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Executive summary 
This report accompanies the intermediate release of the DICE delivery tools: DICE Deployment 
Tool, DICE Continuous Integration and DICE Configuration Optimisation. The purpose of these 
tools in the DICE methodology is to create a runtime of a DIA described in a DDSM / TOSCA 
blueprint, provide scheduled or on-commit execution of complex automated tasks on top of the DIA, 
and offer recommendation for the optimal configuration for the DIA's deployment. 

Improvements of the DICE Deployment Tool since Y1 include a new web graphical user interface, 
extended TOSCA technology library and removal of Chef Server dependency. The Administrators 
now can set in the central service the parameters that describe the platform. This lifts a burden from 
developers, who can now focus on managing application-related parameters. Resulting TOSCA 
blueprints will work on any supported platform without change in any of the parameters or structure. 
Users can also decide to enable automatic connection of Storm, Spark or Cassandra node to DICE 
Monitoring. The DICE TOSCA technology library now supports also Zookeeper, Kafka, HDFS, 
YARN and bash or Python custom scripts. 

The DICE Continuous Integration's Jenkins plug in is now compatible with Jenkins version 2 and 
is visually improved. We also provide a number of templates and instructions on how to schedule 
various DICE tools to process user's DIAs. This demonstrates how the DICE Continuous Integration 
can serve as a data repository, storing and serving version-bound or build-bound data for subsequent 
runs of the tool. 

The DICE Configuration Optimisation is the tool for empirically arriving at the application 
configuration, that offers an optimal performance. We upgraded the original approach, BO4CO, 
which exploits Gaussian Process, and introduced the Transfer Learning for Configuration 
Optimisation (TL4CO). We can now take advantage of the observations from one version of the 
DIA to quickly arrive at better results in another version of the DIA. We validated the tool by 
optimizing Hadoop configurations to achieve optimal performance of two Hadoop jobs, WordCount 
and TeraSort. We also optimized Cassandra to have an improved performance for a mix of read and 
write operations comparing to the default configuration. 
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Glossary 
DDSM DICE Deployment Specific Model 
DICE Data-Intensive Cloud Applications with iterative quality enhancements 
DPIM DICE Platform Independent Model 
DTSM DICE Technology Specific Model 
FCO Flexiant Cloud Orchestrator 
TOSCA Topology and Orchestration Specification for Cloud Applications 
IDE Integrated Development Environment 
CI Continuous Integration 
BO4CO Bayesian Optimisation for Configuration Optimisation 
TL4CO Transfer Learning for Configuration Optimisation 
DIA Data Intensive Application 
HDFS Hadoop File System 
GUI Graphical User Interface 
VCS Version Control System 
VM Virtual Machine 
JSON JavaScript Object Notation 
YAML YAML Ain’t Markup Language1 

 

                                                 
1 http://yaml.org/  

http://yaml.org/
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1 Introduction 
The DICE methodology provides to the DevOps [1] teams a full cycle of DIA development, 
including: design, off-line simulation and analysis, configuration, deployment, monitoring, 
enhancement and anomaly detection steps. In this methodology, the deployment and configuration 
tools represent the crucial enablers for transitioning from design to a runtime of the DIA. In this 
report we provide the details on these tools in their intermediate version, which we produced at the 
end of Y2. 

Like in the initial release [2], this package consists of Delivery Tools, which comprise DICE 
Deployment Tool and DICE Continuous Integration, and DICE Configuration Optimisation. 
These tools aim to a) provide a simple, reliable and repeatable way of deploying DIAs of various 
complexity, b) provide recommendations about the best configuration for the DIA’s deployment, 
and c) give insight on the performance improvements or regressions of the DIA. 

This report covers the effort of the DICE project’s WP5, specifically T5.1 Deployment plan 
execution and T5.2 Continuous integration. The document is a Y2 update of the Y1’s D5.1 DICE 
delivery tools – Initial version [2]. We plan to release the final report in M30 in D5.3 DICE delivery 
tools – Final version. 

