

Forging Reliable Edge Services: Harnessing Deep Learning Models for Fault Tolerance

Giuliano Casale

g.casale@imperial.ac.uk

Quality of Service Research Lab Department of Computing - Imperial College London

IEEE ISSRE 2023, Florence

Acknowledgements: Shreshth Tuli, Nicholas J. Jennings, Alim Ul Gias, Lucy Cherkasova

G. Casale – Slide 2

Imperial College London

The rise of Edge computing

Emerging edge applications:

- Autonomous driving
- AR/VR, edge gaming
- Smart cities, ports, farming, ...
- Industrial IoT

Strict QoS/QoE requirements:

- Ultra-low latency
- High availability
- Zero perceived downtime
- Reliability often quoted as a pressing challenge!

NETWORKWORLD

Industrial IoT faces big challenges

Industrial IoT needs ultra-high reliability, always-on availability, and extremely low latency - as well as standardization - all of which makes it the most challenging IoT genre to implement.

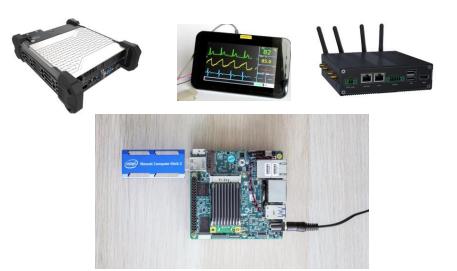
+ HELP NET SECURITY

Multi-cloud and edge deployments threatened by security and connectivity problems

The Growing Importance of AI and Automation in Building and **Maintaining 5G Networks** OPP.TODAY

IoT and Edge Devices

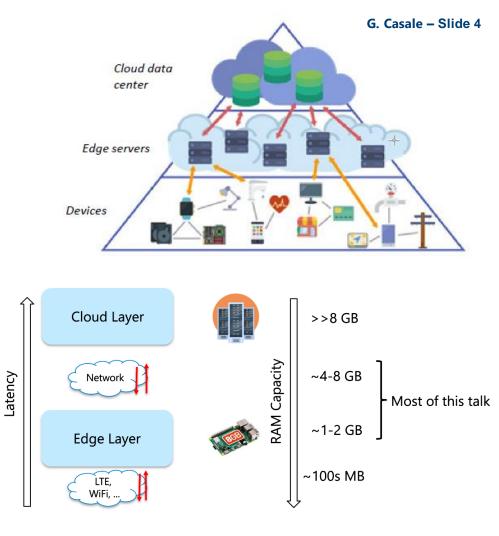
- Millions of tiny and embedded devices
- Rapid growth in edge AI hardware
 - Edge accelerators (VPUs, TPUs)
 - Efficiency: when normalized for power and cost, comparable to server GPUs
 - On-device learning can benefit edge QoS management
- It's an exciting time to investigate what AI can do for edge reliability!



Ref: Liang, Shenoy, Irwin, AI on the Edge: Characterizing AI-based IoT Applications Using Specialized Edge Architectures, IISWC, 2020.

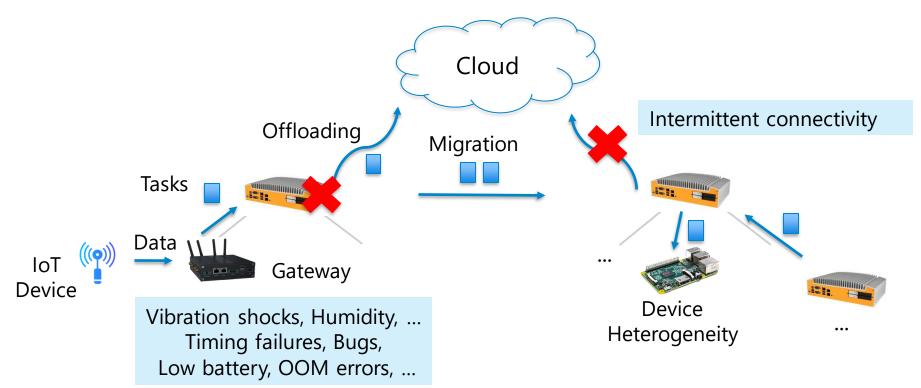
Basic Concepts

- Many architectures and platforms
 - Fog, MEC, "path computing", cloudlets, private vs public edge, ...
- Common challenges and themes:
 - Processing data closer to where it is generated
 - Latency vs. resource constraints
 - Need for a high degree of automation

