6.30 OOM 33.11 23.89

16

A1 144 OOM 40.07 33.61 OOM 1382.76 612.87 OOM 1422.83 646.48
A2 144 OOM 39.01 18.86 OOM 1401.8 551.18 OOM 1441.81 570.04
A3 151 OOM 38.80 33.66 OOM 1418.16 1374.43 OOM 1456.97 1408.09

Performance Analysis. Table 1 shows the analysis time for
the sequential, modular and incremental analyses with respect
to the number of initial components (#C), the adaptation
scenario (#A) and the number of fragments after adaptation
(#F). The security model construction column shows the
time required to construct the whole security model, the next
column gives the time for verifying the user property and the
last column shows the total time. There are multiple cases
where our model checker ran out of memory, which is marked
with OOM in the table. Note that the number of fragments
being the same does not entail that no changes were performed
or that the resulting architectures are identical.

Table 2: Security model construction time per task
#C #A #F Fragment Graphs

Generation (s)
Fragment Models
Construction (s)

High-level
Model Con-
struction (s)

Seq Mod Inc Seq Mod Inc Mod Inc

4

A1 24 0.19 0.53 0.80 1.17 2.97 1.23 0.33 0.33
A2 24 0.12 0.45 0.22 0.43 2.80 0.03 0.35 0.34
A3 31 0.12 0.41 0.59 0.43 3.34 2.07 0.34 0.46

12

A1 104 0.15 6.15 4.22 OOM 17.52 12.01 0.82 0.74
A2 104 0.14 3.25 3.65 OOM 20.46 5.55 0.81 0.73
A3 111 0.15 5.15 5.61 OOM 21.12 11.00 0.84 0.83

16

A1 144 0.19 11.45 12.95 OOM 23.52 17.97 5.08 2.72
A2 144 0.17 10.33 8.56 OOM 24.50 6.72 5.17 3.5
A3 151 0.18 8.69 9.93 OOM 24.86 18.58 5.25 5.14

RQ1-1: Scalability. The first part of RQ1 which refers to
the scalability of different analyses is addressed by Figure 6.
Our results show that our approach can be used for small to
medium-sized applications with up to a few tens of compo-
nents. The results indicate that both the modular and the
incremental analyses outperform the sequential one, notice-
ably reducing the model size to be verified, as the number of

components grows from small-sized to medium-sized systems.
For example, the number of states in the high-level model
is reduced to 2 × 103 from 4.5 × 108 states in the case of 8
components. Note that the scale in Figure 6 is logarithmic,
hence, the number of states and the number of transitions
almost grows exponentially. In other words, our modular and
incremental analyses can handle systems with a significantly
larger state space compared to the sequential approach.

RQ1-2: Performance Overhead of different analyses. In
terms of performance overhead of different approaches, i.e.,
the second part of RQ1, when the number of fragments is
small, the sequential analysis outperforms the modular ap-
proach due to the overhead of building multiple fragment
graphs in addition to building the high-level model by per-
forming verification on the fragment models of the low-level
model according to Table 1. The incremental analysis can
be competitive in terms of performance with the sequential
one when the number of changes to the system is small, as
shown in 4-A2. As the number of fragments grows, the situa-
tion is reversed and the modular and incremental analyses
outperform the sequential one. When the number of changes
to the system is relatively small, the incremental analysis
also outperforms the modular analysis. Conversely, when a
large number of architectural changes occur between two
analysis steps, in some cases, the bookkeeping and extra anal-
ysis steps required for the incremental analysis incur a slight
performance overhead compared to the modular analysis.

RQ2: Performance Overhead of the Analysis Steps. As
shown in Table 2, for sequential analysis, the majority of
the analysis time is devoted to the low-level model construc-
tion and verification. All verification is done on the low-level
model, the state space of which grows exponentially. For
modular analysis, when the number of fragments is small, the
construction and verification of the fragment models is the
major contributing factor to the analysis time. As the number
of fragments grows, the construction and verification of the
high-level model affects the analysis time more. Two factors
contribute to this outcome: (i) the states of the high-level
model also grow exponentially, while the average number of
states per fragment remain rather constant and (ii) the frag-
ment graph generation and low-level model generation and
verification are performed in parallel. Conversely, the high-
level model is a single model the verification of which is not
parallelized. The incremental analysis shares its performance
overhead characteristics with the modular analysis, except,
its low-level model construction and generation performance
is improved due to the fact that it reuses past results.

