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(a) (b) (c)
Fig. 8. Results from the Carpark dataset. (a) Pose-graph from wheel odometry trajectory (red) with all the detected loop-closures (green). (b) Pose-graph
from wheel odometry (red) with the loop-closures (green) after applying the geometric verification threshold learned from our algorithm. (c) Final result
after pose-graph optimization(red) compared with the INS/GPS ground truth (blue).

conservative threshold, i.e. highest threshold learned from
multiple datasets collected from the same platform and use
it for online geometric verifications.

Figure 8(a) shows the pose-graph from wheel odometry
(red) with all the detected loop-closures (green) from the
vocabulary-tree where there are many wrong loop-closures.
Figure 8(b) shows the pose-graph after applying the geomet-
ric verification threshold learned from our algorithm where
majority of the wrong loop-closures are removed. Figure
8(c) shows the final pose-graph (red) after robust pose-graph
optimization. We compare the estimated pose-graph with the
INS/GPS ground truth (blue) where we can see that our
estimated pose-graph follows the ground truth very closely.

B. Stereo Camera

(a)

(b)
Fig. 9. New College dataset with a stereo camera. (a) Distribution of the
all the inlier counts from the geometric verifications. (b) Two components
Log-Normal mixture model and geometric verification threshold learned
from the inlier counts.

We also test our algorithm on the New College dataset
[15] which was collected with a stereo camera mounted
on a ground robot. A total of 48241 stereo frames from
a trajectory that spans across approximately 1.25 km are
used. The vocabulary-tree for visual loop-closure is formed
from the left stereo images and the loop-closure constraints
are computed from the absolute orientation algorithm [11].
Figure 9(a) shows the distribution of the distribution of the

normalized inlier counts obtained from the computations
of the geometric constraints with the absolute orientation
for the New College dataset. Note that this distribution is
similar to Figure 5(a) and 7(a) even though a different camera
setup is used. Figure 9(b) shows the two components Log-
Normal mixture distributions learned with our algorithm. The
intersection of the two Log-Normal distributions is found
to be 0.18, which is 76 after denormalization. Figure 10(a)
shows the pose-graph from stereo visual odometry [16]
(red) with all the detected loop-closures (green) from the
vocabulary-tree where there are many wrong loop-closures.
Figure 10(b) shows the pose-graph with the loop-closures
after applying the geometric verification threshold learned
from our algorithm where majority of the wrong loop-
closures are removed. Figure 10(c) shows the pose-graph
after robust robust pose-graph optimization. Although there
is no INS/GPS ground truth for the New College dataset,
we can see that the pose-graph after optimization appears
reasonable with all the deviations in the z-axis removed.

C. Degenerated Case

We show an example of the degenerated case with a
dataset collected from our car platform with the multi-camera
setup. The dataset consists of 1600 ⇥ 4 images from a
trajectory that spans across approximately 300 m forming
one loop with the starting and ending points at approximately
the same location. The small number of loop-closures means
that there is not enough information for our algorithm to
learn the threshold correctly. Figure 11(a) shows the pose-
graph from wheel odometry (red) and all the loop-closures
from the vocabulary-tree. Figure 11(b) shows the pose-graph
with the loop-closures after applying the threshold learned
from our algorithm where it is clearly visible that some
wrong loop-closures remain. Figure 11(c) shows the pose-
graph (red) after robust pose-graph optimization compared
with the ground truth (blue). The ground truth is obtained by
performing robust pose-graph optimization on the manually
chosen correct loop-closures. It can be observed that the
estimated pose-graph is slightly distorted by the wrong loop-
closures even after applying the robust optimization because
the ratio of correct to wrong loop-closures is too low.

As mentioned in Section II-C, we do the �

2 test to detect
the degenerated case. Table I shows the �

2 test results for
all the datasets at a significance level ↵ = 0.05. We can
see from the �

2 test results that the first three datasets -
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from wheel odometry (red) with the loop-closures (green) after applying the geometric verification threshold learned from our algorithm. (c) Final result
after pose-graph optimization(red) compared with the INS/GPS ground truth (blue).
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is no INS/GPS ground truth for the New College dataset,
we can see that the pose-graph after optimization appears
reasonable with all the deviations in the z-axis removed.
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dataset collected from our car platform with the multi-camera
setup. The dataset consists of 1600 ⇥ 4 images from a
trajectory that spans across approximately 300 m forming
one loop with the starting and ending points at approximately
the same location. The small number of loop-closures means
that there is not enough information for our algorithm to
learn the threshold correctly. Figure 11(a) shows the pose-
graph from wheel odometry (red) and all the loop-closures
from the vocabulary-tree. Figure 11(b) shows the pose-graph
with the loop-closures after applying the threshold learned
from our algorithm where it is clearly visible that some
wrong loop-closures remain. Figure 11(c) shows the pose-
graph (red) after robust pose-graph optimization compared
with the ground truth (blue). The ground truth is obtained by
performing robust pose-graph optimization on the manually
chosen correct loop-closures. It can be observed that the
estimated pose-graph is slightly distorted by the wrong loop-
closures even after applying the robust optimization because
the ratio of correct to wrong loop-closures is too low.
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Structure-from-Motion / SLAM model
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• Use inlier 2D-3D matches rather than estimate poses 