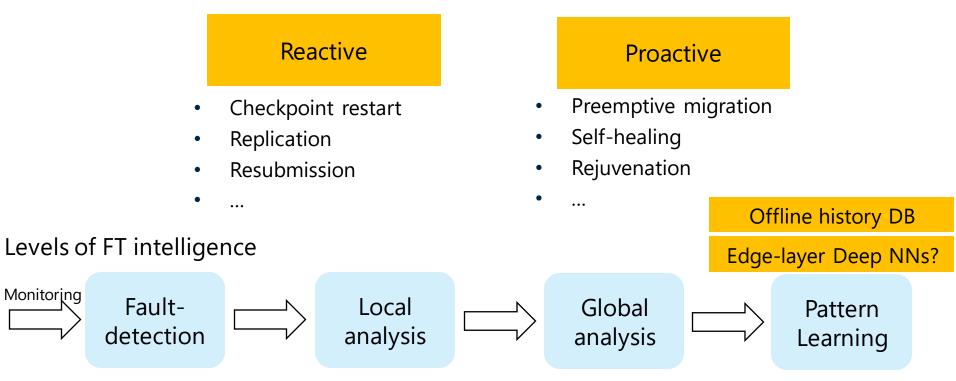


Edge Reliability: Why this is not a solved problem?

• The edge is a dynamic and failure-rich environment



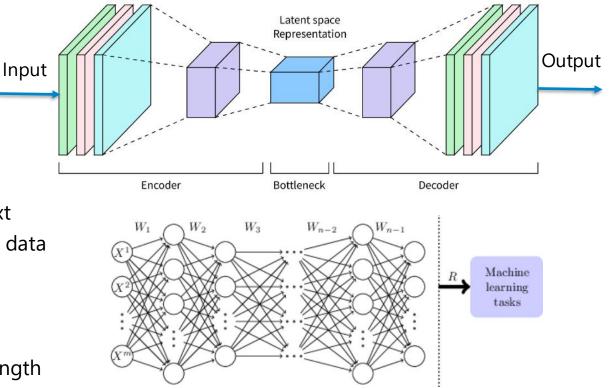
Taxonomy of Fault Tolerance (FT) Techniques



Ref: Engelmann *et al.*, Proactive Fault Tolerance Using Preemptive Migration, PDP 2009.

Embedding data in latent space

- A low-dimensional smooth representation
- Many good properties:
 - Abstract representations
 - No feature engineering
 - Expose natural clusters
 - Represent time series context
 - Compress high-dimensional data
- Often resource hungry
 - e.g., Transformers: O(n²)
 complexity w.r.t. the input length



Talk Outline

- 1. How are Deep models being used for edge reliability?
 - ☐> Methods from the literature for fault detection, diagnosis and prediction

2. How can Deep models handle edge-layer spatio-temporal correlations?
 □ Results on preemptive task migration

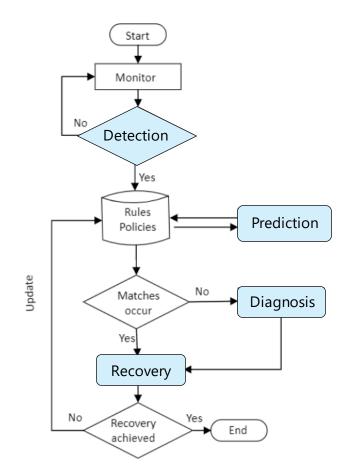
G. Casale – Slide 9

Imperial College London

Fault Detection, Diagnosis and Prediction

FT workflows

- Often an integrated workflow of methods rules, and heuristics
 - Unsupervised clustering
 - Time series forecasting
 - Bayesian networks
 - Ensemble learning
- Recovery is often optimization-based
 - Mathematical programming
 - Stochastic models
 - Metaheuristics