In the rest of this section we summarize the changes and improvements since Y1. The Section 2 
summarizes the requirements for the DICE delivery tools, extracted from the D1.2 [3]. In the Section 
3, we present the top-level architecture of the delivery and configuration tools. In the Section 4 we 
present each tool in a deeper technical level, also presenting their usage and validation results. 
Finally, in Section 5 we present the conclusions. 

1.1 What is new in Year 2 
Updates in Y2 to the presented components were an outcome of a development process, which 
aimed at a) addressing any open or partially addressed requirements, b) implement any new 
requirements, which have arisen from early feedback from the use case providers, and c) to improve 
general stability and usability of the tools. 

1.1.1 DICE Deployment Tool 
Building Big Data clusters has traditionally involved manual process of setting up and configuring 
individual nodes and services, which is a lengthy process. With the DICE Deployment Tool, we aim 
to make the process of deploying DIAs as simple and painless process as possible. Using OASIS 
TOSCA as the format of DIA blueprints, we promote the principle of Infrastructure as Code, 
reducing issues of handling and maintaining complex systems to maintaining high-level 
“configuration” of the applications in a version control system. 

New features and properties of the DICE Deployment Tool include the following: 

• Integration with the DICE Deployment Modelling Tool (DICER), which effectively enables 
GUI for assisted visual modelling of the deployments and will be reported in M27 in D2.4 

• Graphical user web interface, which provides a visual and intuitive way for using most of 
the DICE Deployment Tool’s functionality. 

• Improved support of the existing DICE TOSCA Technology library technologies (Storm, 
Zookeeper, Cassandra) and support for new technologies (Spark, HDFS, YAML, Kafka). 
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• Based on the needs of the use case providers, we also supported a node type for running 
scripts, enabling basic installation and running options for any other not yet supported 
technology. 

• Chef Server is not needed anymore, because we have modified the Chef plug-in in Cassandra 
to use local Chef-Zero mode. 

1.1.2 DICE Continuous Integration 
The Continuous Integration service provides regular, scheduled or event-based running of tools that 
are important in the DIA development, testing and deployment lifecycle. In the DevOps approach 
it is an important element for early feedback of any functional or performance issues with the 
application being developed. In DICE, we upgrade its functionality to also store and visualize 
application’s performance through development history. We also use it as a glue between 
deployment, configuration, quality testing and enhancement steps. 

In Y2, we have applied the following updates: 

• Integration with DICE Configuration Optimisation 
• Added templates for future integration with Quality Testing, Enhancement Tools 
• Compatibility with Jenkins version 2. 
• Improved appearance of the build history reports. 

1.1.3 DICE Configuration Optimisation 
The Configuration Optimisation (CO) tool provides a software mechanism to explore alternative 
configurations for a DIA and identify the optimal one with respect to a given performance metric 
(e.g., throughput, response time, ...). The initial version of this tool, presented in deliverable D5.1 - 
DICE delivery tools - Initial version [2], is based on an algorithm, called BO4CO, which drives the 
search for an optimal configuration using a technique known as Bayesian Optimisation, which can 
cope with variability in the measurements and allow to customize the optimal trade-off between 
exploitation of existing measurements and exploration of new configurations. A large-scale 
validation has been performed for Storm-based DIA. 

In Y2 we have further extended the CO tool and its validation 

• Transfer learning algorithm (TL4CO) to reuse measurements for an old version of the 
application upon tuning the performance of a new version. 

• Integration and test of CO against Apache Hadoop and Apache Cassandra. 
• Validation of BO4CO and TL4CO against the application used in the ATC case study.  
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2 Requirements 
In Deliverable D1.2, the Y1 update [3], we presented the requirement analysis for the DICE project. This 
section includes summaries of the requirements that we did not present in D1.2. Also, we have updated the 
R5.4.2’s description to better fit the features and goals of the tool and added R5.43 to address privacy and 
security aspects. The actors involved include CI_TOOLS, which represent the DICE Continuous Integration 
tools, and the DEPLOYMENT_TOOLS, which represent the DICE deployment tool. 

