
Developing Data-Intensive Cloud
Applications with Iterative Quality

Enhancements

DICE delivery tools – Intermediate
version
Deliverable 5.2

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 2

Deliverable: D5.2
Title: DICE delivery tools - Intermediate version

Editor(s): Matej Artač (XLAB)
Contributor(s): Giuliano Casale (IMP), Pooyan Jamshidi (IMP), Tatiana Ustinova

(IMP), Gabriel Iuhasz (IeAT), Matej Artač (XLAB), Tadej Borovšak
(XLAB), Damian Andrew Tamburri (PMI)

Reviewers: Diego Pérez (ZAR), Alberto Romeu (PRO)
Type (R/P/DEC): Demonstrator

Version: 1.01
Date: 11-April-2017

Status: Final
Dissemination level: Public

Download page: http://www.dice-h2020.eu/deliverables/
Copyright: Copyright © 2017, DICE consortium – All rights reserved

DICE partners

ATC: Athens Technology Centre
FLEXI: Flexiant Limited

IEAT: Institutul E Austria Timisoara
IMP: Imperial College of Science, Technology & Medicine

NETF: Netfective Technology SA
PMI: Politecnico di Milano
PRO: Prodevelop SL

XLAB: XLAB razvoj programske opreme in svetovanje d.o.o.
ZAR: Universidad de Zaragoza

The DICE project (February 2015-January 2018) has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 644869

http://www.dice-h2020.eu/deliverables/

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 3

Executive summary
This report accompanies the intermediate release of the DICE delivery tools: DICE Deployment
Tool, DICE Continuous Integration and DICE Configuration Optimisation. The purpose of these
tools in the DICE methodology is to create a runtime of a DIA described in a DDSM / TOSCA
blueprint, provide scheduled or on-commit execution of complex automated tasks on top of the DIA,
and offer recommendation for the optimal configuration for the DIA's deployment.

Improvements of the DICE Deployment Tool since Y1 include a new web graphical user interface,
extended TOSCA technology library and removal of Chef Server dependency. The Administrators
now can set in the central service the parameters that describe the platform. This lifts a burden from
developers, who can now focus on managing application-related parameters. Resulting TOSCA
blueprints will work on any supported platform without change in any of the parameters or structure.
Users can also decide to enable automatic connection of Storm, Spark or Cassandra node to DICE
Monitoring. The DICE TOSCA technology library now supports also Zookeeper, Kafka, HDFS,
YARN and bash or Python custom scripts.

The DICE Continuous Integration's Jenkins plug in is now compatible with Jenkins version 2 and
is visually improved. We also provide a number of templates and instructions on how to schedule
various DICE tools to process user's DIAs. This demonstrates how the DICE Continuous Integration
can serve as a data repository, storing and serving version-bound or build-bound data for subsequent
runs of the tool.

The DICE Configuration Optimisation is the tool for empirically arriving at the application
configuration, that offers an optimal performance. We upgraded the original approach, BO4CO,
which exploits Gaussian Process, and introduced the Transfer Learning for Configuration
Optimisation (TL4CO). We can now take advantage of the observations from one version of the
DIA to quickly arrive at better results in another version of the DIA. We validated the tool by
optimizing Hadoop configurations to achieve optimal performance of two Hadoop jobs, WordCount
and TeraSort. We also optimized Cassandra to have an improved performance for a mix of read and
write operations comparing to the default configuration.

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 4

Glossary
DDSM DICE Deployment Specific Model
DICE Data-Intensive Cloud Applications with iterative quality enhancements
DPIM DICE Platform Independent Model
DTSM DICE Technology Specific Model
FCO Flexiant Cloud Orchestrator
TOSCA Topology and Orchestration Specification for Cloud Applications
IDE Integrated Development Environment
CI Continuous Integration
BO4CO Bayesian Optimisation for Configuration Optimisation
TL4CO Transfer Learning for Configuration Optimisation
DIA Data Intensive Application
HDFS Hadoop File System
GUI Graphical User Interface
VCS Version Control System
VM Virtual Machine
JSON JavaScript Object Notation
YAML YAML Ain’t Markup Language1

1 http://yaml.org/

http://yaml.org/

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 5

Table of contents
Executive summary ... 3

Glossary ... 4

Table of contents ... 5

List of Figures .. 7

List of Tables ... 8

1 Introduction ... 9

1.1 What is new in Year 2 ... 9

1.1.1 DICE Deployment Tool ... 9

1.1.2 DICE Continuous Integration .. 10

1.1.3 DICE Configuration Optimisation ... 10

2 Requirements ... 11

3 Architecture ... 13

3.1 High level architecture .. 13

3.2 Stakeholders and use cases ... 13

4 Tools .. 15

4.1 Primer: DICE Deployment Modelling DICER ... 15

4.2 DICE Deployment Tool .. 16

4.2.1 Main components .. 16

4.2.1.1 Deployment Service ... 16

4.2.1.2 TOSCA technology library .. 17

4.2.1.3 Chef Cookbooks ... 18

4.2.1.4 Cloudify .. 18

4.2.2 Tools usage .. 18

4.2.3 Validation and results .. 22

4.2.4 Obtaining Deployment Tool .. 24

4.3 DICE Continuous Integration ... 25

4.3.1 Main components .. 25

4.3.2 Tools usage .. 25

4.3.2.1 Build performance monitoring ... 26

4.3.2.2 Scheduling DICE tools ... 28

4.3.3 Validation and results .. 29

4.3.4 Obtaining DICE Continuous Integration ... 30

4.4 Configuration Optimisation .. 30

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 6

4.4.1 Main components .. 30

4.4.1.1 BO4CO Recap .. 30

4.4.1.2 Transfer Learning for Configuration Optimisation (TL4CO) 31

4.4.2 Tool’s usage ... 33

4.4.3 Validation and results .. 34

4.4.3.1 BO4CO for Apache Hadoop .. 34

4.4.3.2 Experiments and evaluation ... 36

4.4.3.3 NoSQL benchmark optimisation (Apache Cassandra). 40

4.4.3.4 Case study: ATC’s Social Sensor. .. 41

4.4.4 Obtaining Configuration Optimisation .. 41

5 Conclusion ... 42

5.1 DICE Requirement compliance .. 43

References ... 45

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 7

List of Figures
Figure 1: DICE delivery and configuration tools architecture. Delivery and configuration tools are
represented in blue boxes, while external components are in grey boxes 13
Figure 2: DICER’s assisted component-based infrastructure design giving a validation warning . 15
Figure 3: DICER tool workflow .. 15
Figure 4: Deployment Diagram of the DICE Deployment Tool ... 16
Figure 5: Illustration of Deployment Service’s usage. .. 19
Figure 6: An example view of the DICE Deployment Service’s web GUI..................................... 21
Figure 7: Blueprint deployment times ... 23
Figure 8: Apache Hadoop deployment timeline .. 24
Figure 9: Deployment diagram of the DICE Continuous Integration ... 25
Figure 10: Configuring the DICE plug-in’s post-build action in the build settings 26
Figure 11: Example view of the project’s status. .. 27
Figure 12: DICE Quality Testing history view in the Jenkins Continuous Integration. 27
Figure 13: Illustration of BO4CO workflow (a) initial observations; (b) a GP model fit; (c) choosing
the next point; (d) refitting a new GP model. .. 31
Figure 14: The response functions corresponding to 4 versions of WordCount that are different in
terms of either code or infrastructure .. 33
Figure 15: Experimental results for the WordCount and TeraSort applications 40
Figure 16: TL4CO in the NoSQL experiment comparing with BO4CO and expert. Each point
corresponds to a performance (averaged over 10 min) of the system with a different configuration,
resulted in 1024 points (lower right points are better) ... 40
Figure 17: Application of CO tool (with BO4CO and TL4CO algorithms) to the Social Sensor [29]
 ... 41

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 8

List of Tables
Table 1: Summary and results of timing deployments .. 23
Table 2: Continuous Integration project for scheduling Configuration Opt.................................... 28
Table 3: Continuous Integration project for scheduling Quality Testing .. 29
Table 4: Continuous Integration project for scheduling Enhancement Tool 29
Table 5: Performance measurements across different versions are significantly correlated, Pearson
(Spearman) coefficients ... 33
Table 6: CPU-related Hadoop configuration parameters .. 35
Table 7: Memory-related Hadoop configuration parameters .. 36
Table 8: I/O-related Hadoop configuration parameters ... 36
Table 9: Master Node Hardware.. 37
Table 10: Slave Node Hardware .. 37
Table 11: Test plan for 2-parameter group .. 37
Table 12: Test plan for 5-parameter group .. 37
Table 13: Level of compliance of the initial version of the DICE delivery tools with the initial set
of requirements .. 43

1 Introduction
The DICE methodology provides to the DevOps [1] teams a full cycle of DIA development,
including: design, off-line simulation and analysis, configuration, deployment, monitoring,
enhancement and anomaly detection steps. In this methodology, the deployment and configuration
tools represent the crucial enablers for transitioning from design to a runtime of the DIA. In this
report we provide the details on these tools in their intermediate version, which we produced at the
end of Y2.

Like in the initial release [2], this package consists of Delivery Tools, which comprise DICE
Deployment Tool and DICE Continuous Integration, and DICE Configuration Optimisation.
These tools aim to a) provide a simple, reliable and repeatable way of deploying DIAs of various
complexity, b) provide recommendations about the best configuration for the DIA’s deployment,
and c) give insight on the performance improvements or regressions of the DIA.

This report covers the effort of the DICE project’s WP5, specifically T5.1 Deployment plan
execution and T5.2 Continuous integration. The document is a Y2 update of the Y1’s D5.1 DICE
delivery tools – Initial version [2]. We plan to release the final report in M30 in D5.3 DICE delivery
tools – Final version.

In the rest of this section we summarize the changes and improvements since Y1. The Section 2
summarizes the requirements for the DICE delivery tools, extracted from the D1.2 [3]. In the Section
3, we present the top-level architecture of the delivery and configuration tools. In the Section 4 we
present each tool in a deeper technical level, also presenting their usage and validation results.
Finally, in Section 5 we present the conclusions.