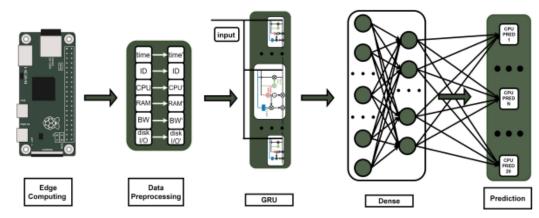


Ref: Adeni et al., Proactive Self-Healing Approaches in Mobile Edge Computing: A Systematic Literature Review, 2023.

On-Device Deep Models for Failure Prediction

- On-device learning (rPI 3)
 - Predict timing failures, OOM errors, congestion
 - LSTM/GRU based
- About 100MB memory
 - Knowledge distillation
 - Quantization
 - Pruning
- ~4-10ms for inference
- Lower RMSE than classic ML methods
 - e.g., SVMs, Boosting

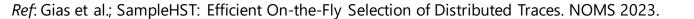
Ref: Violos et al., Hypertuning GRU Neural Networks for Edge Resource Usage Prediction, 2021.

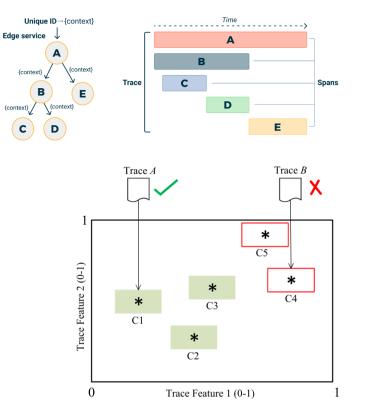


Method	RMSE	
HBES-GRU	0.0641	
GA-LSTM	0.0674	
Keras-Tuner	0.0785	
AUCROP	0.0814	
XGBoost	0.1139	
Auto-sklearn	0.1055	

Integrating Deep Models with Tracing

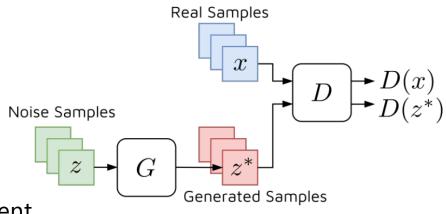
- Edge-layer tracing picking up
 - E.g, Azure IoT Edge, OpenTelemetry Collector, ...
- Tail-based sampling can reduce footprint
 - Only sample traces that are 'interesting'
- Embedding methods:
 - Word2vec, graph embedding, DBN, ...
- Sample using ML classifier or online clustering
 - High accuracy (often >0.90 F1 score)





Integrating Deep Models in Fault Diagnosis

- ML fault classifiers affected by class imbalance problem
 - Overfitting, bias and loss of information issues with random sampling
 - Generative Adversarial Networks (GANs) increasingly adopted as a solution
- GANs for data augmentation
 - Independent GANs for minority and majority class
 - Often boosts F1 (+5%-50%)
 - Discriminator may also replace the ML classifier
- GAN compression for edge deployment



Few-Shot Learning with Prototype Networks

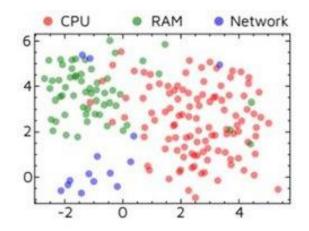
- Supervised (or self-supervised) few shot classifier
- Compute prototype \mathbf{c}_k of each class in latent space
- S_k : labelled examples for class k (few for each class)