Incremental vs Modular analyses. The modular analysis
does not require to maintain the past runtime architectural
models, in contrast to the incremental analysis that requires
this model and the past analysis results. Hence, in case of
small changes to the architecture, the incremental analysis
will perform better than the modular one by largely reusing
the old results. However, the extra bookeeping costs can incur
a performance loss in case of large architectural changes.

1241

Compositional Security Analysis of Dynamic Component-based Systems ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Threats to Validity and Applicability. The system archi-
tecture, its existing vulnerabilities and the ruleset used to
generate attacks and their effects impact the analysis results.
Hence, alterations in the architectural style or vulnerability
and ruleset density of the systems analyzed might yield dif-
ferent results. We believe that further experimentation with
different architectures and rule inputs is required to better
evaluate the effectiveness of our approach and its applicability
to larger systems. The main threats to the applicability of our
approach include: (i) reasoning only about known knowledge,
i.e., we are unable to reason about unknown vulnerabilities
or attacks, and (ii) proper setting of probabilities.

8 RELATED WORK
Modular information flow control [14] approaches ensure
properties independently on each fragment of the program,
protocol or software system. The enforced properties are then
proven to be preserved at the whole program [47], protocol [1]
or system level [58]. Information flow control approaches
have also been proposed for component-based system se-
curity. In [49], the authors present a model-driven security
framework to design and implement secure-by-construction
component-based systems. Greiner et al. [26, 27], propose
an approach for modular verification using dependency clus-
ters, i.e., equivalence relations used to compositionally verify
non-interference properties system-wide in a service-based
system by composing simpler non-interfering services. The
above approaches design secure-by-construction systems with
a static architecture; they have not been designed with dy-
namic software architectures or evolving systems in mind,
i.e., the compositionality of services and behaviors might not
be maintained once the architecture changes.

Nejati et al. [42] provide a review of approaches to tackle
state space explosion in component-based system verification.
In [7], the authors use a contract-based design to specify cor-
rect interactions between modules and incrementally verify
changes. In [32], the authors combine compositional veri-
fication and assume-guarantee reasoning with incremental
verification to analyse component-based systems whose com-
ponents and structure change dynamically at runtime. The
authors in [60] present a modular and incremental approach
to verify that adaptive programs adhere to requirements
specified in A-LTL. The authors in [50] propose an approach
based on assume-guarantee reasoning to verify adaptive em-
bedded systems under environment constraints. The author
in [33] proposes a modular symbolic method to synthesize
a controller to support adaptations under partial observa-
tions and enforce safety properties. The above approaches
aim for verification of functional or safety properties and do
not concern themselves with security. Our work focuses on
verification of probabilistic behaviors and is able to model
and analyze the security of a dynamic systems at runtime.

In the context of component-based systems [11], runtime
verification has been employed to check whether a component-
based system adheres to its specification at runtime [19, 21].
In dynamically reconfigurable architectures and self-adaptive

systems [15, 40, 55] verification has been employed to check
whether reconfigurations or adaptations of the system ar-
chitecture adhere to functional constraints. Filieri et al. [23]
discuss and compare two parametric model checking ap-
proaches [13, 22] to improve the performance of verifying
(R-)PTCL properties on DTMCs at runtime in self-adaptive
systems. Parametric approaches require that the PCTL prop-
erties are known at design time so that precomputation is
possible. In our approach, the security properties need not be
known at design time and can be adjusted dynamically as the
system evolves to accommodate new security requirements
that might arise due to evolution. The above approaches aim
to either check or ensure functional correctness and do not
consider security. In contract to this paper, they verify the
system behavior against given properties while we perform
threat analysis by analyzing the attacker’s behavior.