1.1 What is new in Year 2
Updates in Y2 to the presented components were an outcome of a development process, which
aimed at a) addressing any open or partially addressed requirements, b) implement any new
requirements, which have arisen from early feedback from the use case providers, and c) to improve
general stability and usability of the tools.

1.1.1 DICE Deployment Tool
Building Big Data clusters has traditionally involved manual process of setting up and configuring
individual nodes and services, which is a lengthy process. With the DICE Deployment Tool, we aim
to make the process of deploying DIAs as simple and painless process as possible. Using OASIS
TOSCA as the format of DIA blueprints, we promote the principle of Infrastructure as Code,
reducing issues of handling and maintaining complex systems to maintaining high-level
“configuration” of the applications in a version control system.

New features and properties of the DICE Deployment Tool include the following:

• Integration with the DICE Deployment Modelling Tool (DICER), which effectively enables
GUI for assisted visual modelling of the deployments and will be reported in M27 in D2.4

• Graphical user web interface, which provides a visual and intuitive way for using most of
the DICE Deployment Tool’s functionality.

• Improved support of the existing DICE TOSCA Technology library technologies (Storm,
Zookeeper, Cassandra) and support for new technologies (Spark, HDFS, YAML, Kafka).

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 10

• Based on the needs of the use case providers, we also supported a node type for running
scripts, enabling basic installation and running options for any other not yet supported
technology.

• Chef Server is not needed anymore, because we have modified the Chef plug-in in Cassandra
to use local Chef-Zero mode.

1.1.2 DICE Continuous Integration
The Continuous Integration service provides regular, scheduled or event-based running of tools that
are important in the DIA development, testing and deployment lifecycle. In the DevOps approach
it is an important element for early feedback of any functional or performance issues with the
application being developed. In DICE, we upgrade its functionality to also store and visualize
application’s performance through development history. We also use it as a glue between
deployment, configuration, quality testing and enhancement steps.

In Y2, we have applied the following updates:

• Integration with DICE Configuration Optimisation
• Added templates for future integration with Quality Testing, Enhancement Tools
• Compatibility with Jenkins version 2.
• Improved appearance of the build history reports.

1.1.3 DICE Configuration Optimisation
The Configuration Optimisation (CO) tool provides a software mechanism to explore alternative
configurations for a DIA and identify the optimal one with respect to a given performance metric
(e.g., throughput, response time, ...). The initial version of this tool, presented in deliverable D5.1 -
DICE delivery tools - Initial version [2], is based on an algorithm, called BO4CO, which drives the
search for an optimal configuration using a technique known as Bayesian Optimisation, which can
cope with variability in the measurements and allow to customize the optimal trade-off between
exploitation of existing measurements and exploration of new configurations. A large-scale
validation has been performed for Storm-based DIA.

In Y2 we have further extended the CO tool and its validation

• Transfer learning algorithm (TL4CO) to reuse measurements for an old version of the
application upon tuning the performance of a new version.

• Integration and test of CO against Apache Hadoop and Apache Cassandra.
• Validation of BO4CO and TL4CO against the application used in the ATC case study.

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 11

2 Requirements
In Deliverable D1.2, the Y1 update [3], we presented the requirement analysis for the DICE project. This
section includes summaries of the requirements that we did not present in D1.2. Also, we have updated the
R5.4.2’s description to better fit the features and goals of the tool and added R5.43 to address privacy and
security aspects. The actors involved include CI_TOOLS, which represent the DICE Continuous Integration
tools, and the DEPLOYMENT_TOOLS, which represent the DICE deployment tool.

ID R5.4.2
Title Translation tools autonomy
Priority Must have
Description: The DEPLOYMENT_TOOLS MUST take all of its DIA-

related input from the DDSM, which directly translate into
the TOSCA model, or from the ADMINISTRATOR set
values. Therefore it MUST NOT require any additional user's
input in an interactive way.

ID R5.4.5
Title Deployment tools transparency
Priority Should have
Description: The DEPLOYMENT_TOOLS SHOULD NOT require from

ADMINISTRATOR to take part in any individual
deployment.

ID R5.4.6
Title Deployment plans extendability
Priority Could have
Description: The DEPLOYMENT_TOOLS MAY be extended by the

ADMINISTRATOR with other building blocks not in the
core set.

ID R5.7.1
Title Data loading hook
Priority Should have
Description: DEPLOYMENT_TOOLS SHOULD provide a well-defined

way to accept the initial bulk data that they can load.

ID R5.27.1
Title Brute-force approach for

CONFIGURATION_OPTIMIZATION deployment
Priority Should have
Description: CONFIGURATION_OPTIMIZATION SHOULD apply

intelligent ML methods in order to enable a sequential

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 12

decision making approach that selects a promising
configuration setting at each iteration.
CONFIGURATION_OPTIMIZATION should find the best
possible configuration at the end within the

ID R5.27.6
Title CONFIGURATION_OPTIMIZATION experiment runs
Priority Must have
Description: CONFIGURATION_OPTIMIZATION MUST be able to

derive the experiment by running the application under test
with specific configuration setting by contacting
DEPLOYMENT_TOOL.
CONFIGURATION_OPTIMIZATION MUST be able to
retrieve the monitoring data regarding the experiments by
contacting MONITORING_PLATFORM.

ID R5.27.7
Title Configuration optimisation of the system under test over

different versions
Priority Should have
Description: CONFIGURATION_OPTIMIZATION SHOULD be able to

utilize the performance data that have been collected
regarding previous versions of the system under test in the
delivery pipeline.

ID R5.27.8
Title Configuration Optimisation's input and output
Priority Must have
Description: CONFIGURATION_OPTIMIZATION MUST be able to

receive a TOSCA blueprint, which describes the application
under test including any initial configuration. It MUST return
a TOSCA blueprint updated with optimal parameters, or a
stand-alone configuration file.

ID R5.43
Title Practices and patterns for security and privacy
Priority Must have
Description: The DEPLOYMENT_TOOLS MUST enable applying

practices and patterns to ensure that the deployed application
is reasonably secure and protecting privacy.

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 13

3 Architecture

3.1 High level architecture
The DICE delivery and configuration tools are the components in the DICE methodology, which
consume the deployment model of the DIA and turn that model into its runtime application
counterpart. The updated DICE architecture document [4] provides an overview across the whole
project and also details interactions between all the DICE components, which are in a dependency
relationship. Figure 1 below shows a zoomed-in detailed view of the architecture.

Figure 1: DICE delivery and configuration tools architecture. Delivery and configuration tools are represented in blue

boxes, while external components are in grey boxes

In general terms, the architecture is in Y2 mostly the same as in Y1. One change worth mentioning
is the addition of the DICER tool, which plays a double role in the delivery tools operations. In one
respect, DICER is a part of the IDE, providing to users a graphical way to author DICE deployment
diagrams (DDSM) and transform them into TOSCA blueprints. In another respect, the
transformation into TOSCA works also from a command line tool or a service. Consequently, the
DICE Deployment Tool accepts the DDSM models along with their TOSCA blueprint counterparts
while the IDE and internally uses DICER to perform the transformation.

The role of Repository is now focused towards storing and versioning application code and models.
The data artifacts such as those from Configuration Optimisation’s iterations data, are now stored
in Continuous Integration with each respective build. The Configuration Optimisation no longer
needs to interact with Continuous Integration service, because the interaction is now one-way from
Continuous Integration, which is a client to Configuration Optimisation.

3.2 Stakeholders and use cases
Stakeholders are the actors who interact with the components and tools. They either require the
features that the components and tools provide, or are involved in the workflow mandated by the
components and tools. We have so far identified the following stakeholders:

● ADMINISTRATOR: involved only for a short time when the delivery and configuration
tools need to be installed or reconfigured.

● DEVELOPER: this is the main stakeholder, who uses the majority of the tools' features.
DEVELOPER actors write code of the application and design the application models.

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 14

They continuously update the application, requiring constant updates to the deployment of
the application in the test bed. They require deployment automation to occur on demand
(occasionally), on schedule or with each new commit into the Version Control System
(VCS). They occasionally require computation of the optimal configuration of their
applications' topologies, but it is also beneficial to obtain periodic improvements of the
configuration.

● ARCHITECT: similar actor to developer, except that they interact with the tools less
frequently and normally only focus on the topology and optimal configuration of the
application's design.

● QA_TESTER: they rely on the Continuous Integration tool to run the functional tests that
they prepare as well as the non-functional tests. They also take advantage of the
applications' deployment in the test bed, where they can, for example, perform A/B testing.

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 15

4 Tools

4.1 Primer: DICE Deployment Modelling DICER
Partners in WP2 have been developing a tool called DICE Deployment Modelling, also known as
DICER. The official report about the tool will only be available in Y3 of DICE. Considering that
we refer to DICER in several places of the D5.2 report, we first make a short introduction to DICER.

In DICE methodology, we endorse DICE UML deployment diagrams for specifying the topology
of the DIAs to be deployed. The DICE UML profile [6] applied to such diagrams results in a DICE
Deployment Specific Metamodel (DDSM), which in turn is what the users will use when modelling
their DIAs.

The DICER tool provides a GUI for visual modelling of DIA DDSMs. It is built as to provide
assisted component-based infrastructure design, providing a complete palette of the DICE supported
components and the ability to guide the user towards a complete deployment model. Figure 2 shows
an example GUI view for DICER, after the user has requested a validation of an incomplete DDSM.
The validation problems dialog provides the user an information about what to add next to the
DDSM.

Figure 2: DICER’s assisted component-based infrastructure design giving a validation warning

Figure 3: DICER tool workflow

The main benefit of the DICER tool is that it is capable of producing a TOSCA blueprint equivalent
to the created DDSM. Figure 3 illustrates the stages that the model goes through before the TOSCA
blueprint is generated. This, in turn, is an input of the DICE Deployment Tool.

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 16

4.2 DICE Deployment Tool
4.2.1 Main components
At the end of M24, the DICE deployment tool is a collection of the following components:

● DICE deployment service version 0.3.4
● DICE TOSCA technology library version 0.2.5
● DICE Chef Cookbooks version 0.1.9 (an extension of the DICE TOSCA technology

library)
● Cloudify 3.4 (provided by the GigaSpaces).