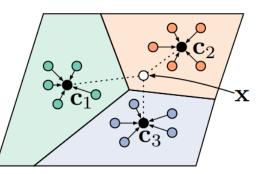
$$\mathbf{c}_k = \frac{1}{|S_k|} \sum_{(\mathbf{x}_i, y_i) \in S_k} f_{\boldsymbol{\phi}}(\mathbf{x}_i)$$

- f_{ϕ} : learnable embedding function
- Loss function: $J(\phi) = -\log p_{\phi}(y = k | \mathbf{x})$
- Query point mapped to a class using distance d

$$p_{\phi}(y = k \,|\, \mathbf{x}) = \frac{\exp(-d(f_{\phi}(\mathbf{x}), \mathbf{c}_k))}{\sum_{k'} \exp(-d(f_{\phi}(\mathbf{x}), \mathbf{c}_{k'}))}$$

Refs: Snell *et al.*; Prototypical Networks for Few-shot Learning; NIPS 2017. Medina *et al.*; Self-supervised prototypical transfer learning for few-shot classification, AutoML 2020.

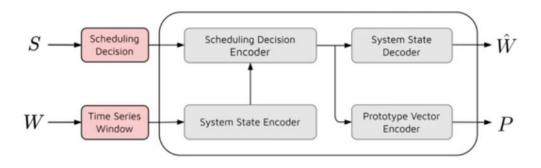




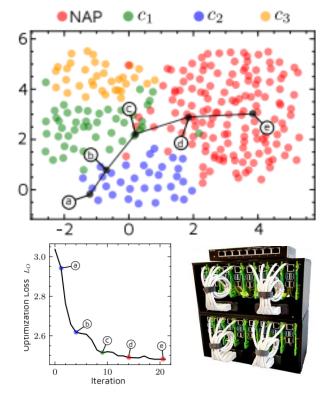
Prototype-based classification

Deeper Models: Fault Prototypes with DeepFT

Class prototypes updated at runtime



- Embedding NN also a surrogate model of edge layer spatio-temporal correlations
- Scheduler decision evolved online towards the no-fault class (NAP)

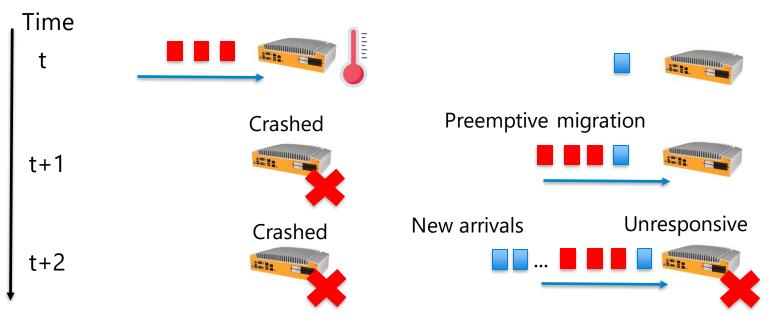


Ref: Tuli et al.; DeepFT: Fault-Tolerant Edge Computing using a Self-Supervised Deep Surrogate Model; INFOCOM 2023.

Modeling Spatio-Temporal Correlations Across Edge Devices

Deep models of spatio-temporal correlations

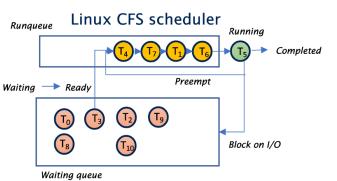
Example: pre-emptive task migration (or "bag of tasks" migration)



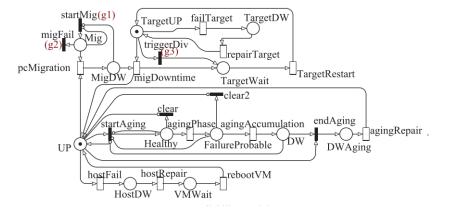
Coupling is difficult to characterize far from steady-state conditions!