ID R5.4.2 
Title Translation tools autonomy 
Priority Must have 
Description: The DEPLOYMENT_TOOLS MUST take all of its DIA-

related input from the DDSM, which directly translate into 
the TOSCA model, or from the ADMINISTRATOR set 
values. Therefore it MUST NOT require any additional user's 
input in an interactive way. 

 

ID R5.4.5 
Title Deployment tools transparency 
Priority Should have 
Description: The DEPLOYMENT_TOOLS SHOULD NOT require from 

ADMINISTRATOR to take part in any individual 
deployment. 

 

ID R5.4.6 
Title Deployment plans extendability 
Priority Could have 
Description: The DEPLOYMENT_TOOLS MAY be extended by the 

ADMINISTRATOR with other building blocks not in the 
core set. 

 

ID R5.7.1 
Title Data loading hook 
Priority Should have 
Description: DEPLOYMENT_TOOLS SHOULD provide a well-defined 

way to accept the initial bulk data that they can load. 
 

ID R5.27.1 
Title Brute-force approach for 

CONFIGURATION_OPTIMIZATION deployment 
Priority Should have 
Description: CONFIGURATION_OPTIMIZATION SHOULD apply 

intelligent ML methods in order to enable a sequential 
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decision making approach that selects a promising 
configuration setting at each iteration. 
CONFIGURATION_OPTIMIZATION should find the best 
possible configuration at the end within the 

 

ID R5.27.6 
Title CONFIGURATION_OPTIMIZATION experiment runs 
Priority Must have 
Description: CONFIGURATION_OPTIMIZATION MUST be able to 

derive the experiment by running the application under test 
with specific configuration setting by contacting 
DEPLOYMENT_TOOL. 
CONFIGURATION_OPTIMIZATION MUST be able to 
retrieve the monitoring data regarding the experiments by 
contacting MONITORING_PLATFORM. 

 

ID R5.27.7 
Title Configuration optimisation of the system under test over 

different versions 
Priority Should have 
Description: CONFIGURATION_OPTIMIZATION SHOULD be able to 

utilize the performance data that have been collected 
regarding previous versions of the system under test in the 
delivery pipeline. 

 

ID R5.27.8 
Title Configuration Optimisation's input and output 
Priority Must have 
Description: CONFIGURATION_OPTIMIZATION MUST be able to 

receive a TOSCA blueprint, which describes the application 
under test including any initial configuration. It MUST return 
a TOSCA blueprint updated with optimal parameters, or a 
stand-alone configuration file. 

 

ID R5.43 
Title Practices and patterns for security and privacy 
Priority Must have 
Description: The DEPLOYMENT_TOOLS MUST enable applying 

practices and patterns to ensure that the deployed application 
is reasonably secure and protecting privacy. 
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3 Architecture 

3.1 High level architecture 
The DICE delivery and configuration tools are the components in the DICE methodology, which 
consume the deployment model of the DIA and turn that model into its runtime application 
counterpart. The updated DICE architecture document [4] provides an overview across the whole 
project and also details interactions between all the DICE components, which are in a dependency 
relationship. Figure 1 below shows a zoomed-in detailed view of the architecture. 

 
Figure 1: DICE delivery and configuration tools architecture. Delivery and configuration tools are represented in blue 

boxes, while external components are in grey boxes 

In general terms, the architecture is in Y2 mostly the same as in Y1. One change worth mentioning 
is the addition of the DICER tool, which plays a double role in the delivery tools operations. In one 
respect, DICER is a part of the IDE, providing to users a graphical way to author DICE deployment 
diagrams (DDSM) and transform them into TOSCA blueprints. In another respect, the 
transformation into TOSCA works also from a command line tool or a service. Consequently, the 
DICE Deployment Tool accepts the DDSM models along with their TOSCA blueprint counterparts 
while the IDE and internally uses DICER to perform the transformation. 