Figure 4: Deployment Diagram of the DICE Deployment Tool

Figure 4 represents a deployment diagram of the DICE Deployment Tool. The entities marked in
blue are from DICE, while the others are from third parties.

4.2.1.1 Deployment Service
The Deployment Service is a RESTful web service, which provides an abstraction of API on top of
the cloud orchestration engine Cloudify. The service is accompanied by a web user interface and a
command line client. This enables a very versatile use of the tool, including:

● interactively via the graphical web interface,
● from the command line interactively or in scripts (e.g., testing and experimenting with

deploys, automating deployments, inclusion in Continuous Integration, integration with or
into text editors such as Sublime Text2),

2 https://www.sublimetext.com/

https://www.sublimetext.com/

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 17

● from web service clients (e.g., IDE plugins).
Since the initial version, we have implemented several improvements and extensions of the
Deployment Service. An important update is inputs management in the Deployment Service.
Inputs in TOSCA are parameters, which can vary between different deployments of the same
TOSCA blueprint. Most of the blueprints require at least the inputs, which provide parameters of
the testbed’s platform, e.g. credentials to the resource provisioning API, identifications of virtual
machine flavours and operating system images. Normally this is a set of parameters that an
administrator sets once for each testbed, so they do not belong with the user’s development space.
It also should not be versioned with the application, but with the testbed’s infrastructure
configuration. The inputs management functionality in the Deployment Service therefore provides
such a single point of setting up relevant inputs. Upon deployment, the service’s logic then smartly
assigns to the deployment only the inputs that the blueprint actually requests. This eases the use of
the Cloudify’s strict matching between the provided and the required sets of the inputs.

The Deployment Service also supports an integration with DICE Monitoring Tool [7]. The
majority of configuration and interactions with DICE Monitoring Tool are within the TOSCA
technology library and their related Chef Cookbooks, but Deployment Service can be instructed to
register an application with the DICE Monitoring Tool. This marks an execution runtime of an
application and its deployment metrics for any downstream services, which need to analyse the
metrics from the DICE Monitoring Tool.

Considering that the DICE Deployment Service is a central service, the Administrator needs to
install it in or at the target test bed.

4.2.1.2 TOSCA technology library
The DICE TOSCA technology library is a collection of TOSCA node and relationship types,
Cloudify plug-ins and references to DICE Chef Cookbooks. They enable generating or authoring
TOSCA blueprints for DIAs without having to explicitly specify any scripts or configuration
procedures for installing the DIA components. In its version 0.2.5, support for the following
technologies is available:

● Zookeeper3
● Apache Storm4, including user’s Storm topology
● Apache Spark5 in a stand-alone mode, including user’s Spark topology
● Apache Cassandra6
● Apache Kafka7 (without any relationships)
● Hadoop File System8
● Apache YARN9
● User’s custom script (in bash or Python)

3 https://zookeeper.apache.org/
4 https://storm.apache.org/
5 https://spark.apache.org/
6 https://cassandra.apache.org/
7 https://kafka.apache.org/
8 http://hortonworks.com/apache/hdfs/
9 http://hortonworks.com/apache/yarn/

https://zookeeper.apache.org/
https://storm.apache.org/
https://spark.apache.org/
https://cassandra.apache.org/
https://kafka.apache.org/
http://hortonworks.com/apache/hdfs/
http://hortonworks.com/apache/yarn/

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 18

Additionally, the DICE TOSCA technology library abstracts the concepts for a firewall in the
network and a compute node’s network address, which is selected from a pool of addresses visible
from the user’s LAN (a floating address).

Most of the supported components require that the nodes hosting them have discoverable fully
qualified domain names (FQDN). The only practical way of addressing this requirement is to use a
DNS service. DICE provides a blueprint, which installs an open source DNS server on the node
hosting the DICE Deployment Service, configured to handle only the dynamically created nodes.
The TOSCA technology library then installs a DNS agent to handle the FQDNs of the nodes. This
hugely simplifies work with the Big Data services.

The DICE TOSCA technology library itself is a Cloudify plug-in, hosted in GitHub. Therefore it
requires no installation, because Cloudify fetches it with each deploy.

4.2.1.3 Chef Cookbooks
Chef in DICE is the chosen technology for configuration management of the nodes to be installed
for the DIA. They work as a regular set of Cookbooks, but the recipes in each Cookbook are
structured around the following phases in TOSCA orchestration:

● creation or installation of a service, which can be carried out for all services in the DIA
independently from any other service,

● configuration of the node, which may require knowledge of other nodes that provide some
capability that this node depends on,

● starting of a service.
While these Cookbooks may be used manually with a Chef client, they are better suited to be used
by the Cloudify orchestrator. They too require no special installation, but get fetched by the Cloudify
from a repository (e.g., GitHub) whenever they are required.

4.2.1.4 Cloudify
Cloudify is a cloud automation and orchestration engine. In DICE, we use it as a back-end for the
actual TOSCA blueprint deployment. At the end of Y2, Cloudify is still the most functional and
reliable solution for consuming TOSCA blueprints. The code base is maintained by a third party,
the GigaSpaces.

Given that the code is open source, we were able to provide certain improvements to the existing
functionality. First off, we provided code updates to the OpenStack plug-in, which enables that the
Cloudify functions properly on top of the OpenStack Mitaka release. Our updates are now a part
of the official Cloudify’s development branch.

Additionally, we modified the Chef plug-in such that it does not require Chef Server, but always
uses the Chef-Zero mode.

4.2.2 Tools usage
DICE Deployment Service provides logical deployment containers as receptacles of blueprints to
be deployed. Figure 5 illustrates this concept: a blueprint submitted to a particular container will
result in a deployment associated with that container. A new blueprint submitted to a logical
deployment container, which has an already associated deployment, will result in a new deployment
that will replace the previous one. In the figure, Blueprint B.1 has previously been deployed in

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 19

Logical Container 2. But then the users improved the application, resulting in the Blueprint B.2.
After submitting this blueprint to Logical Container 2, the previous deployment has been removed
and a new one installed. Users can create as many logical deployment containers as needed, for
instance to use for personal experimentation of a new technology, specific branches in Continuous
Integration, or for manual acceptance testing of new releases.

Figure 5: Illustration of Deployment Service’s usage.

The general usage of the DICE Deployment Tool has remained the same as described in the previous
report [2]. Normally, we would start with the DICER tool, where we create a DICE deployment
model of our DIA. With DICER, we transform the deployment model into a corresponding TOSCA
blueprint. Alternatively, we can create the blueprint by modifying the provided examples10 or
creating one from scratch.

A notable change from the blueprints in Y1 is that we can now refer to all the needed TOSCA plug-
ins and imports from a single import line, as shown by Listing 1.

tosca_definitions_version: cloudify_dsl_1_3

imports:
 - http://dice-project.github.io/DICE-Deployment-Cloudify/spec/fco/0.2.5/plugin.yaml

Listing 1: Header of a TOSCA blueprint of a DIA that will be deployed in an FCO

As shown in the example, the required Cloudify DSL version of the TOSCA blueprint is now 1.3,
which is an update from version 1.2 in Y1. A subpath of the imports line also visibly suggests
that the blueprint will work on an OpenStack deployment. To target the blueprint to another
platform, e.g. an OpenStack, simply replace fco with openstack in the URL and submit it to the
DICE Deployment Service instance running in an OpenStack testbed.

We illustrate further benefits of the updated TOSCA library on Listing 2.

10 https://github.com/dice-project/DICE-Deployment-Examples

https://github.com/dice-project/DICE-Deployment-Examples

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 20

 StormMasterSecurityGroup:
 type: dice.firewall_rules.storm.Nimbus

 StormMasterVM:
 type: dice.hosts.ubuntu.Medium
 relationships:
 - type: dice.relationships.ProtectedBy
 target: StormMasterSecurityGroup

 StormNimbus:
 type: dice.components.storm.Nimbus
 properties:
 monitoring:
 enabled: true
 relationships:
 - type: dice.relationships.ContainedIn
 target: StormMasterVM
 - type: dice.relationships.storm.ConnectedToZookeeperQuorum
 target: ZookeeperCluster

 WordCount:
 type: dice.components.storm.Topology
 properties:
 monitoring:
 enabled: true
 application: resources/wordcount.jar
 topology_name: dice-wordcount
 topology_class: org.apache.storm.starter.WordCountTopology
 relationships:
 - type: dice.relationships.storm.SubmittedBy
 target: StormNimbus

Listing 2: An example of a node template declaration in a blueprint for Storm

As illustrated, all the node template types and the relationship types are from the DICE deployment
library and start with the “dice.“ prefix. We have replaced the more generic node types and
relationship types as well as the platform-specific ones with our own. For instance:

● dice.firewall_rules.storm.Nimbus represents a security group or a firewall that
enables only the ports needed by Storm’s nimbus to pass through. The user doesn’t need to
know any of these ports, because we set them in the library.

● dice.hosts.ubuntu.Medium will make the orchestrator instantiate a virtual machine of
a medium flavour and with Ubuntu as its OS. The flavour specification and the base image
to be used in provisioning this virtual machine have been set by the Administrator in the
DICE Deployment Service, so again the user doesn’t have to set any additional parameters
or supply inputs.

● dice.components.storm.Nimbus type defines a Storm platform’s nimbus (i.e., a
Storm cluster master) node. Like in Y1, this makes the Cloudify use the Chef runlist
declared in the library to install, configure and start the Storm’s nimbus service and all the
libraries that are required. The StormNimbus node template also has a property
monitoring set to { enabled: true }. As a result, this node will be connected to the
DICE Monitoring Tool [4] at the address defined by the Administrators.

● dice.components.storm.Topology type enables that a user’s own Storm application
gets submitted to the Storm cluster defined in the blueprint.

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 21

● dice.relationships.storm.SubmittedBy is a relationship type, which tells
Cloudify that it should use the target node as a submission point of the supplied
application.