System modelling

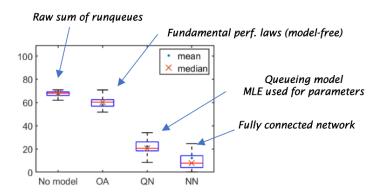
- Many stochastic models for FT and performability
 - SPNs, CTMCs, QNs, ...
- Focus on "time" and "counts"
- Yet if data is abundant, NN often more accurate in dynamic settings:



Task consolidation on Linux host



Comparison of QoS prediction errors (MAPE)

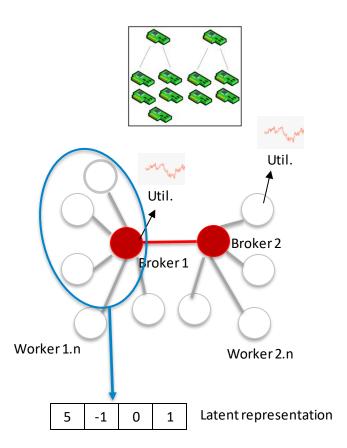


Modeling Correlations with GNNs

- Graph attention networks (GATs):
- Node features are resource utilizations, periodically acquired from edge devices.
- Output is a latent representation at each host

Latent space representations based on:

- Graph convolution
 - message-passing to represent workload and utilization cross-correlations.
- Graph attention
 - assign different importance to each edge neighbor's contribution.

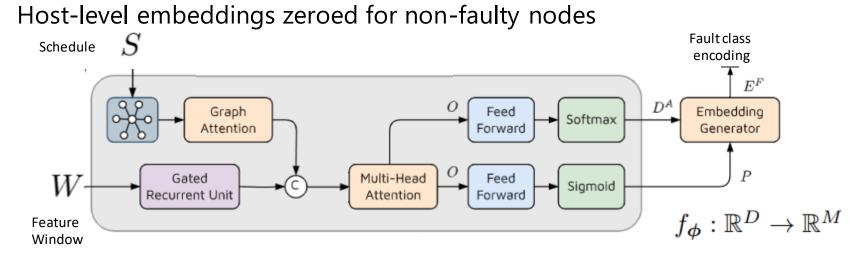


۲

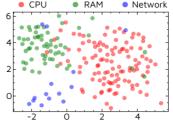
Fault Prototype Encoder

A new component for runtime edge FT systems:

- Discriminator to identify fault class (D^A)
- Also outputs a fault class encoding (E^{F})



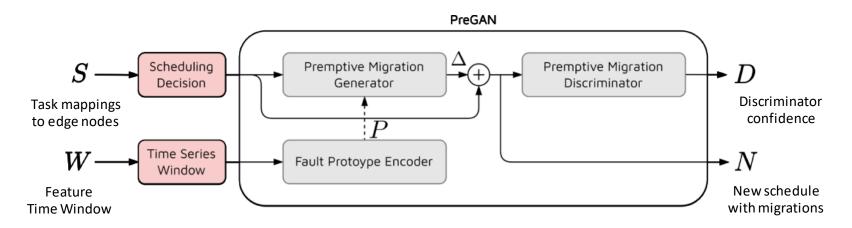
Ref: Tuli et al.; PreGAN: Preemptive Migration Prediction Network for Proactive Fault-Tolerant Edge Computing. INFOCOM 2022.