Runtime security analysis techniques often utilize runtime
monitoring [20], to check if a specification is satisfied by the
current execution or not [16, 31, 59], while we focus on threat
analysis to compute security risks. Since these approaches
check only one execution, their analysis results are incomplete.
We perform full analysis at runtime, and consider all possible
executions, which potentially leads to a higher performance
overhead. Khakpour et al. [35] present a method to perform
quantitative security risk assessment on adaptations consid-
ering dependencies of components vulnerabilities, which is
informal in contrast to our approach. Skandylas et.al [53],
model check security threats of a self-adaptive system during
adaptation using UPPAAL [8]. The main goal of [53] was to
analyze the security of all adaptation options in the system
and select the most secure adaptation to reduce the exposed
adaptation surface. They perform the verification on a model
that corresponds to the low-level layer of our security model.
However, this approach suffers from scalability issues.

9 CONCLUSION
In this paper, we proposed an automated approach for scal-
able security analysis of component-based systems with dy-
namic architectures. We exploited the power of formal ab-
straction and modular verification to build a two-tier proba-
bilistic security model, which is maintained at runtime and
incrementally updated. Security properties are then verified
against the top abstract model for threat analysis. As future
work, we plan to incorporate attack mitigation techniques
into our approach by designing countermeasures that can be
evaluated and applied at runtime. We also aim to investigate
other techniques, e.g., assume-guarantee reasoning [37], hier-
archical modeling and analysis [30] or improving our attack
partitioning algorithm, to further improve the scalability of
our approach to analyze larger systems.

Acknowledgment. The first author is supported by the UK
Engineering and Physical Sciences Research Council (EPSRC)
through the grant EP/X037274/1.

1242

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Narges Khakpour and Charilaos Skandylas

REFERENCES
[1] Suzana Andova, Cas Cremers, Kristian Gjøsteen, Sjouke Mauw,

Stig Fr. Mjølsnes, and Sasa Radomirovic. A framework for com-
positional verification of security protocols. Inf. Comput., 206(2-
4):425–459, 2008.

[2] Kallol Bagchi and Godwin Udo. An analysis of the growth of
computer and internet security breaches. Communications of the
Association for Information Systems, 12:684–700, 2003.

[3] Christel Baier and Holger Hermanns. Weak bisimulation for
fully probabilistic processes. In Orna Grumberg, editor, Com-
puter Aided Verification, 9th International Conference, CAV

’97, Haifa, Israel, June 22-25, 1997, Proceedings, volume 1254
of Lecture Notes in Computer Science, pages 119–130. Springer,
1997.

[4] Christel Baier, Joost-Pieter Katoen, Holger Hermanns, and Verena
Wolf. Comparative branching-time semantics for markov chains.
Inf. Comput., 200(2):149–214, 2005.

[5] David A. Basin, Felix Klaedtke, and Samuel Müller. Monitor-
ing security policies with metric first-order temporal logic. In
James B. D. Joshi and Barbara Carminati, editors, 15th ACM
Symposium on Access Control Models and Technologies, SAC-
MAT 2010, Pittsburgh, Pennsylvania, USA, June 9-11, 2010,
Proceedings, pages 23–34. ACM, 2010.

[6] Andreas Bauer, Jan-Christoph Küster, and Gil Vegliach. Run-
time verification meets android security. In Alwyn Goodloe and
Suzette Person, editors, NASA Formal Methods - 4th Interna-
tional Symposium, NFM 2012, Norfolk, VA, USA, April 3-5,
2012. Proceedings, volume 7226 of Lecture Notes in Computer
Science, pages 174–180. Springer, 2012.

[7] Yosab Bebawy, Houssem Guissouma, Sebastian Vander Maelen,
Janis Kröger, Georg Hake, Ingo Stierand, Martin Fränzle, Eric
Sax, and Axel Hahn. Incremental contract-based verification of
software updates for safety-critical cyber-physical systems. In
2020 International Conference on Computational Science and
Computational Intelligence (CSCI), pages 1708–1714, 2020.

[8] Johan Bengtsson and Wang Yi. Timed automata: Semantics, al-
gorithms and tools. In Jörg Desel, Wolfgang Reisig, and Grzegorz
Rozenberg, editors, Lectures on Concurrency and Petri Nets,
Advances in Petri Nets [This tutorial volume originates from
the 4th Advanced Course on Petri Nets, ACPN 2003, held in
Eichstätt, Germany in September 2003. In addition to lectures
given at ACPN 2003, additional chapters have been commis-
sioned], volume 3098 of Lecture Notes in Computer Science,
pages 87–124. Springer, 2003.