In Y1, the DICE Deployment Services supported submission of only the blueprint YAML file as an
input for the deployment. This mode is still supported, and it works fine for the applications that
either do not need any artifacts such as .jar files or data dumps, or if these artifacts are available
for download at a network address. But for a more dynamic environment such as the IDE, where
the compiled libraries can quickly change, it is more convenient to bundle the blueprint with all
the additional resources and submit the bundle for deployment. Cloudify already supported this
mode, and in Y2 we have enabled it for the DICE Deployment Service as well. Now we can
reference .jar files with the user’s Storm topology (in dice.components.storm.Topology),
Spark application (in dice.components.spark.Application), the user’s script file (in
dice.components.misc.ScriptRunner) or any other similar resource as a file path in the
bundle.

Figure 6: An example view of the DICE Deployment Service’s web GUI.

Continuing from the example from the extract in Listing 2, the blueprint needs to be bundled into a
.tar.gz file with the application .jar file. Listing 3 shows an example content of such a bundle.

└── wordcount
 ├── blueprint.yaml
 └── resources
 └── wordcount.jar

Listing 3: Contents of an example blueprint bundle for Storm word count

This bundle is ready to be submitted to a logical deployment container of choice. The deployment
takes several minutes of time, the duration being dependent on complexity of the blueprint and
available resources in the test bed. The web GUI will display the rough progress of the deployment.

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 22

When the deployment is finished, it will result in a view similar to that in Figure 6, where a table
will display any outputs declared in the blueprint. In the shown example, the view contains an URL
to the web user interface of the Storm’s nimbus node that the user can click and navigate to the
Storm cluster interface.

4.2.3 Validation and results
The goal of the validation is to prove that the tools function as intended. For the DICE Deployment
Service, the expected behaviour can be summarized by a specification in the Gherkin11 language
[10] as shown in Listing 4. For the tool to be usable and reliable, the sequence described in the
behaviour needs to work in the prescribed manner every time even after a high number of
executions.

Given that a DICE Deployment Service instance is available at 'URL'
And the logical deployment container 'CONTAINER_UUID' is available
And I have a blueprint for a Storm application in '/home/matej/storm-wordcount.tar.gz'
When I submit my blueprint to container 'CONTAINER_UUID' at 'URL'
Then the deployment to 'CONTAINER_UUID' should succeed in less than 90 minutes
And the deployment's outputs should provide values for nimbus_url and topology_id
When I query for the topology with topology_id at nimbus_url
Then the Storm topology should be running

Listing 4: A specification for the expected behaviour of DICE Deployment Service when deploying a Storm
application

The listed behaviour applies to a Storm topology, where we based the success criteria on the
requirement that the Storm topology is live and running at the end of the sequence. More granular
criteria such as the correct operation of the Storm topology is beyond the scope of the validation,
because it already belongs to the functional testing of the application’s logic itself.

We can devise similar behaviours for other supported technologies.

In our validation runs, we were able to consistently and reliably execute the required sequence.
However, we did find that the reliability of the deployment strongly depends on the reliability of the
underlying platform. If the test bed is too heavily loaded with tasks that take up a lot of I/O
bandwidth, then parts of the deployment process would sporadically time out and fail. Also the
platform manager needs to be able to reliably provision and release network addresses. We argue
that in the first case, such a test bed is not usable for any serious use, because it would starve regular
applications and processes as well. In the second case, the issue is also outside the scope of DICE.

Another important validation criterion for the DICE Deployment Service is one we have already
expressed: the deployments need to succeed in a reasonable time. In Listing 4 we have set the upper
limit to conservative 90 minutes. Compared to a traditional approach where we perform deployment
of all services manually, this goal represents several levels of magnitude in improvement: hours
instead of days or weeks. However, since we are aiming for a DevOps approach, the less time spent
spinning up a new deployment means a faster feedback on the quality of the deployed application.

To quantify the time needed to deploy a blueprint, we ran repeatedly a selected set of blueprint
deployments and timed their durations from submission into an empty logical deployment container
until the DICE Deployment Service declared that the deployment has succeeded. We measured the

11 https://cucumber.io/docs/reference

https://cucumber.io/docs/reference

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 23

time required for complete teardown of a blueprint in similar manner: we took a fully deployed
blueprint, started teardown procedure and measured the time until the DICE Deployment Service
reported termination.

Table 1 shows the results. We ran the experiments on XLAB’s internal OpenStack Mitaka. The Max
level of dependence column represents the length of the longest path in blueprint’s dependency
DAG, not counting any virtual resources that are created almost instantly. For example, level 1
represents an application with services that are all peers and where none of the services depends on
any other service. Level 2 represents a two-tier application, where a service (e.g., a database) needs
to be deployed before another one (e.g., an application) can be deployed and configured. Figure 7
graphically shows these results, with the orange line representing median values, the boxes extend
from the lower to upper quartile values of the data, and the whiskers extend over complete range of
the data. The labels on the x axis correspond to the Code name column in Table 1.

Table 1: Summary and results of timing deployments

Blueprint Code name Technologies used Max level of
dependence

Deployment
time [s]

Teardown
time [s]

Storm WordCount wordcount Zookeeper, Storm 3 445 70
Spark Pi sparkpi Spark 3 442 55
Storm WikiStats wikistats Zookeeper, Storm,

Cassandra
4 480 85

Hadoop cluster Hadoop Hadoop 4 550 65
Data pipeline kafka-pipe Zookeeper, Kafka,

Cassandra, user scripts
4 510 70

Figure 7: Blueprint deployment times

From the table, we can see that the deployment times are roughly correlated with the max level of
dependence. The biggest range of the deployment time is for the Data pipeline due to intermittent
delays introduced by the difficulties in our testbed.

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 24

Figure 8 illustrates further details on the timings of a particular deploy for Hadoop, where the
scheduling due to dependencies is clearly visible. The node templates named *_ip_* and *_fw_*
instantiate into OpenStack’s floating IP and security group (firewall) instances, respectively, which
takes a minimal time to perform. Then the *_vm_* nodes follow, bringing up the virtual machines.
Then the service configuration can follow: first, the name node, which has to exist before any other
nodes can work, following by the resource manager and data nodes, all in parallel. Finally, the
orchestrator instantiates the node managers.

Figure 8: Apache Hadoop deployment timeline

4.2.4 Obtaining Deployment Tool
The DICE Deployment Tool is available on GitHub in multiple components:

● https://github.com/dice-project/DICE-Deployment-Service – the thin wrapper and the
RESTful web service interface of the DICE Deployment Tool.

● https://github.com/dice-project/DICE-Deployment-Examples – example blueprints for all
the supported technologies.

● https://github.com/dice-project/DICE-FCO-Plugin-Cloudify – the client for the FCO and
the plug-in used by the Cloudify TOSCA blueprints for orchestrating deployments in the
FCO.

● https://github.com/dice-project/DICE-Deployment-Cloudify – this repository contains the
TOSCA definitions and the scripts for supporting the configuration of the supported Big
Data services.

● https://github.com/dice-project/DICE-Chef-Repository – Chef repository with the
cookbooks that the TOSCA definitions refer to.

https://github.com/dice-project/DICE-Deployment-Service
https://github.com/dice-project/DICE-Deployment-Examples
https://github.com/dice-project/DICE-FCO-Plugin-Cloudify
https://github.com/dice-project/DICE-Deployment-Cloudify
https://github.com/dice-project/DICE-Chef-Repository

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 25

4.3 DICE Continuous Integration
4.3.1 Main components
The DICE Continuous Integration comprises the following components:

● Jenkins Continuous Integration12, a popular and powerful open source solution, currently
at version 2.36 (the long-term support version),

● DICE Jenkins plug-in, which collects quality testing performance results and visualises
them in Continuous Integration project summary,

● sample job configurations for DICE tools.

Figure 9: Deployment diagram of the DICE Continuous Integration

Figure 9 shows an example deployment of the DICE Continuous Integration. Components created
by DICE are highlighted in blue. In this set-up, the Jenkins runs as a central service. The main
Jenkins node is complemented by Jenkins Worker nodes, which are running on the remote nodes
that are hosting DICE tools such as Configuration Optimisation on an Enhancement Tool. The DICE
tool project on the diagram represents a generic Continuous Integration project, which runs the
DICE tool on top of a user’s DIA.

We provide additional details on the set-up in the following subsections.

4.3.2 Tools usage
Jenkins Continuous Integration runs as a central service, which has access to the test bed. The web
user interface of Jenkins, in turn, has to be accessible to the users from their development
environment. The Administrator also has to install the DICE plug-in.

12 https://jenkins.io/

https://jenkins.io/

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 26

4.3.2.1 Build performance monitoring
The DICE plug-in is suitable for handling any Continuous Integration job, which results in a report
on the application’s performance. In DICE, both the Quality Testing tool and the Configuration
Optimisation tool. The purpose of this exercise is to provide build performance monitoring, i.e., the
ability to see the history of the general performance of the history of DIA’s versions, e.g., average
or maximum latency, batch processing time etc. In this context, we are not handling high-granular
runtime performance monitoring, because that is available from DICE Monitoring Tool’s Kibana
service [4].

The user needs to first create a Jenkins freestyle type project, configured such that it is able to obtain
from a VCS (Git, SVN, …) the application to be tested. The project needs to have one or more build
steps, which execute the load testing of the application under test. The result of the build steps has
to be a JSON file in a fixed path within the workspace. For example, the test might create a file
results/metrics.json with contents shown in Listing 5.

{ "latency": 2.3, "throughput": 3 }
Listing 5: An example JSON file containing build’s performance metrics

The project then needs to have a post-build action named DICE’s Quality check. Figure 10 shows
an example view of the setting, which will ensure that the DICE plug-in will capture the metrics
output file after the end of each build run.

Figure 10: Configuring the DICE plug-in’s post-build action in the build settings

We recommend to also add a post-build action typed Archive the artifacts. On the artifacts list add
the results/metrics.json file and any output files that are a side product of the load generating
tool. This is in particular useful if the next executions will benefit from results of the current run.

With these project parameters set, the project’s job can now execute one or more builds. When the
user then visits the project page in Jenkins, the result will be similar to the one on Figure 11. This
view shows several interesting features:

● On the left side in the navigation list, the link DICE graph leads to a custom page
described later in this section.

● On the right side of the page, a graph is showing past builds’ results.
● In the middle, Jenkins provides links for the last successful build’s artifacts (Last

Successful Arifacts). We can see the metrics.json entry containing the previous
(assuming it was successful) build’s testing outputs. These artifacts have a well-defined
URL, e.g.: http://jenkins-address.lan/jenkins/job/WikiStats-
QT/lastSuccessfulBuild/artifact/mock-qt/results/metrics.json

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 27

Figure 11: Example view of the project’s status.