• “Control points” in Bundle Adjustment / Kalman Filter 

• Additional measurements for filter-based methods

= SLAM / VIO
= global localisation
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Fig. 3: Part of Seq. 1 with a one-o↵ alignment from the first two keyframes
(yellow), strategies e1

0.5 (blue), e2
0.5 (green) and ground truth (red). Strategies

e1
0.5 and e2

0.5 are well aligned to ground truth, while the one-o↵ alignment is
a↵ected by drift. Strategy e2

0.5 produces a smoother trajectory than e1
0.5

Table 4: Impact of false positive localizations on mean position and rotation
error for Sequence 1 and strategies e

0

.51 and e
0

.52

False Positives

e10.5 e20.5
P.Err.[m] R.Err.[Deg.] P.Err.[m] R.Err.[Deg.]

0% 0.27 ± 0.24 4.10 ± 4.48 0.17 ± 0.11 0.39 ± 0.23

10% 0.31 ± 0.35 6.63 ± 9.22 0.18 ± 0.15 0.40 ± 0.23

20% 0.32 ± 0.39 6.43 ± 9.39 0.18 ± 0.13 0.40 ± 0.23

30% 0.38 ± 0.51 7.48 ± 11.7 0.19 ± 0.15 0.40 ± 0.23

40% 0.44 ± 0.67 6.80 ± 8.20 0.19 ± 0.16 0.39 ± 0.23

The pose estimation approach by Ventura and Höllerer [29] relies on a single
global pose estimate and is not capable to track the relative motion during the
latency period. Thus, it is prone to both, high server latency and failed global
localization. On the other hand, our approach is robust to these problems, since
it is able to track the camera pose locally until su�cient global information is
available for the alignment. Afterwards, if the server fails to localize a keyframe or
the server response is pending, the global constraints belonging to this keyframe,
but not the local reprojection errors, are omitted in the alignment.

Robustness to False Positive Global Localizations As discussed in Section
4, both proposed alignment approaches take precautions to be robust to errors
in the global localization. Li et al. [21] report false positive rates of less than
5.3%. Thus, to evaluate the robustness of the proposed strategies, we artificially
set the number of false positive localizations to up to 40%. For every global
localization, we randomly decided if it is a false positive localization. If so, we
randomly selected a global keyframe pose and geometrically consistent global 2D-
3D matches. Table 4 reports the impact on mean position and rotation errors for
Sequence 1 and strategies e1

0.5 and e2
0.5. While the number of false positive global

localizations has a notable impact on the localization accuracy and standard
deviation for strategy e1

0.5, it has almost no e↵ect for strategy e2
0.5.

using global 
pose estimates

ground truth
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The pose estimation approach by Ventura and Höllerer [29] relies on a single
global pose estimate and is not capable to track the relative motion during the
latency period. Thus, it is prone to both, high server latency and failed global
localization. On the other hand, our approach is robust to these problems, since
it is able to track the camera pose locally until su�cient global information is
available for the alignment. Afterwards, if the server fails to localize a keyframe or
the server response is pending, the global constraints belonging to this keyframe,
but not the local reprojection errors, are omitted in the alignment.

Robustness to False Positive Global Localizations As discussed in Section
4, both proposed alignment approaches take precautions to be robust to errors
in the global localization. Li et al. [21] report false positive rates of less than
5.3%. Thus, to evaluate the robustness of the proposed strategies, we artificially
set the number of false positive localizations to up to 40%. For every global
localization, we randomly decided if it is a false positive localization. If so, we
randomly selected a global keyframe pose and geometrically consistent global 2D-
3D matches. Table 4 reports the impact on mean position and rotation errors for
Sequence 1 and strategies e1

0.5 and e2
0.5. While the number of false positive global

localizations has a notable impact on the localization accuracy and standard
deviation for strategy e1

0.5, it has almost no e↵ect for strategy e2
0.5.

using global 
2D-3D matches

S. Middelberg, T. Sattler, O. Untzelmann, L. Kobbelt.  Scalable 6-DOF Localization on Mobile Devices. ECCV 2014.
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S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, R. Siegwart, 
 Get Out of My Lab: Large-scale, Real-Time Visual-Inertial Localization. RSS 2015
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• Memory consumption 

• Distinguish correct vs. wrong localisations

?