[9] Saddek Bensalem, Marius Bozga, Axel Legay, Thanh-Hung
Nguyen, Joseph Sifakis, and Rongjie Yan. Component-based
verification using incremental design and invariants. Softw. Syst.
Model., 15(2):427–451, 2016.

[10] Sergey Berezin, Sérgio Vale Aguiar Campos, and Edmund M.
Clarke. Compositional reasoning in model checking. In Willem P.
de Roever, Hans Langmaack, and Amir Pnueli, editors, Composi-
tionality: The Significant Difference, International Symposium,
COMPOS’97, Bad Malente, Germany, September 8-12, 1997.
Revised Lectures, volume 1536 of Lecture Notes in Computer
Science, pages 81–102. Springer, 1997.

[11] Alan W. Brown and Kurt C. Wallnau. Engineering of component-
based systems. In 2nd IEEE International Conference on Engi-
neering of Complex Computer Systems (ICECCS ’96), 21-25
October 1996, Montreal, Canada, pages 414–422. IEEE Computer
Society, 1996.

[12] XM Cyber. The state of exposure management in
2023, 2023. https://info.xmcyber.com/hubfs/The%
20State%20of%20Exposure%20Management%202023%20-
%20XM%20Cyber%20-%20Research%20Report.pdf.

[13] Conrado Daws. Symbolic and parametric model checking of
discrete-time markov chains. In Zhiming Liu and Keijiro Araki,
editors, Theoretical Aspects of Computing - ICTAC 2004, pages
280–294, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[14] Dorothy E. Denning. A lattice model of secure information flow.
Commun. ACM, 19(5):236–243, 1976.

[15] Julien Dormoy, Olga Kouchnarenko, and Arnaud Lanoix. Runtime
verification of temporal patterns for dynamic reconfigurations of
components. In Farhad Arbab and Peter Csaba Ölveczky, edi-
tors, Formal Aspects of Component Software - 8th International
Symposium, FACS 2011, Oslo, Norway, September 14-16, 2011,
Revised Selected Papers, volume 7253 of Lecture Notes in Com-
puter Science, pages 115–132. Springer, 2011.

[16] Denis Efremov and Ilya V. Shchepetkov. Runtime verification of
linux kernel security module. CoRR, abs/2001.01442, 2020.

[17] Simon Yusuf Enoch, Zhibin Huang, Chun Yong Moon, Donghwan
Lee, Myung Kil Ahn, and Dong Seong Kim. Harmer: Cyber-
attacks automation and evaluation. IEEE Access, 8:129397–
129414, 2020.

[18] G. Fairbanks and David Garlan. Just Enough Software Archi-
tecture: A Risk-Driven Approach. Boulder, CO : Marshall &
Brainerd, 01 2010.

[19] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. Run-
time verification of safety-progress properties. In Saddek Bensalem
and Doron A. Peled, editors, Runtime Verification, 9th Interna-
tional Workshop, RV 2009, Grenoble, France, June 26-28, 2009.
Selected Papers, volume 5779 of Lecture Notes in Computer
Science, pages 40–59. Springer, 2009.

[20] Yliès Falcone, Klaus Havelund, and Giles Reger. A tutorial on
runtime verification. In Manfred Broy, Doron A. Peled, and
Georg Kalus, editors, Engineering Dependable Software Systems,
volume 34 of NATO Science for Peace and Security Series, D:
Information and Communication Security, pages 141–175. IOS
Press, 2013.

[21] Yliès Falcone, Mohamad Jaber, Thanh-Hung Nguyen, Marius
Bozga, and Saddek Bensalem. Runtime verification of component-
based systems in the BIP framework with formally-proved sound
and complete instrumentation. Softw. Syst. Model., 14(1):173–
199, 2015.

[22] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. Run-
time efficient probabilistic model checking. In 2011 33rd Inter-
national Conference on Software Engineering (ICSE), pages
341–350, 2011.

[23] Antonio Filieri and Giordano Tamburrelli. Probabilistic Verifica-
tion at Runtime for Self-Adaptive Systems, pages 30–59. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[24] David Garlan, Robert T Monroe, and David Wile. Acme: Archi-
tectural description of component-based systems. Foundations
of component-based systems, 68:47–68, 2000.