Clicking on the DICE graph link brings the user to a more detailed view of the history of the builds.
Figure 12 shows an example of this view.

Figure 12: DICE Quality Testing history view in the Jenkins Continuous Integration.

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 28

4.3.2.2 Scheduling DICE tools
As already described, DICE Continuous Integration can serve as a glue between DICE components
in the DICE DevOps methodology. In this section, we provide specific instructions on how to create
projects that use other DICE tools. We assume that the central Jenkins node has already been
installed and configured by the ADMINISTRATOR.

In setting up the DICE environment, ADMINISTRATOR installs the DICE tools (Configuration
Optimisation, Enhancement Tools, etc.) on one or more dedicated nodes in the test bed. We
recommend that the ADMINISTRATOR also installs a Jenkins worker on each DICE tools host.
This will make the execution of the Continuous Integration jobs easier, because Jenkins will take
care of transmitting all the necessary files from and to the main Jenkins service. Another benefit is
that we can prepare the build step scripts as if they are being executed locally to the DICE tools
installations (because they actually will be).

The ADMINISTRATOR then needs to add new nodes in Jenkins control panel and assign proper
tags that reflect what tools are available on this node. This will enable filtering out the workers
actually capable of running the tool relevant for the Continuous Integration projects.

For each of the DIA project (i.e., a branch in the VCS containing the DIA’s development line) and
for each DICE tool, the ADMINISTRATOR needs to create a new Jenkins project and set run
restrictions based on the assigned tags from previous step.

Table 2 summarizes the main settings to be set for a Configuration Optimisation project. The
Configuration Optimisation wrapper run_bo4co.sh optimizes configuration for selected blueprint
and stores final result. These results are then archived by the Jenkins and displayed using DICE
Quality Check Jenkins plugin.

Table 2: Continuous Integration project for scheduling Configuration Opt

Tool Configuration Optimisation

Source Code
Management

Configure source of input data for this project (blueprints, configuration,
etc.).

Build step Execute shell:
configuration_optimization/run_bo4co.sh $BLUEPRINT $PARAMETERS

Post-build
Action

Archive the artifacts:
results/*

Post-build
Action

DICE’s Quality check:
results/summary.json

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 29

Table 3 illustrates setting up a Quality Testing project. Quality Testing wrapper run_qt.sh runs
selected application on variety of inputs and returns one or more quality metrics. These metrics are
archived by Jenkins and displayed using DICE Quality Check plugin.

Table 3: Continuous Integration project for scheduling Quality Testing

Tool Quality Testing Tool

Source Code
Management

Configure source of input data for this project (blueprints, configuration,
etc.).

Build step Execute shell:
quality_testing/run_qt.sh $BLUEPRINT

Post-build
Action

Archive the artifacts:
output/result.json

Post-build
Action

DICE’s Quality check:
results/summary.json

We assume that the tool will expose a RESTful interface with a simple call for triggering the tool,
which will then handle the VCS updates and commits on its own. For this type of tool, no local
Jenkins worker is required, as long as the RESTful interface of the tool is accessible from the main
Jenkins node. The Enhancement tool wrapper run_et.sh takes care of notifying the tool to start
running, complete with the proper parameters. Table 4 illustrates a set-up of such a project to run
such a tool.

Table 4: Continuous Integration project for scheduling Enhancement Tool

Tool Enhancement tool

Build step Execute shell:
enhancement/run_et.sh $APPLICATION_ID $SCM_REFERENCE

Post-build
Action

Archive the artifacts:
output/*

4.3.3 Validation and results
Validation of the DICE Continuous Integration was informal in its nature. Our methodology was to
create mock-ups of DICE services and scheduled a series of projects to run periodically and on-
demand. We have visually inspected the results in the Jenkins web interface. The criteria for passing
the validation were the following:

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 30

● It is possible to create Continuous Integration projects, which run long-running jobs on
schedule or on VCS update.

● The build results are available for subsequent builds. They are also available for later
download in the CI repository.

● Quality testing summary results are available as a graph and as a table. The history gets
updated with each new build.

We successfully validated the tool on all criteria. This complements the validity checks of the
behaviour of our DICE plug-in for Jenkins through test-driven development.

4.3.4 Obtaining DICE Continuous Integration
The DICE Continuous Integration tool consists of the standard Jenkins [21] install and a plug-in,
which is available at the GitHub:

● https://github.com/dice-project/DICE-Jenkins-Plugin

4.4 Configuration Optimisation
4.4.1 Main components
The DICE Configuration Optimisation is a single tool, which can be run from the command line. It
externally relies on the DICE Deployment Service for deploying the applications that are subject to
optimisation, and the DICE Monitoring Tool for collecting the metrics.

Internally, the Configuration Optimisation used BO4CO in its first iteration [2]. In the current
release the use of the CO tool with the BO4CO algorithm introduced in [2] was extended to the
Apache Hadoop-based DIAs. The objective was the same as for the Storm-based DIAs: to find
optimal configuration settings for the application when having experimental or computational
budget restrictions. Additionally, the new concept – TL4CO – is introduced and tested as a part of
the CO tool. TL stands for ‘transfer learning’ and means that optimisation algorithm at the core of
the CO tool is initialised using the information from previous configurations. This allows the
algorithm to converge faster to the same solution as BO4CO. The sections below describe the
contributions in further detail.

4.4.1.1 BO4CO Recap
The problem of finding a global optimal configuration in the configuration space is known to be
computationally complex. The heart of the DICE CO tool - BO4CO algorithm, presented in detail
in the deliverable D5.1 [2], is able to find the best possible local optimum (and, hence, the
application configuration settings corresponding to it) with the limited experimental budget.

BO4CO is a new auto-tuning algorithm which adopts Gaussian Processes (GPs) to iteratively
estimate the mean and confidence interval of a response variable (such as application’s latency,
throughput etc.) at the part of configuration space that has not been searched and sequentially drives
the experimentation. BO4CO estimates the response surface (the surface of all possible solutions)
of the system using historical performance data of a specific metric. According to the estimate it
selects the next configuration which is located in the most promising region of the surface and runs
an application with this configuration to obtain the input data for the next iteration. After a
sufficiently large number of iterations BO4CO will eventually find an optimal configuration
meeting the application developer’s requirements and Service-Level Agreements (SLAs) [2].

https://github.com/dice-project/DICE-Jenkins-Plugin

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 31

Figure 13: Illustration of BO4CO workflow (a) initial observations; (b) a GP model fit; (c) choosing the next point; (d)

refitting a new GP model.

The BO4CO algorithm is illustrated in the Figure 13. At the beginning BO4CO uses Latin
Hypercube Design (LHD) to produce an initial design, mainly because LHD ensures that the
configuration samples are representative of the configuration space and can be taken one at a time,
which is considered to be efficient in the high-dimensional spaces. After that, a GP model is fit to
the observations obtained by running the application with the initial design generated in the previous
step. Then, the model is used to calculate the selection criteria. The process is repeated until the
configuration that can maximise the selection criterion is found.

To use this tool, the developer specifies which configuration parameters they are interested in and
gives each parameter a range or possible values. Then the CO tool automatically selects the next
configuration to be tested and, once this configuration has been measured, the performance data will
be stored into the performance data repository in order to be used in the BO4CO algorithm. The
sequential process continues until the maximum experimental budget has been reached and dumps
the relatively optimal configuration for the application tested.

4.4.1.2 Transfer Learning for Configuration Optimisation (TL4CO)
Transfer Learning for Configuration Optimisation (TL4CO) is the evolution of the BO4CO
algorithm used as a core of the DICE CO tool.

4.4.1.2.1 Introduction

Current solutions for developing more efficient configuration methods focus on improving the
search mechanisms. We propose a different perspective, a DevOps-compliant solution that exploits
the knowledge that has been gained in one system to accelerate the tuning of other similar systems.
For example, significant correlations between the performance data of different versions of a system

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 32

were observed. We hypothesise that if we initialise the optimisation algorithm with the performance
data from previous application versions instead of the performance data from the Latin Hypercube
experiments, it would speed up the configuration tuning [11]. This is a reasonable assumption to
make, because the previous configurations – even though they might not be optimal – would be
‘closer’ to the optimum than the Latin Hypercube Design.

We address the problem of finding optimal configurations under the following restrictions: (i) a
configuration space composed of multiple parameters; (ii) a limited experimental budget is
available; (iii) experimental data contains measurement noise. In this context, we demonstrate that
transfer learning significantly contributes to the configuration optimisation process. While the
literature on performance tuning (also known as auto-tuning [12]) is abundant with existing
solutions for networked systems, databases, batch and stream processing, systems that address some
of the above challenges (e.g., rule-based [13], design of experiments [14], model-based [12], [15],
[16], [17], [18], search-based [17], [19], [20], [21], [22], [23], [24] and learning-based [25]), we
only found one study that considers transfer learning [11].

Specifically, we propose TL4CO – an algorithm that leverages Multi-Task Gaussian Processes
(MTGPs) [26] to continuously estimate the mean and confidence interval of the system performance
at yet-to-be explored configurations. Using Bayesian Optimisation [27], the configuration
optimisation process can account for all the available prior information, the acquired data on the
current version, and apply a variety of kernel estimators [28] to locate regions where optimal
configurations may reside. The key benefit of MTGPs over GPs that we benefit from in this work
is that the prior information helps the model to converge to more accurate predictions much earlier.
To validate the significance of transfer learning, we run the CO tool with TL4CO initialisation on
the NoSQL benchmark (Apache Cassandra) and complex event processing application Social
Sensor [29].

4.4.1.2.2 The need for transfer learning: a motivating example.

WordCount is a popular benchmark [30] that counts the number of words in the incoming stream.
A Processing Element (PE) reads the input messages from a data source and pushes them into the
system. The sentences are then split by the Splitter component and then counted by a Counter.