The role of Repository is now focused towards storing and versioning application code and models. 
The data artifacts such as those from Configuration Optimisation’s iterations data, are now stored 
in Continuous Integration with each respective build. The Configuration Optimisation no longer 
needs to interact with Continuous Integration service, because the interaction is now one-way from 
Continuous Integration, which is a client to Configuration Optimisation. 

3.2 Stakeholders and use cases 
Stakeholders are the actors who interact with the components and tools. They either require the 
features that the components and tools provide, or are involved in the workflow mandated by the 
components and tools. We have so far identified the following stakeholders: 

● ADMINISTRATOR: involved only for a short time when the delivery and configuration 
tools need to be installed or reconfigured. 

● DEVELOPER: this is the main stakeholder, who uses the majority of the tools' features. 
DEVELOPER actors write code of the application and design the application models. 
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They continuously update the application, requiring constant updates to the deployment of 
the application in the test bed. They require deployment automation to occur on demand 
(occasionally), on schedule or with each new commit into the Version Control System 
(VCS). They occasionally require computation of the optimal configuration of their 
applications' topologies, but it is also beneficial to obtain periodic improvements of the 
configuration. 

● ARCHITECT: similar actor to developer, except that they interact with the tools less 
frequently and normally only focus on the topology and optimal configuration of the 
application's design. 

● QA_TESTER: they rely on the Continuous Integration tool to run the functional tests that 
they prepare as well as the non-functional tests. They also take advantage of the 
applications' deployment in the test bed, where they can, for example, perform A/B testing. 
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4 Tools 

4.1 Primer: DICE Deployment Modelling DICER 
Partners in WP2 have been developing a tool called DICE Deployment Modelling, also known as 
DICER. The official report about the tool will only be available in Y3 of DICE. Considering that 
we refer to DICER in several places of the D5.2 report, we first make a short introduction to DICER. 

In DICE methodology, we endorse DICE UML deployment diagrams for specifying the topology 
of the DIAs to be deployed. The DICE UML profile [6] applied to such diagrams results in a DICE 
Deployment Specific Metamodel (DDSM), which in turn is what the users will use when modelling 
their DIAs. 

The DICER tool provides a GUI for visual modelling of DIA DDSMs. It is built as to provide 
assisted component-based infrastructure design, providing a complete palette of the DICE supported 
components and the ability to guide the user towards a complete deployment model. Figure 2 shows 
an example GUI view for DICER, after the user has requested a validation of an incomplete DDSM. 
The validation problems dialog provides the user an information about what to add next to the 
DDSM. 

 
Figure 2: DICER’s assisted component-based infrastructure design giving a validation warning 

 
Figure 3: DICER tool workflow 

The main benefit of the DICER tool is that it is capable of producing a TOSCA blueprint equivalent 
to the created DDSM. Figure 3 illustrates the stages that the model goes through before the TOSCA 
blueprint is generated. This, in turn, is an input of the DICE Deployment Tool. 
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4.2 DICE Deployment Tool 
4.2.1 Main components 
At the end of M24, the DICE deployment tool is a collection of the following components: 

● DICE deployment service version 0.3.4 
● DICE TOSCA technology library version 0.2.5 
● DICE Chef Cookbooks version 0.1.9 (an extension of the DICE TOSCA technology 

library) 
● Cloudify 3.4 (provided by the GigaSpaces). 

 
Figure 4: Deployment Diagram of the DICE Deployment Tool 

Figure 4 represents a deployment diagram of the DICE Deployment Tool. The entities marked in 
blue are from DICE, while the others are from third parties. 