G. Casale – Slide 21

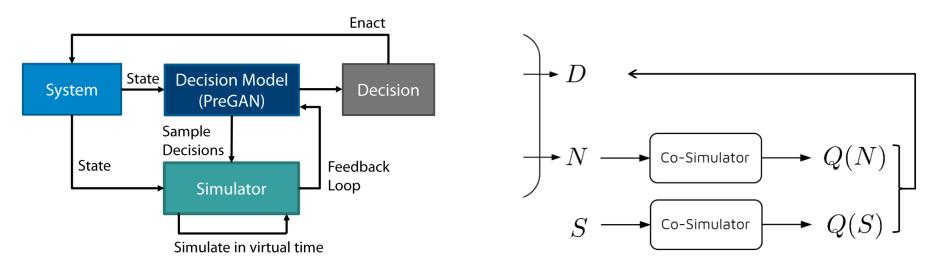
Imperial College London

A Preemptive Migration Application: the PreGAN model



- Generator introduces a candidate pre-emptive migration Δ
 - Conceptually similar to a conditional GAN
 - GAN acts as a simulation surrogate
- Discriminator scores confidence on the proposed migration

PreGAN: Runtime Fine-Tuning



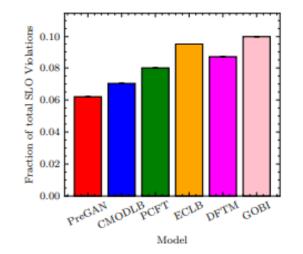
GAN discriminator trained to discard new schedules with worse QoS

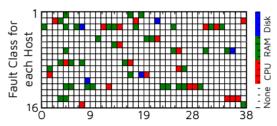
$$L_D = \begin{cases} \log(D) + \log(1 - D) & \text{if } Q(N) \ge Q(S) \\ \log(1 - D) + \log(D) & \text{otherwise} \end{cases}$$

PreGAN: Results

- Testbed: 8x4GB + 8x8GB raspberry Pls 4
- DeFog IoT applications
- Baselines:
 - CMODLB: K-Means clustering and Swarm Optim.
 - PCFT: Particle Swarm Optimization
 - ECLB: Bayesian Optimization and Neural Nets
 - DFTM: Integer Linear Programming
 - GOBI: Scheduling only (with a co-simulator)

Method	Detection			Diagnosis		
	Accuracy	Precision	Recall	F1 Score	HR@100	NDCG@100
DFTM	0.8731 ±0.0234	0.7713 ±0.0823	0.8427 ± 0.0199	0.8054 ± 0.0872	$0.5129\ {\pm}0.0212$	0.4673 ±0.0019
ECLB	0.9413 ± 0.0172	0.7812 ± 0.0711	$0.8918\ {\pm 0.0203}$	0.8329 ± 0.0901	$0.4913\ {\pm 0.0010}$	0.5239 ± 0.0024
PCFT	0.8913 ± 0.0108	$0.8029\ {\pm 0.0692}$	$0.9018 \ \pm 0.0165$	0.8495 ± 0.0312	0.5982 ± 0.0094	0.5671 ± 0.0020
CMODLB	0.9128 ± 0.0112	0.8158 ± 0.0343	0.9013 ± 0.0091	0.8605 ± 0.0284	$0.6309 \ \pm 0.0025$	0.5432 ± 0.0031
PreGAN	$0.9635 \ \pm 0.00921$	$0.8723 \ \pm 0.0221$	$0.9018 \ \pm 0.0121$	$0.8868\ {\pm}0.0629$	$0.6232\ {\pm 0.0069}$	$0.5898 \ \pm 0.0080$





G. Casale – Slide 24

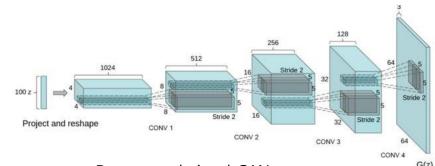
Imperial College London

Dealing with Memory Constraints

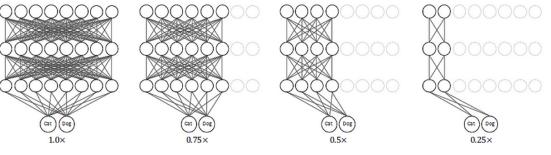
DL Model Compression

- GANs can easily saturate device memory
- Several compression techniques exist
 - Pruning
 - Knowledge Distillation
 - Quantization
 - Splitting
 - Low-rank factorization
 - Memory Compression
 - Slimming

...