Figure 14 (a,b,c,d) shows the response surfaces for 4 different versions of WordCount, where
splitters and counters, as configuration parameters, are varied. WordCount υ1; υ2 (also υ3; υ4) are
identical in terms of the source code, but the deployment is different (we have deployed several
other systems that compete for capacity in the same cluster). WordCount υ1; υ3 (also υ2; υ4) are
deployed on a similar environment, but they differ in terms of the source code (we have artificially
injected delays in the source code in the latter versions).

We have measured the correlation coefficients between the four versions. They are summarised in
the Table 5 (upper triangle shows the coefficients while lower triangle shows the p-values). The
correlations between the response functions are significant (p-values are less than 0.05). However,
the correlation differs from version to version, and also some versions have inverse correlations
(e.g. υ1; υ3). Also, more interestingly, different versions of the system have different optimum
configurations: xυ1 = (5; 1); xυ2 = (6; 2); xυ3 = (2; 13); xυ4 = (2; 16). Current practices do not
systematically use the knowledge gained from previous versions for performance tuning of the

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 33

current version under test despite such significant correlations [31]. The main reason is that the
inherent search and optimisation techniques in current tuning methods cannot exploit the historical
data to accelerate the sample generation or restrict the search space.

The response functions f(·) of the Figure 14 represent the dependency between the application’s
data-processing time (latency) and two configuration parameters – counters and splitters, for each
of the four WordCount versions described above. These functions are strongly non-linear, non-
convex and multi-modal. The performance difference between the best and worst settings is
substantial, e.g., 65% in v4, providing a case for tuning. Moreover, the non-linear relations among
the parameters imply that if one tries to minimise latency by acting just on one of the parameters,
this may not lead to a global optimum [17].

Figure 14: The response functions corresponding to 4 versions of WordCount that are different in terms of either code
or infrastructure

Table 5: Performance measurements across different versions are significantly correlated, Pearson (Spearman)
coefficients

 v1 v2 v3 v4
v1 1 0.41 (0.49) -0.46 (-0.51) -0.50 (-0.51)
v2 7.4e-06 (5.5e-08) 1 -0.20 (-0.27) -0.18 (-0.24)
v3 6.9e-07 (1.3e-08) 0.04 (0.003) 1 0.94 (0.88)
v4 2.5e-08 (1.4e-08) 0.07 (0.01) 1.2e-52 (8.3e-36) 1

4.4.2 Tool’s usage
The tool works from the command line. The experiment details to be carried out are encoded in the
configuration file with the relative path conf/exp_mt_config.yaml.

The configuration file is comprised of several important parts: runexp specifies the experimental
parameters, services comprises the details of the services which the CO tool uses, application
contains the details of the application (e.g., Storm topology and the associated Java classes), and,
most importantly, the details of the configuration parameters are specified in the vars field.

Listing 6 shows an example of parameters which specify the experimental budget (i.e., total number
of iterations), the number of initial samples, the experimental time, polling interval and the interval
time between each experimental iterations, all in milliseconds:

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 34

runexp:
 numIter: 100
 initialDesign: 10
 ...
 expTime: 300000
 metricPoll: 1000
 sleep_time: 10000

Listing 6: Example experiment settings in the TL4CO configuration file

Listing 7 demonstrates how to specify the configuration parameters that the CO tool will use in the
optimisation process. The definition is complete with the name of the parameter, the names of the
nodes in the DDSM/TOSCA model of the DIA, and various parameters defining the search space.

vars:
 - paramname: "mapreduce.map.memory.mb"
 node: ["namenode"]
 options: [128 512 1024 2048 4096]
 lowerbound: 0
 upperbound: 0
 integer: 0
 categorical: 1

Listing 7: Example of the specification of the target DIA’s configuration parameter in the TL4CO’s configuration file

To run the CO tool with TL4CO, the user then simply runs the start-up script, as shown in the Listing
8.

$./run_tl4co.sh
Listing 8: Running the TL4CO from the command line

4.4.3 Validation and results
4.4.3.1 BO4CO for Apache Hadoop
4.4.3.1.1 Hadoop Configuration Parameters

There are hundreds of configuration parameters in Hadoop, and they can be infrastructure-specific
or application-specific. Hadoop provides default values for each configuration parameter which are
put in the default XML parameters files and are inaccessible to users. Users can change settings by
changing the non-default empty configuration files. There are three ways to change the
configuration parameters: through hard-coding them in the application, through XML files (change
them manually) and through command line interface [32].

Hadoop provides Configuration class and Set() method that allow users to access configuration
parameters and change parameters’ values within the application, as shown on the Listing 9.

Listing 9: Setting configuration parameters in the application code

It is also possible to set parameter values directly in the XML files provided by Hadoop. Users can
put property-value pairs into core-site.xml, hdfs-site.xml, mapred-site.xml and yarn-
site.xml. Listing 10 shows an example for how to set basic parameters in hdfs-site.xml.

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 35

Listing 10: Setting configuration parameters via XML files

Users can also change default parameter values in the command line interface when submitting a
Hadoop job. There are methods for shell scripts like -conf and -D which allow users to specify
the configuration settings. Listing 11 shows an example of modifying configuration parameters
when submitting a job via the command line interface.

Listing 11: Setting configuration parameters via command line

In this report we focus on the parameters that might affect Hadoop’s performance. Hadoop
configuration parameters potentially affecting its performance can be classified into three broad
categories: related to the CPU utilisation, I/O and memory utilisation [32].

4.4.3.1.2 CPU-related Hadoop configuration parameters.

As shown in the Table 6, there are some parameters which might directly affect the CPU
performance.

A good configuration parameters tuning strategy is necessary for better CPU performance for a
Hadoop job.

Table 6: CPU-related Hadoop configuration parameters

Parameter name Default value Description
mapred.map.tasks 2 number of map tasks executed per job
mapred.reduce.tasks 1 number of reduce tasks executed per job
mapred.tasktracker.map.
tasks.maximum 2 number of map tasks executed simultaneously by

a task tracker per job
mapred.tasktracker.reduce.
tasks.maximum 2 number of reduce tasks executed simultaneously

by a task tracker per job
mapred.map.tasks.
speculative.execution

true if true, then multiple instances of some map tasks
may be executed in parallel

mapred.reduce.tasks.
speculative.execution true

if true, then multiple instances of some reduce
tasks may be executed in parallel

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 36

4.4.3.1.3 Memory-related Hadoop configuration parameters

As shown in Table 7, there are some parameters which might directly affect the memory
performance.

Memory availability can influence how long a task would take to finish.

Table 7: Memory-related Hadoop configuration parameters

Parameter name Default value Description
mapreduce.map.memory.mb 1024 memory limit for map task
mapreduce.reduce.memory.mb 1024 memory limit for reduce task
mapreduce.task.io.sort.mb 100 memory limit when performing sorting task
mapreduce.task.io.sort.factor 10 number of streams to be merged when

performing sorting task
mapred.child.java.opts -Xmx200m memory heap-size required

4.4.3.1.4 I/O-related Hadoop configuration parameters

As shown in the Table 8, there are some parameters which directly affect the performance of I/O.
I/O parameters have a significant impact on the speed of the HDFS read and write operations.

Table 8: I/O-related Hadoop configuration parameters

Parameter name Default value Description
dfs.blocksize 134217728 block size in bytes for file
dfs.replication 3 number of blocks replicated

mapreduce.map.output.compress false
decide whether map output is
compressed or not

mapreduce.output.fileoutputformat.
compress.type RECORD compression type of job output

mapreduce.map.output.compression.
codec

org.apache.hadoop.io.
compress.DefaultCodec

compression codec when map outputs
are compressed

There are a lot of parameters that need to be set for Hadoop and tuned independently for each
application, since different applications have different features. Each new release of Hadoop might
deprecate some parameters as well as introduce new parameters which makes manual configuration
tuning process even more labour-intensive.

4.4.3.2 Experiments and evaluation
4.4.3.2.1 Testbed setup

We use a cluster of three VMs to perform tests, including one NameNode and three DataNodes. The
master node is both NameNode and DataNode. All the VMs used for testing are hosted on the
Imperial College’s Infrastructure-as-a-service private cloud based on Apache CloudStack. The host
name of master node is ‘cloud-vm-47-223’. The operating system of the Master node of the cluster
is Ubuntu v15.10 and the hardware statistics are shown in the

Table 9 and Table 10:

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 37

Table 9: Master Node Hardware

Item Value
Number of CPU cores 2
CPU, MHz 1000
Memory, MB 3072
Disk size, GB 30

Table 10: Slave Node Hardware

Item Value
Number of CPU cores 2
CPU, MHz 2000
Memory, MB 2048
Disk size, GB 100

The host names of slave nodes are ‘cloud-vm-45-22’ and ‘cloud-vm-45-25’ respectively.

4.4.3.2.2 Test plan

We use 1GB dataset to perform the tests on two different widely-used Hadoop MapReduce
benchmark applications – Wordcount [30] and Terasort [33]. WordCount was introduced earlier
in the Section 4.4.1.2.2, and Terasort measures the amount of time it takes to sort 1 TB of
randomly distributed data. We test each application with two configurations: two and five parameter
configurations (we vary these parameters while the rest remain unchanged throughout the
experiments). For two-parameter experiments we chose mapreduce.job.reduces and
mapreduce.tasktracker.reduce.tasks.maximum because they influence each other during the
job execution [34]. For five-parameter experiments we selected parameters that might have
significant impact on the Hadoop performance. The test plans for these two sets are shown in the
Table 11 and Table 12 respectively:

Table 11: Test plan for 2-parameter configuration

Parameters Default values WordCount TeraSort
mapreduce.job.reduces 1 1, 2, 3 1, 2, 3
mapreduce.tasktracker.reduce.
tasks.maximum 2 2, 3 2, 3

Table 12: Test plan for 5-parameter configuration

Parameters Default values WordCount TeraSort
mapreduce.job.reduces 1 1, 2, 3 1, 2, 3
mapreduce.tasktracker.map.
tasks.maximum

2 2, 3 2, 3

mapreduce.tasktracker.reduce.
tasks.maximum 2 2, 3 2, 3

mapreduce.task.io.sort.mb 100 100,110,120 100,110,120

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 38

mapreduce.task.io.sort.factor 10 10,20,40,80 10,20,40,80

According to [12], the optimal setting for mapreduce.tasktracker.reduce.tasks.maximum
should be set between half of the number of CPU cores per node and two times of the number of
CPU cores per node, i.e. in our case between 1 and 4. Here we choose values 2 and 3 to reduce
experiments time. As listed in the Table 6, mapreduce.job.reduces sets the number of reduce
tasks per job [35], which should be approximately equal to the number of reduce slots as found in
[34]. Since parameter mapreduce.tasktracker.reduce.tasks.maximum controls the maximum
number of map tasks run simultaneously by the task tracker (i.e. the number of reduce slots), we
vary mapreduce.job.reduces in the range from 1 to 3.