[25] Jaco Geldenhuys and Antti Valmari. Tarjan’s algorithm makes on-
the-fly LTL verification more efficient. In Kurt Jensen and Andreas
Podelski, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 10th International Conference, TACAS
2004, Held as Part of the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2004, Barcelona, Spain,
March 29 - April 2, 2004, Proceedings, volume 2988 of Lecture
Notes in Computer Science, pages 205–219. Springer, 2004.

[26] Simon Greiner and Daniel Grahl. Non-interference with what-
declassification in component-based systems. In IEEE 29th Com-
puter Security Foundations Symposium, CSF 2016, Lisbon, Por-
tugal, June 27 - July 1, 2016, pages 253–267. IEEE Computer
Society, 2016.

[27] Simon Greiner, Martin Mohr, and Bernhard Beckert. Modular ver-
ification of information flow security in component-based systems.
In Alessandro Cimatti and Marjan Sirjani, editors, Software En-
gineering and Formal Methods - 15th International Conference,
SEFM 2017, Trento, Italy, September 4-8, 2017, Proceedings,
volume 10469 of Lecture Notes in Computer Science, pages 300–
315. Springer, 2017.

[28] Hans Hansson and Bengt Jonsson. A logic for reasoning about
time and reliability. Formal Aspects Comput., 6(5):512–535, 1994.

[29] Andrew Hinton, Marta Z. Kwiatkowska, Gethin Norman, and
David Parker. PRISM: A tool for automatic verification of proba-
bilistic systems. In Holger Hermanns and Jens Palsberg, editors,
Tools and Algorithms for the Construction and Analysis of Sys-
tems, 12th International Conference, TACAS 2006 Held as Part
of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2006, Vienna, Austria, March 25 - April 2,
2006, Proceedings, volume 3920 of Lecture Notes in Computer
Science, pages 441–444. Springer, 2006.

[30] Jin B. Hong and Dong Seong Kim. Scalable security analysis
in hierarchical attack representation model using centrality mea-
sures. In 43rd Annual IEEE/IFIP Conference on Dependable
Systems and Networks Workshop, DSN Workshops 2013, Bu-
dapest, Hungary, June 24-27, 2013, pages 1–8. IEEE Computer
Society, 2013.

[31] Hejiao Huang and Hélène Kirchner. Formal specification and
verification of modular security policy based on colored petri nets.
IEEE Trans. Dependable Secur. Comput., 8(6):852–865, 2011.

[32] Kenneth Johnson, Radu Calinescu, and Shinji Kikuchi. An in-
cremental verification framework for component-based software

1243

https://info.xmcyber.com/hubfs/The%20State%20of%20Exposure%20Management%202023%20-%20XM%20Cyber%20-%20Research%20Report.pdf
https://info.xmcyber.com/hubfs/The%20State%20of%20Exposure%20Management%202023%20-%20XM%20Cyber%20-%20Research%20Report.pdf
https://info.xmcyber.com/hubfs/The%20State%20of%20Exposure%20Management%202023%20-%20XM%20Cyber%20-%20Research%20Report.pdf

Compositional Security Analysis of Dynamic Component-based Systems ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

systems. In Philippe Kruchten, Dimitra Giannakopoulou, and
Massimo Tivoli, editors, CBSE’13, Proceedings of the 16th ACM
SIGSOFT Symposium on Component Based Software Engineer-
ing, part of Comparch ’13, Vancouver, BC, Canada, June 17-21,
2013, pages 33–42. ACM, 2013.

[33] Narges Khakpour. Control of self-adaptation under partial ob-
servation: A modular approach. In Antónia Lopes and Rogério
de Lemos, editors, Software Architecture - 11th European Con-
ference, ECSA 2017, Canterbury, UK, September 11-15, 2017,
Proceedings, volume 10475 of Lecture Notes in Computer Science,
pages 112–119. Springer, 2017.

[34] Narges Khakpour. A field-sensitive security monitor for object-
oriented programs. Comput. Secur., 108:102349, 2021.

[35] Narges Khakpour, Charilaos Skandylas, Goran Saman Nariman,
and Danny Weyns. Towards secure architecture-based adaptations.
In Marin Litoiu, Siobhán Clarke, and Kenji Tei, editors, Proceed-
ings of the 14th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems, SEAMS@ICSE
2019, Montreal, QC, Canada, May 25-31, 2019, pages 114–125.
ACM, 2019.