Deep convolutional GAN

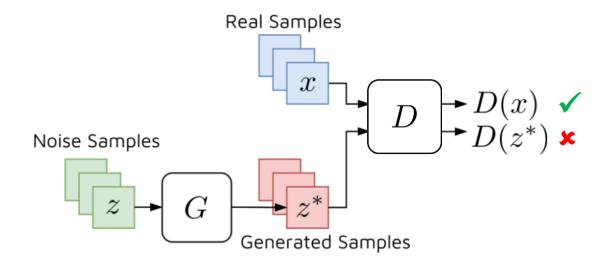


Slimmable neural networks

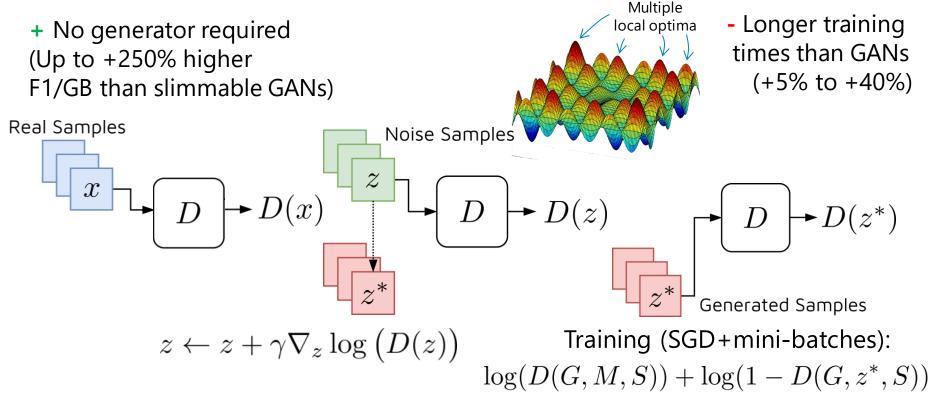
Refs: D. Tantawy *et al.*; A survey on GAN acceleration using memory compression techniques; JEAS, 2021. J. Yu *et al.*; Slimmable neural networks; ICLE 2019.

Generative Adversarial Network (GAN)

- Generator create *fake* samples from random noise
- Discriminator classifies inputs as *real* or *fake*
- Adversarial training in a zero-sum game

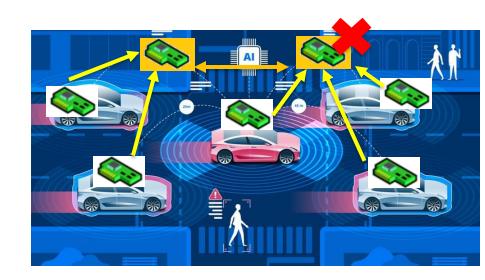


Generative Optimization Network (GON)

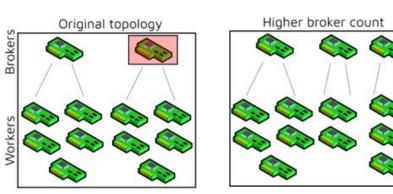


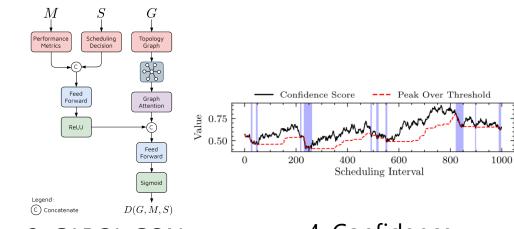
Example: Reliability in Edge Federations