Table 12 lists the five parameters we are interested in with their chosen ranges. The choice of the
settings for the first and third parameters was explained above and the second parameter is similar
to the third one, hence we also set it from 2 to 3. The parameter mapreduce.task.io.sort.mb
controls the total amount of buffer memory to use when sorting files and it allocates 1 MB of
memory for each merge stream by default in order to reduce seek times (time it takes for a disk drive
to locate the area on the disk where the data to be read is stored). Normally, this parameter might
reduce I/O times if increased, however it also requires more memory for each map task. If not much
physical memory is available, the range for this parameter should be chosen carefully, otherwise it
might cause job failure or stuck job. Parameter mapreduce.task.io.sort.factor indicates the
number of streams to merge each time when sorting files and determines the number of open file
handles. Because each merge stream occupies 1 MB of memory, this parameter should be set smaller
than the fourth one to avoid OutOfMemory error.

For the first group, listed in the Table 11, there are six combinations of configuration in total and
we’ll be able to test them all (i.e. set the experimental budget numIter to 6) because it does not take
much time to run the full set of tests. However, for the second group (listed in the Table 12), the
total number of combinations is 144 and we limit the CO tool to 60 iterations (an experimental
budget). Ten replications of each experiment were made to reduce experimental errors.

4.4.3.2.3 Test data generation

Because Wordcount and TeraSort work with text data arranged into different structures, we
generate two datasets 1 GB each using RandomTextWriter [36], [37] and TeraGen [38], [39]
Java scripts for WordCount and TeraSort respectively. The command for generating test data
with RandomTextWriter is shown on the Listing 12.

With default settings RandomTextWriter generates 10 GB of data split into 10 files, each file
containing 1 GB of data. We set mapreduce.randomtextwriter.totalbytes to 1 GB and
mapreduce.randomtextwriter.bytespermap to 100MB so the script would generate the total 1
GB of data with 10 files.

Listing 12: Generation of test data with Randomtextwriter via command line interface

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 39

The data generated is in plain text with random words, which is very suitable for WordCount. The
format of the generated text is shown on the Listing 13. It is random in both length and letters.

Listing 13: Example sample of test data generated for WordCount application

TeraGen is a script generating test data for TeraSort. The command for the test data generation
with TeraGen using the command line interface is shown on the Listing 14:

Listing 14: Generation of test data with TeraGen via command line interface

TeraGen generates 100 bytes of data per row in the format shown below. In order to generate 1 GB
of data we should add ‘10000000’ to the command (the number of rows to be generated) and set
mapred.map.tasks to 10 (which would result in 10 files).

<10 bytes key> <10 bytes rowid> <78 bytes filler>

The ‘key’ is some random characters with the ASCII value of each character in the range [32, 126].
The ‘rowid’ is an integer and the ‘filler’ contains 7 groups of characters with 10 characters in each
group (8 characters in the last group) whose range is [A-Z].

4.4.3.2.4 Experimental results.

The two chosen Hadoop applications – WordCount and TeraSort – were evaluated with the
Configuration Optimisation tool using the experimental data from the Sections 4.4.3.2.2 and
4.4.3.2.3. The performance metric chosen was latency (the data processing time of the application),
measured in milliseconds. As shown in the Figure 15, for both Wordcount and TeraSort
applications the CO tool improves their performance. Since the experiments were conducted on the
rather small cluster with limited resources, and input data size is small compared to the real industry
case, the tool did not produce dramatic improvement in application performance. Additionally, the
set of parameters chosen for tuning by the CO tool was small due to the limited resources and
computational time available, which might have also influenced the results (e.g. some of the chosen
parameters were not that ‘influential’ on the application performance as we assumed or their default
values are already well-tuned by Hadoop developers). However, these preliminary results look
promising and we will continue the experiments with more powerful hardware resources and more
parameters to tune.

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 40

Figure 15: Experimental results for the WordCount and TeraSort applications

4.4.3.3 NoSQL benchmark optimisation (Apache Cassandra).
Since Apache Cassandra is designed to be write-efficient [40] (i.e. its configuration is optimised for
write operations efficiency), we set a more challenging task of optimising for the read operations as
well. Figure 16 shows the measurements of latency versus throughput for both read and write
operations in the 20-paremeter configuration space. The configurations that are found by the CO
tool (with TL4CO and BO4CO algorithms), the default settings and the one prescribed by experts
[41] are annotated. The results show that the configuration that the CO tool with TL4CO
initialisation finds only after 20 iterations results in a slightly lower latency but much higher
throughput compared to the one suggested by the experts.

Figure 16: TL4CO in the NoSQL experiment comparing with BO4CO and expert. Each point corresponds to a

performance (averaged over 10 min) of the system with a different configuration, resulted in 1024 points (lower
right points are better)

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 41

4.4.3.4 Case study: ATC’s Social Sensor.
We have also applied CO tool (both with BO4CO and TL4CO algorithms) to the ATC’s Social
Sensor [29]. It is a Storm and MongoDB-based DIA, mining data from online sources (e.g. social
media, news websites) and processing it to extract trending topics. Social Sensor is a complex event-
processing system consisting of nine distributed components and is latency-sensitive due to both
combining data from multiple sources and looking for events in real time.
We have selected 20 configuration parameters with two levels for each, thus creating a configuration
space of the size |𝕏𝕏| = 220. The exhaustive search (to run all possible combinations of these
parameters) would take 106 * 10 min = 6944 days = 19 years. We compare the throughput and
latency obtained by running Social Sensor with configuration parameters chosen by the CO tool to
measured using the default configuration. The results in the Figure 17 show a significant gain in
performance with the configuration suggested by the CO tool. The improvement in throughput of
more than twice compared to the default configuration was achieved after only 100 iterations
(100/220 = 0,0095% of the possible configurations) which took 100 * 10 min = 16h to run.

Figure 17: Application of CO tool (with BO4CO and TL4CO algorithms) to the Social Sensor [29]

4.4.4 Obtaining Configuration Optimisation
Both the BO4CO and the TL4CO are available at GitHub:

• https://github.com/dice-project/DICE-Configuration-TL4CO - TL4CO
• https://github.com/dice-project/DICE-Configuration-BO4CO - BO4CO

https://github.com/dice-project/DICE-Configuration-TL4CO
https://github.com/dice-project/DICE-Configuration-BO4CO

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 42

5 Conclusion
In a highly competitive setting such as software development, any tool that can speed up the process
of testing and deploying components of a product are bound to be valuable. Big Data technologies
have been available in approachable open source form for several years now. However, their
adoption by many both novice and experienced developers is still a slow process.

The DICE delivery and configuration tools in their initial version were a prototype with a working,
but small base of supported technologies. In one year, we have added a number of technologies to
the library, now enabling to configure and deploy a much richer spectrum of building blocks in
topologies of an arbitrary complexity. We also improved the usability, so that the deployment is
even more accessible, easy to use. We find it important to empower users to use the tools in the best
way possible for their own workflow and setting, and we believe that we have achieved that by
offering a number of ways of invoking these tools. Web GUI, RESTful interface and command line
utility are all valid ways to do the work. We demonstrated the usability of these interfaces by
providing a plug-in for Eclipse [5], and by easily configuring another popular editor Sublime Text
to perform one-click deployments right from the editor.

Speed without sacrificing quality was also a motivation in improving the DICE Configuration
Optimisation. By introducing the TL4CO algorithm, every run of the configuration optimisation
produces data, which will improve results of the next run. This saves time for the users, reduces cost
of computation needed to obtain the recommendation, while at the same improving long-term
performance of the DIA under test.

Considering that the DICE tools themselves are components, which need to be deployed themselves,
we built Chef cookbooks and created TOSCA blueprints for them as well. That way, even the initial
mandatory hurdle of having to configure and install the delivery and configuration tools is much
smaller.

We believe that the intermediate version of the delivery tools already represents a compelling
package, which can be used daily or even more regularly to speed up time to market of new DIAs.
Still, we will look into further improving the offering. This will go in two directions. First, we will
add any missing or newly compelling technologies to the DICE TOSCA technology library. Second,
we will research how to further increase the speed and responsiveness of the tools. The process of
extending the DICE TOSCA technology library involves open technologies, so in principle any
moderately skilled users can add their own building blocks by following our examples. For the less
skilled users, the script runner node types can provide the needed minimal library extension support.

In the final period of the project we plan to extend the functionality of the DICE Delivery Tool in a
way to support the Privacy-by-Design paradigm. This paradigm is presented in the peer deliverable
[6] at the modelling level. The challenge will be to use the tools available and capabilities granted
by the Big Data building blocks to either enforce the required policies, or at least log any violations
of the policies.

For the Configuration Optimization, we will focus on further integrating the tool with other DICE
tools such as the DICE IDE, DICE Monitoring Tool and Continuous Integration.