[36] Marta Kwiatkowska, Gethin Norman, and David Parker. Proba-
bilistic Model Checking: Advances and Applications, pages 73–
121. Springer International Publishing, Cham, 2018.

[37] Marta Kwiatkowska, Gethin Norman, David Parker, and
Hongyang Qu. Assume-guarantee verification for probabilistic
systems. In Javier Esparza and Rupak Majumdar, editors, Tools
and Algorithms for the Construction and Analysis of Systems,
pages 23–37, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[38] Kung-Kiu Lau, Keng-Yap Ng, Tauseef Rana, and Cuong M. Tran.
Incremental construction of component-based systems. In Vin-
cenzo Grassi, Raffaela Mirandola, Nenad Medvidovic, and Mag-
nus Larsson, editors, Proceedings of the 15th ACM SIGSOFT
Symposium on Component Based Software Engineering, CBSE
2012, part of Comparch ’12 Federated Events on Component-
Based Software Engineering and Software Architecture, Berti-
noro, Italy, June 25-28, 2012, pages 41–50. ACM, 2012.

[39] Martin Leucker and Christian Schallhart. A brief account of run-
time verification. J. Log. Algebraic Methods Program., 78(5):293–
303, 2009.

[40] Diego Marmsoler and Ana Petrovska. Runtime verification for
dynamic architectures. J. Log. Algebraic Methods Program.,
118:100618, 2021.

[41] Robert Martin and Sean Barnum. Software security knowledge:
Cwe. knowing what could make software vulnerable to attack. In
Conference: 23rd Systems and Software Technology Conference
(SSTC), pages 0–62, 05 2011.

[42] Faranak Nejati, Abdul Azim Abdul Ghani, Keng-Yap Ng, and
Azmi Bin Jafaar. Handling state space explosion in component-
based software verification: A review. IEEE Access, 9:77526–
77544, 2021.

[43] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A scalable
approach to attack graph generation. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, Proceed-
ings of the 13th ACM Conference on Computer and Communi-
cations Security, CCS 2006, Alexandria, VA, USA, October 30
- November 3, 2006, pages 336–345. ACM, 2006.

[44] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel.
Mulval: A logic-based network security analyzer. In Patrick D.
McDaniel, editor, Proceedings of the 14th USENIX Security
Symposium, Baltimore, MD, USA, July 31 - August 5, 2005.
USENIX Association, 2005.

[45] Anand Bhushan Pandey, Ashish Tripathi, and Prem Chand
Vashist. A Survey of Cyber Security Trends, Emerging Tech-
nologies and Threats, pages 19–33. Springer Singapore, Singapore,
2022.

[46] Amir Pnueli. In transition from global to modular temporal
reasoning about programs. In Krzysztof R. Apt, editor, Logics and
Models of Concurrent Systems - Conference proceedings, Colle-
sur-Loup (near Nice), France, 8-19 October 1984, volume 13 of
NATO ASI Series, pages 123–144. Springer, 1984.

[47] Adi Prabawa, Mahmudul Faisal Al Ameen, Benedict Lee, and
Wei-Ngan Chin. A logical system for modular information flow
verification. In Isil Dillig and Jens Palsberg, editors, Verifica-
tion, Model Checking, and Abstract Interpretation - 19th In-
ternational Conference, VMCAI 2018, Los Angeles, CA, USA,
January 7-9, 2018, Proceedings, volume 10747 of Lecture Notes
in Computer Science, pages 430–451. Springer, 2018.

[48] Michael Riegler, Johannes Sametinger, Michael Vierhauser, and
Manuel Wimmer. A model-based mode-switching framework
based on security vulnerability scores. Journal of Systems and
Software, 200:111633, 2023.

[49] Najah Ben Said, Takoua Abdellatif, Saddek Bensalem, and Marius
Bozga. Model-driven information flow security for component-
based systems. In Saddek Bensalem, Yassine Lakhnech, and Axel
Legay, editors, From Programs to Systems. The Systems perspec-
tive in Computing - ETAPS Workshop, FPS 2014, in Honor of
Joseph Sifakis, Grenoble, France, April 6, 2014. Proceedings,
volume 8415 of Lecture Notes in Computer Science, pages 1–20.
Springer, 2014.