4.2.1.1 Deployment Service 
The Deployment Service is a RESTful web service, which provides an abstraction of API on top of 
the cloud orchestration engine Cloudify. The service is accompanied by a web user interface and a 
command line client. This enables a very versatile use of the tool, including: 

● interactively via the graphical web interface, 
● from the command line interactively or in scripts (e.g., testing and experimenting with 

deploys, automating deployments, inclusion in Continuous Integration, integration with or 
into text editors such as Sublime Text2), 

                                                 
2 https://www.sublimetext.com/  

https://www.sublimetext.com/
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● from web service clients (e.g., IDE plugins). 
Since the initial version, we have implemented several improvements and extensions of the 
Deployment Service. An important update is inputs management in the Deployment Service. 
Inputs in TOSCA are parameters, which can vary between different deployments of the same 
TOSCA blueprint. Most of the blueprints require at least the inputs, which provide parameters of 
the testbed’s platform, e.g. credentials to the resource provisioning API, identifications of virtual 
machine flavours and operating system images. Normally this is a set of parameters that an 
administrator sets once for each testbed, so they do not belong with the user’s development space. 
It also should not be versioned with the application, but with the testbed’s infrastructure 
configuration. The inputs management functionality in the Deployment Service therefore provides 
such a single point of setting up relevant inputs. Upon deployment, the service’s logic then smartly 
assigns to the deployment only the inputs that the blueprint actually requests. This eases the use of 
the Cloudify’s strict matching between the provided and the required sets of the inputs. 

The Deployment Service also supports an integration with DICE Monitoring Tool [7]. The 
majority of configuration and interactions with DICE Monitoring Tool are within the TOSCA 
technology library and their related Chef Cookbooks, but Deployment Service can be instructed to 
register an application with the DICE Monitoring Tool. This marks an execution runtime of an 
application and its deployment metrics for any downstream services, which need to analyse the 
metrics from the DICE Monitoring Tool. 

Considering that the DICE Deployment Service is a central service, the Administrator needs to 
install it in or at the target test bed. 

4.2.1.2 TOSCA technology library 
The DICE TOSCA technology library is a collection of TOSCA node and relationship types, 
Cloudify plug-ins and references to DICE Chef Cookbooks. They enable generating or authoring 
TOSCA blueprints for DIAs without having to explicitly specify any scripts or configuration 
procedures for installing the DIA components. In its version 0.2.5, support for the following 
technologies is available: 

● Zookeeper3 
● Apache Storm4, including user’s Storm topology 
● Apache Spark5 in a stand-alone mode, including user’s Spark topology 
● Apache Cassandra6 
● Apache Kafka7 (without any relationships) 
● Hadoop File System8 
● Apache YARN9 
● User’s custom script (in bash or Python) 

                                                 
3 https://zookeeper.apache.org/  
4 https://storm.apache.org/  
5 https://spark.apache.org/  
6 https://cassandra.apache.org/  
7 https://kafka.apache.org/  
8 http://hortonworks.com/apache/hdfs/  
9 http://hortonworks.com/apache/yarn/  

https://zookeeper.apache.org/
https://storm.apache.org/
https://spark.apache.org/
https://cassandra.apache.org/
https://kafka.apache.org/
http://hortonworks.com/apache/hdfs/
http://hortonworks.com/apache/yarn/
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Additionally, the DICE TOSCA technology library abstracts the concepts for a firewall in the 
network and a compute node’s network address, which is selected from a pool of addresses visible 
from the user’s LAN (a floating address).  

Most of the supported components require that the nodes hosting them have discoverable fully 
qualified domain names (FQDN). The only practical way of addressing this requirement is to use a 
DNS service. DICE provides a blueprint, which installs an open source DNS server on the node 
hosting the DICE Deployment Service, configured to handle only the dynamically created nodes. 
The TOSCA technology library then installs a DNS agent to handle the FQDNs of the nodes. This 
hugely simplifies work with the Big Data services. 

The DICE TOSCA technology library itself is a Cloudify plug-in, hosted in GitHub. Therefore it 
requires no installation, because Cloudify fetches it with each deploy. 