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 43

5.1 DICE Requirement compliance
In the Section 2 we provided a summary of the requirements. Table 13 indicates the level that the
DICE Delivery Tools comply in their initial release. The Level of fulfilment column has the
following values:

• ✗ - not supported yet
• - initial support
• - medium level support
• ✔✔✔ - fully supported

Table 13: Level of compliance of the initial version of the DICE delivery tools with the initial set of requirements

Requirement Title Priority Level of
fulfilment

R5.3 Continuous integration tools deployment SHOULD ✔✔✔
R5.4 TOSCA format for blueprints MUST ✔✔✔
R5.4.1 Big Data technology support MUST
R5.4.2 Translation tools autonomy MUST ✔✔✔
R5.4.5 Deployment tools transparency SHOULD ✔✔✔
R5.4.6 Deployment plans extendability SHOULD
R5.4.7 Deployment of the application in a test

environment
MUST ✔✔✔

R5.4.8 Starting the monitoring tools MUST
R5.5 User-provided initial data retrieval MUST ✔✔✔
R5.7.1 Data loading hook SHOULD
R5.16 Provide monitoring of the quality aspect of the

development evolution (quality regression)
MUST ✔✔✔

R5.19 Deployment configuration review MUST
R5.20 Build acceptance MUST
R5.27 Configuration Optimisation MUST ✔✔✔
R5.27.1 Brute-force approach for

CONFIGURATION_OPTIMIZATION
deployment

SHOULD ✔✔✔

R5.27.6 CONFIGURATION_OPTIMIZATION
experiment runs

MUST ✔✔✔

R5.27.7 Configuration optimisation of the system
under test over different versions

SHOULD ✔✔✔

R5.27.8 Configuration Optimisation's input and output MUST ✔✔✔
R5.43 Practices and patterns for security and privacy MUST ✗

As a part of our future work, we will continue to work towards fully supporting the requirements.
In particular:

• R5.4.1: we plan to provide support for MongoDB by M26.

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 44

• R5.4.6: a part of the TOSCA library expandability effort will be documenting the process
needed for adding support for new technologies.

• R5.4.8: in M25, we will enable automatic connection of Cassandra and MongoDB nodes to
be monitored by the DICE Monitoring Tool.

• R5.7.1: by M30 we plan to enable loading of data into Cassandra from offline files, which
will be referenced to from the new TOSCA blueprint node types.

• R5.19 and R5.20 will be researched and reported by M30.
• R5.43: security and privacy by design will be a topic of research in the last year of the

project. We expect by M30 to provide proof of concept solutions at least for Cassandra.

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 45

References
[1] Balalaie A., Heydarnoori A., Jamshidi P., Microservices Architecture Enables DevOps: an

Experience Report on Migration to a Cloud-Native Architecture. IEEE Software, 2016.
[2] DICE consortium, DICE deliverable 5.1: DICE delivery tools – Initial version, January 2016
[3] DICE consortium, DICE deliverable 1.2 Requirement Specification, July 2015
[4] DICE consortium, DICE deliverable 1.4 Architecture definition and integration plan - Final

version, January 2017
[5] DICE consortium, DICE deliverable 1.5 DICE framework - Initial version, January 2017
[6] DICE consortium, DICE deliverable 2.2 Design and quality abstractions - Final version,

January 2017
[7] DICE consortium, DICE deliverable 4.2 Monitoring and Data warehousing tools - Final

version, January 2017
[8] DICE consortium, DICE deliverable 5.4 DICE testing tools – Initial version, January 2017
[9] DICE consortium, DICE deliverable 5.6 Cloud testbed setup, July 2016

[10] Wynne M., Hellesøy A., The Cucumber Book - Behaviour-Driven Development for Testers
and Developers. The Pragmatic Bookshelf. January 2012.

[11] H. Chen, W. Zhang, and G. Jiang. Experience transfer for the configuration tuning in large-
scale computing systems. Knowledge and Data Engineering, IEEE Transactions on,
23(3):388–401, 2011.

[12] N. Yigitbasi et al. Towards machine learning-based auto-tuning of mapreduce. In Proc.
MASCOTS, 2013.

[13] E. Kwan et al. Automatic database configuration for DB2 universal database: Compressing
years of performance expertise into seconds of execution. In Proc. BTW, volume 20, 2003.

[14] N. Siegmund et al. Performance-influence models for highly configurable systems. In Proc.
FSE, 2015.

[15] D. A. Menascé et al. Preserving QoS of e-commerce sites through self-tuning: a performance
model approach. In Proc. of EC. ACM, 2001.

[16] T. Johnston et al. Performance tuning of mapreduce jobs using surrogate-based modeling.
Proc. ICCS, 2015.

[17] P. Jamshidi and G. Casale. An uncertainty-aware approach to optimal configuration of
stream processing systems. In Proc. MASCOTS, 2016.

[18] D. G. Sullivan, M. I. Seltzer, and A. Pfeffer. Using probabilistic reasoning to automate
software tuning, volume 32. ACM, 2004.

[19] B. Xi et al. A smart hill-climbing algorithm for application server configuration. In Proc.
WWW, 2004.

[20] T. Osogami and S. Kato. Optimizing system configurations quickly by guessing at the
performance. In Proc. SIGMETRICS. ACM, 2007.

[21] R. Thonangi et al. Finding good configurations in high-dimensional spaces: Doing more
with less. In Proc. MASCOTS. IEEE, 2008.

[22] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation, 9(2):159–195, 2001.

[23] B. Behzad et al. Taming parallel I/O complexity with auto-tuning. In Proc. ACM SC, 2013.
[24] T. Ye and S. Kalyanaraman. A recursive random search algorithm for large-scale network

parameter configuration. Proc. SIGMETRICS, 2003.
[25] X. Bu, J. Rao, and C.-Z. Xu. A reinforcement learning approach to online Web systems auto-

configuration. In Proc. ICDCS, 2009.
[26] E. V. Bonilla, K. M. Chai, and C. Williams. Multi-task Gaussian process prediction. In Proc.

of NIPS, pages 153–160, 2007.
[27] B. Shahriari et al. Taking the human out of the loop: a review of Bayesian optimization.

Technical report, 2015.

Deliverable 5.2. DICE delivery tools – Intermediate version.

Copyright © 2017, DICE consortium – All rights reserved 46

[28] D. J. Lizotte et al. An experimental methodology for response surface optimization methods.
Global Optimization, 53:699–736, 2012.

[29] Social Sensor socialsensor.eu
[30] A. Ghazal et al. Bigbench: towards an industry standard benchmark for big data analytics.

In Proc. of SIGMOD, pages 1197–1208. ACM, 2013.
[31] L. Bass, I. Weber, and L. Zhu. DevOps: A Software Architect’s Perspective. Addison-

Wesley Professional, 2015.
[32] Bhavin J Mathiya and Vinodkumar L Desai. Apache Hadoop yarn parameter configuration

challenges and optimization. In Soft-Computing and Networks Security (ICSNS), 2015
International Conference on, pages 1–6. IEEE, 2015. pages 1, 14

[33] Terasort https://www.mapr.com/resources/terasort-benchmark-comparison-yarn
[34] Kewen Wang, Xuelian Lin, and Wenzhong Tang. Predator an experience guided

configuration optimizer for hadoop mapreduce. In Cloud Computing Technology and
Science (CloudCom), 2012 IEEE 4th International Conference on, pages 419–426. IEEE,
2012. pages 1, 10, 34, 47

[35] Apache Hadoop. Default settings for mapred.xml.
https://hadoop.apache.org/docs/r2.7.2/hadoop-mapreduce-client/hadoop-mapreduce-client-
core/mapred-default.xml

[36] RandomTextWriter Java script https://github.com/facebookarchive/hadoop-
20/blob/master/src/examples/org/apache/hadoop/examples/RandomTextWriter.java

[37] RandomTextWriter documentation
https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/examples/RandomTextWrite
r.html

[38] TeraGen Java script https://github.com/apache/hadoop/blob/trunk/hadoop-mapreduce-
project/hadoop-mapreduce-
examples/src/main/java/org/apache/hadoop/examples/terasort/TeraGen.java

[39] TeraGen documentation
https://hadoop.apache.org/docs/r1.0.4/api/org/apache/hadoop/examples/terasort/TeraGen.ht
ml

[40] B. F. Cooper et al. Benchmarking cloud serving systems with ycsb. In Proc. of SOCC. ACM,
2010.

[41] N. Nelubin and B. Engber. Ultra-high performance NoSQL benchmarking: Analyzing
durability and performance tradeoffs. Technical report, 2013.

https://www.mapr.com/resources/terasort-benchmark-comparison-yarn
https://hadoop.apache.org/docs/r2.7.2/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml
https://hadoop.apache.org/docs/r2.7.2/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml
https://github.com/facebookarchive/hadoop-20/blob/master/src/examples/org/apache/hadoop/examples/RandomTextWriter.java
https://github.com/facebookarchive/hadoop-20/blob/master/src/examples/org/apache/hadoop/examples/RandomTextWriter.java
https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/examples/RandomTextWriter.html
https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/examples/RandomTextWriter.html
https://hadoop.apache.org/docs/r1.0.4/api/org/apache/hadoop/examples/terasort/TeraGen.html
https://hadoop.apache.org/docs/r1.0.4/api/org/apache/hadoop/examples/terasort/TeraGen.html

	Executive summary
	Glossary
	Table of contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 What is new in Year 2
	1.1.1 DICE Deployment Tool
	1.1.2 DICE Continuous Integration
	1.1.3 DICE Configuration Optimisation

	2 Requirements
	3 Architecture
	3.1 High level architecture
	3.2 Stakeholders and use cases

	4 Tools
	4.1 Primer: DICE Deployment Modelling DICER
	4.2 DICE Deployment Tool
	4.2.1 Main components
	4.2.1.1 Deployment Service
	4.2.1.2 TOSCA technology library
	4.2.1.3 Chef Cookbooks
	4.2.1.4 Cloudify

	4.2.2 Tools usage
	4.2.3 Validation and results
	4.2.4 Obtaining Deployment Tool

	4.3 DICE Continuous Integration
	4.3.1 Main components
	4.3.2 Tools usage
	4.3.2.1 Build performance monitoring
	4.3.2.2 Scheduling DICE tools

	4.3.3 Validation and results
	4.3.4 Obtaining DICE Continuous Integration

	4.4 Configuration Optimisation
	4.4.1 Main components
	4.4.1.1 BO4CO Recap
	4.4.1.2 Transfer Learning for Configuration Optimisation (TL4CO)

	4.4.2 Tool’s usage
	4.4.3 Validation and results
	4.4.3.1 BO4CO for Apache Hadoop
	4.4.3.2 Experiments and evaluation
	4.4.3.3 NoSQL benchmark optimisation (Apache Cassandra).
	4.4.3.4 Case study: ATC’s Social Sensor.

	4.4.4 Obtaining Configuration Optimisation

	5 Conclusion
	5.1 DICE Requirement compliance

	References