?
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• Redundancy: Not every point required for localisation 
• Select subset of points s.t. every database image 

observes ≥N points
[Li et al., ECCV’10] [Cao & Snavely, CVPR’14]

http://www.cs.cornell.edu/projects/p2f/docs/localization_eccv2010.pdf
http://www.cs.cornell.edu/projects/minimalscene/docs/reduction_cvpr14.pdf
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S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, R. Siegwart, 
 Get Out of My Lab: Large-scale, Real-Time Visual-Inertial Localization. RSS 2015
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S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, R. Siegwart, 
 Get Out of My Lab: Large-scale, Real-Time Visual-Inertial Localization. RSS 2015

Video credit: Simon Lynen
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• Need certain number of points to enable localisation 

• Further compression by descriptor quantisation

3D position!
12 bytes

N descriptors!
40·N bytes

N image IDs!
 4·N bytes Add. data

3D point reconstructed from N database images
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Example: 8 components with 256 words each 
• Quantised descriptor requires 8 bytes 
• 2568 = 264 product words 
• Note: Many words not “meaningful”

� � � � � � � � � � � �

�������������

Original descriptor

Vocabulary per component

Quantised descriptor

[Jégou et al., PAMI’11] 

http://hal.inria.fr/docs/00/82/50/85/PDF/jegou_pq_postprint.pdf
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S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, R. Siegwart, 
 Get Out of My Lab: Large-scale, Real-Time Visual-Inertial Localization. RSS 2015
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S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, R. Siegwart, 
 Get Out of My Lab: Large-scale, Real-Time Visual-Inertial Localization. RSS 2015
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• full descriptors 
• PQ - 1 byte 
• PQ - 2 bytes 
• PQ - 2.5 bytes 
• PQ - 5 bytes
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• Significant compression by descriptor quantisation 
• Storing descriptors not a bottleneck anymore 

• Price of compression: 
• Fewer inliers 
• Reduced localisation rate 

• Trade-off feasible for robust SLAM / VIO 
• Also applicable for large-scale, one-shot 

localisation?
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Y. Li, N. Snavely, D. Huttenlocher, P. Fua, Worldwide Pose Estimation using 3D Point Clouds. ECCV 2012

San Francisco (SF-0 model) 
• 30M 3D points 
• 149M SIFT descriptors (~17.7GB) 
• 611k database images 
• Task: Landmark recognition 
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Query Image 16M words

3D Model

Database 
Images

T. Sattler, M. Havlena, F. Radenovic, K. Schindler, M. Pollefeys, 
Hyperpoints and Fine Vocabularies for Large-Scale Location Recognition. ICCV 2015
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Large-Scale Quantised Localisation
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30 inliers

T. Sattler, M. Havlena, F. Radenovic, K. Schindler, M. Pollefeys, 
Hyperpoints and Fine Vocabularies for Large-Scale Location Recognition. ICCV 2015



Torsten Sattler

Large-Scale Quantised Localisation
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A. Irschara, C. Zach, J.-M. Frahm, H. Bischof, 
From Structure-from-Motion Point Clouds to Fast Location Recognition. CVPR 2009

N inliers

2r

area( )/(4r2 ·N) ·N inliers
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T. Sattler, M. Havlena, F. Radenovic, K. Schindler, M. Pollefeys, 
Hyperpoints and Fine Vocabularies for Large-Scale Location Recognition. ICCV 2015
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T. Sattler, M. Havlena, F. Radenovic, K. Schindler, M. Pollefeys, 
Hyperpoints and Fine Vocabularies for Large-Scale Location Recognition. ICCV 2015
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Adaptive weights [Torii’13]
DisLoc (20GB) [Arandjelovic’14]
DisLoc+sp (20GB) [Arandjelovic’14]
Pose voting (20.2GB) [Zeisl’15]
proposed + RootSIFT (4.9GB)

k-means vocabulary, specifically learned for dataset
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hc

ground plane

Known: Intrinsics, gravity direction

L. Svärm, O. Enqvist, M. Oskarsson, F. Kahl, Accurate Localization 
and Pose Estimation for Large 3D Models, CVPR’14
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B. Zeisl, T. Sattler, M. Pollefeys, Camera Pose Voting for Large-Scale Image-Based Localization, ICCV 2015
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for each height h: 
  for each viewing direction Ư̆:      
   for each 2D-3D match:         
    vote for position            
   find best position, update best pose         
Refine pose using RANSAC

B. Zeisl, T. Sattler, M. Pollefeys, Camera Pose Voting for Large-Scale Image-Based Localization, ICCV 2015
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B. Zeisl, T. Sattler, M. Pollefeys, Camera Pose Voting for Large-Scale Image-Based Localization, ICCV 2015B. Zeisl, T. Sattler, M. Pollefeys, Camera Pose Voting for Large-Scale Image-Based Localization, ICCV 2015
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22 inliers

11 inliers

7 inliers

B. Zeisl, T. Sattler, M. Pollefeys, Camera Pose Voting for Large-Scale Image-Based Localization, ICCV 2015

��������	
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 �����voting + filters + GPS + RANSAC
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B. Zeisl, T. Sattler, M. Pollefeys, Camera Pose Voting for Large-Scale Image-Based Localization, ICCV 2015
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• Individual feature descriptors become less discriminative at 
large scale 
• Exploiting feature geometry helps… 
• but does not resolve the problem 

• Matching with quantised descriptors works surprisingly well 
• … but better understanding required 

• #inliers not good for distinguishing between correct and 
wrong camera poses
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• Compact map representations? 

• Better understanding on when to trust camera pose 
estimates 
• Semantic understanding of scenes? 

• Handling more challenging scenes 
• Natural scenes (forests, …) 
• Long-term localisation and mapping 
• Nighttime localisation against daytime maps?


