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What Has Defined Visual SLAM for me?

@ Closed loop estimation, predictive, efficient.

@ Live demos!

@ Focus on a single visual sensor in a small area; drift-free,
consistent localisation.

@ Many possible applications easily apparent.

@ Commodity hardware (cameras and processors); open

source software.

@ | believe that this research is evolving towards general
real-time spatial perception (but that it’s still SLAM!)



My Pre-2000 Visual SLAM Work

@ SLAM with Active Vision (with David Murray, Oxford). 5Hz
real-time loop on a 100MHz PC:
Predict, move, measure, update.

@ Generalised system at AIST, Japan and first SceneLib
open source code.




Earlier Inspirations and Building Blocks

@ DROID (Harris, late 1980s, feature-based VO)

@ Off-line SFM moving towards sequence processing (e.g.
Fitzgibbon, Pollefeys).

@ EKF SLAM with non-visual sensors (Durrant-Whyte,
Leonard, etc.).

@ Laser scan matching (e.g. Gutmann and Konolige).

@ The mobile robotics community had almost completely
turned away from vision.

@ The computer vision community had almost completely
turned away from real-time and robotics.




The Move to 3D Monocular SLAM

@ Chiuso, Favaro, Jin, Soatto MfM sequential SFM 2000

@ My work on 3D motion of a wheeled robot; experiments
with general 3D tracking.




Key Applications for Single Sensor SLAM

@ Low-cost robotics.

@ Agile robotics (e.g. MAV).

@ Smartphone/personal/wearable.

@ AR/VR inside-out tracking; gaming.



MonoSLAM: Sparse Feature-Based SLAM (2003)

@ EKF estimation; sparse map of high quality features; tight
measurement loop with active prediction. Solid 30FPS
performance on a laptop. Collaboration with lan Reid, Nick
Molton, Walterio Mayol and others.

@ Live demos at ICCV 2003, ISMAR 2003, CVPR 2004,
BMVC 2004, many others.

@ Thanks particularly to Walterio Mayol and ISMAR for
pushing me to demo it.



Intermediate Years

?

I

2003/4 Nister Visual Odometry (joint CVPR 2005 Tutorial).
2003 Jung and Lacroix aerial SLAM.

2005 Pupilli and Calway (particle filter) + other Bristol work.
2005 Robert Sim RBPF visual SLAM.

2006—2008 with Montiel, Civera et al.Zaragoza Inverse
depth features and better parameterisation.



Towards Large Scale Consistent Mapping

@ 2006 Ho and Newman; then Cummins and Newman
FAB-MAP: image retrieval for loop closure detection.
@ 2006 SLAM Summer School: real joining of graph/BA

optimisation methods into SLAM; particular Dellaert and
Konolige.



Big Improvements in Small Local Monocular SLAM
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@ 2007 Relocalisation in MonoSLAM (Williams, Klein, Reid).
@ 2007 PTAM, Klein and Murray.

@ 2007 Eade and Drummond, information filter method.

@ MonoSLAM clearly beaten by PTAM!



Visual SLAM Becomes Well Defined; some Important
Innovations

@ 2008 IEEE Transactions on Robotics special issue on
visual SLAM (edited by Neira, Leonard, Davison)

@ 2007 RatSLAM, Milford and Wyeth
@ 2007 Comport, Dense visual odometry

@ 2009 R-SLAM, relative bundle adjustment, Mei, Sibley,
Cummins, Reid, Newman et al.

i e |




Dense SLAM Begins

@ Around 2010, GPGPU enables real-time regularised dense
reconstruction; PTAM tracking for Richard Newcombe’s
Live Dense Reconstruction with a Moving Camera paper.

@ Dense tracking, DTAM (Dense Tracking and Mapping).

@ 2010, Kinect opens the era of commodity high quality
depth cameras, and KinectFusion leads to many other
dense SLAM systems.

@ Dense maps are ripe for semantic labelling and this is now
starting to happen excitingly.



Towards Pure Object-Level SLAM

@ SLAM++ (Salas-Moreno et al.2013): bring object
recognition to the front of SLAM, and directly build a map

@ Predict, measure, update will be even stronger with object
or even whole scene priors.



Brute Force Vision

@ Rising processing allows increasingly computationally
expensive computer vision algorithms to be brought into
play in robot vision.

@ Bundle adjustment; image retrieval; MVS regularised
dense reconstruction; random forests, CNN and MRF.

@ However... real applications need low power, compactness
and real-world robustness.
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Modern Systems

Dyson 360 Eye Google Project Tango Microsoft HoloLens
@ Positioning and reconstruction now rather mature. . . though
I'd say it’s still rather premature to call even that solved.
@ Quality open source systems: LSD-SLAM, ORB-SLAM,
SVO, KinectFusion, ElasticFusion.

@ Commercial products and prototypes: Google Tango,
Hololens, Dyson 360 Eye, Roomba 980.

@ But SLAM continues. .. and evolves into generic real-time
3D perception research.



Modern Research Themes

@ As algorithms, sensors and processors co-evolve and
vision becomes an increasingly important driver, what do
we imagine commodity systems of 2025+ will be capable
of?

@ Which research areas will we ‘bring into’ SLAM and how
will be integrate them with SLAM’s closed loop character?

@ (My popular science book ‘Robot Vision’ hopefully finished
and published soon!)
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Dyson 360 Eye
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Dyson's $1,200 robotic vacuum is
expensive, but also the best
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@ Announced September 2014; now on sale in Japan;
around the world soon.



The Need for Efficiency in Advanced Real-Time Vision
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@ Real applications need low power requirements,
compactness and real-world robustness.

@ Current GPUs run at 100s of Watts.



The Need for Efficiency in Advanced Real-Time Vision
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@ We need 1000x power efficiency for truly capable
always-on tiny devices; or to do much more with larger
devices.



Embedded Vision 10 Years from Now

@ Smartphone system-on-chip technology will provide the
template for low power smart devices — and computer
vision will be a major driver.

@ CPUs, GPUs and increasingly specialised
application-specific ‘ASIC’ chips.

@ But how does the human brain achieve always-on, dense,
semantic vision in 10W?

@ | believe that the long-term way forward is to bring sensors,
algorithms and processors together.