[50] Ina Schaefer and Arnd Poetzsch-Heffter. Model-based verification
of adaptive embedded systems under environment constraints.
SIGBED Rev., 6(3):9, 2009.

[51] Stefan Schwoon and Javier Esparza. A note on on-the-fly veri-
fication algorithms. In Nicolas Halbwachs and Lenore D. Zuck,
editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems, 11th International Conference, TACAS 2005,
Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8,
2005, Proceedings, volume 3440 of Lecture Notes in Computer
Science, pages 174–190. Springer, 2005.

[52] Charilaos Skandylas. Design and Analysis of Self-protection :
Adaptive Security for Software Systems. PhD thesis, Linnaeus
University, Department of computer science and media technology
(CM), 2023.

[53] Charilaos Skandylas and Narges Khakpour. Design and imple-
mentation of self-protecting systems: A formal approach. Future
Gener. Comput. Syst., 115:421–437, 2021.

[54] George Spanoudakis, Christos Kloukinas, and Kelly Androut-
sopoulos. Towards security monitoring patterns. In Yookun
Cho, Roger L. Wainwright, Hisham Haddad, Sung Y. Shin, and
Yong Wan Koo, editors, Proceedings of the 2007 ACM Sympo-
sium on Applied Computing (SAC), Seoul, Korea, March 11-15,
2007, pages 1518–1525. ACM, 2007.

[55] Gabriel Tamura, Norha M. Villegas, Hausi A. Müller, João Pedro
Sousa, Basil Becker, Gabor Karsai, Serge Mankovski, Mauro Pezzè,
Wilhelm Schäfer, Ladan Tahvildari, and Kenny Wong. Towards
practical runtime verification and validation of self-adaptive soft-
ware systems. In Rogério de Lemos, Holger Giese, Hausi A. Müller,
and Mary Shaw, editors, Software Engineering for Self-Adaptive
Systems II - International Seminar, Dagstuhl Castle, Germany,
October 24-29, 2010 Revised Selected and Invited Papers, vol-
ume 7475 of Lecture Notes in Computer Science, pages 108–132.
Springer, 2010.

[56] Veracode. Unveiling the state of software security in the public
sector, 2023. https://www.veracode.com/sites/default/files/
pdf/resources/reports/veracode-state-of-software-security-2023-
public-sector.pdf.

[57] Brandon Wang, Xiaoye Li, Leandro P. de Aguiar, Daniel S.
Menasche, and Zubair Shafiq. Characterizing and modeling patch-
ing practices of industrial control systems. Proc. ACM Meas.
Anal. Comput. Syst., 1(1), jun 2017.

[58] Mingdi Xu, Zhaoyang Jin, Fan Zhang, and Feng Cui. Information
flow-based security construction for compositional interface au-
tomata. In Trusted Computing and Information Security, pages
31–43, Singapore, 2020. Springer Singapore.

[59] Fadi Yilmaz and Meera Sridhar. A survey of in-lined refer-
ence monitors: Policies, applications and challenges. In 16th
IEEE/ACS International Conference on Computer Systems and
Applications, AICCSA 2019, Abu Dhabi, UAE, November 3-7,
2019, pages 1–8. IEEE Computer Society, 2019.

[60] Ji Zhang, Heather Goldsby, and Betty H. C. Cheng. Modular
verification of dynamically adaptive systems. In Kevin J. Sullivan,
Ana Moreira, Christa Schwanninger, and Jeff Gray, editors, Pro-
ceedings of the 8th International Conference on Aspect-Oriented
Software Development, AOSD 2009, Charlottesville, Virginia,
USA, March 2-6, 2009, pages 161–172. ACM, 2009.

1244

https://www.veracode.com/sites/default/files/pdf/resources/reports/veracode-state-of-software-security-2023-public-sector.pdf
https://www.veracode.com/sites/default/files/pdf/resources/reports/veracode-state-of-software-security-2023-public-sector.pdf
https://www.veracode.com/sites/default/files/pdf/resources/reports/veracode-state-of-software-security-2023-public-sector.pdf