- Edge architectures:
 - Local edge infrastructures (LEIs)
 - Configurable broker-worker roles
 - QoS vs. limited resources
- Federation can share resources and rebalance task load across LEIs
- Problem: Broker resilience
 - QoS/SLOs calls for fast remediation to broker failures
 - Method must be lightweight



CAROL: a GON-based FT Technique





1. Broker failure detection

2. Recovery Candidates

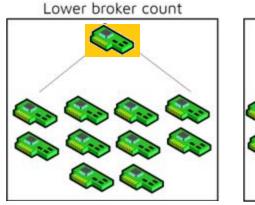
3. CAROL GON forecasts QoS within Tabu Search 4. Confidence triggered fine-tuning of CAROL GON

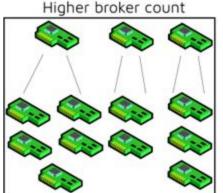
Iteration time: ~100ms Node-shift time: ~2s GON memory size: ~1 GB

A Surrogate Model based on GONs

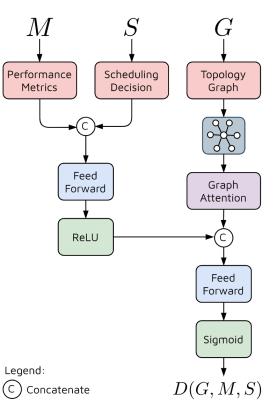
Deep model captures "normal" relationship between QoS, topology and task allocations.

Input: metrics, schedule, candidate recovery





Confidence Score D(G, M, S): measure that the input is from the real data distribution



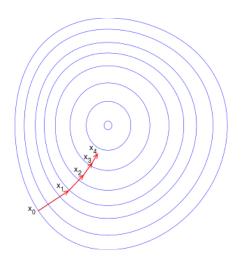
Using the GON

• We train this using the GON approach to generate realistic performance measures

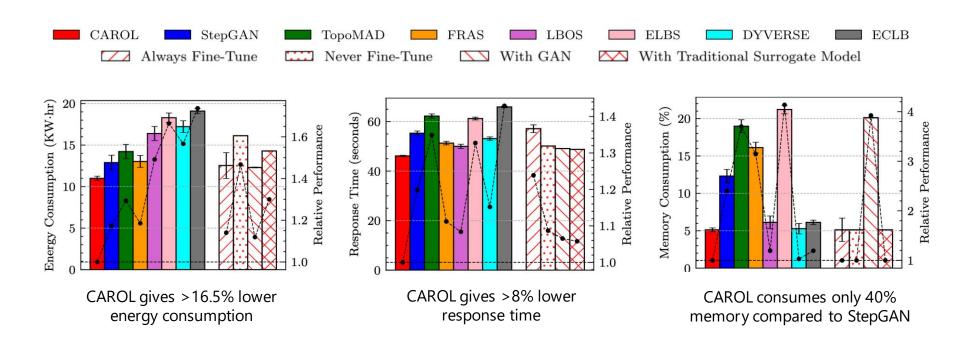
 $L = \log \left(D(M, S, G; \theta) \right) + \log \left(1 - D(Z^*, S, G) \right)$

- Forecast topology performance using GON as surrogate
 - Find expected performance metrics for given schedule S and topology G

 $M \leftarrow M + \gamma \nabla_M \log \left(D(M, S, G) \right)$



Results



G. Casale – Slide 32

G. Casale – Slide 33

Conclusion

Closing takeaways

- Many new challenges in edge computing stress existing FT techniques
- Resource constraints should not stop us from looking at edge-layer NNs
- Deep architectures can embed whole FT workflows
- Deep models offer new tools to represent correlations at the edge
- Generative, co-simulation and few learning help cope with data constraints

Some Directions for the Future

- Broader coverage of fault types is needed
- Concept drift / adaptive Al
- Software engineering methodologies
- Explainability of Deep Models
- What synthesis shall we reach with classic FT approaches and models?