4.2.1.3 Chef Cookbooks 
Chef in DICE is the chosen technology for configuration management of the nodes to be installed 
for the DIA. They work as a regular set of Cookbooks, but the recipes in each Cookbook are 
structured around the following phases in TOSCA orchestration: 

● creation or installation of a service, which can be carried out for all services in the DIA 
independently from any other service, 

● configuration of the node, which may require knowledge of other nodes that provide some 
capability that this node depends on, 

● starting of a service. 
While these Cookbooks may be used manually with a Chef client, they are better suited to be used 
by the Cloudify orchestrator. They too require no special installation, but get fetched by the Cloudify 
from a repository (e.g., GitHub) whenever they are required. 

4.2.1.4 Cloudify 
Cloudify is a cloud automation and orchestration engine. In DICE, we use it as a back-end for the 
actual TOSCA blueprint deployment. At the end of Y2, Cloudify is still the most functional and 
reliable solution for consuming TOSCA blueprints. The code base is maintained by a third party, 
the GigaSpaces. 

Given that the code is open source, we were able to provide certain improvements to the existing 
functionality. First off, we provided code updates to the OpenStack plug-in, which enables that the 
Cloudify functions properly on top of the OpenStack Mitaka release. Our updates are now a part 
of the official Cloudify’s development branch. 

Additionally, we modified the Chef plug-in such that it does not require Chef Server, but always 
uses the Chef-Zero mode. 

4.2.2 Tools usage 
DICE Deployment Service provides logical deployment containers as receptacles of blueprints to 
be deployed. Figure 5 illustrates this concept: a blueprint submitted to a particular container will 
result in a deployment associated with that container. A new blueprint submitted to a logical 
deployment container, which has an already associated deployment, will result in a new deployment 
that will replace the previous one. In the figure, Blueprint B.1 has previously been deployed in 
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Logical Container 2. But then the users improved the application, resulting in the Blueprint B.2. 
After submitting this blueprint to Logical Container 2, the previous deployment has been removed 
and a new one installed. Users can create as many logical deployment containers as needed, for 
instance to use for personal experimentation of a new technology, specific branches in Continuous 
Integration, or for manual acceptance testing of new releases.  

 

 
Figure 5: Illustration of Deployment Service’s usage. 

The general usage of the DICE Deployment Tool has remained the same as described in the previous 
report [2]. Normally, we would start with the DICER tool, where we create a DICE deployment 
model of our DIA. With DICER, we transform the deployment model into a corresponding TOSCA 
blueprint. Alternatively, we can create the blueprint by modifying the provided examples10 or 
creating one from scratch. 

A notable change from the blueprints in Y1 is that we can now refer to all the needed TOSCA plug-
ins and imports from a single import line, as shown by Listing 1. 

tosca_definitions_version: cloudify_dsl_1_3 
 
imports: 
  - http://dice-project.github.io/DICE-Deployment-Cloudify/spec/fco/0.2.5/plugin.yaml 

Listing 1: Header of a TOSCA blueprint of a DIA that will be deployed in an FCO 

As shown in the example, the required Cloudify DSL version of the TOSCA blueprint is now 1.3, 
which is an update from version 1.2 in Y1. A subpath of the imports line also visibly suggests 
that the blueprint will work on an OpenStack deployment. To target the blueprint to another 
platform, e.g. an OpenStack, simply replace fco with openstack in the URL and submit it to the 
DICE Deployment Service instance running in an OpenStack testbed. 

We illustrate further benefits of the updated TOSCA library on Listing 2. 

 

                                                 
10 https://github.com/dice-project/DICE-Deployment-Examples  

https://github.com/dice-project/DICE-Deployment-Examples
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  StormMasterSecurityGroup: 
    type: dice.firewall_rules.storm.Nimbus 
 
  StormMasterVM: 
    type: dice.hosts.ubuntu.Medium 
    relationships: 
        - type: dice.relationships.ProtectedBy 
          target: StormMasterSecurityGroup 
 
  StormNimbus: 
    type: dice.components.storm.Nimbus 
    properties: 
      monitoring: 
        enabled: true 
    relationships: 
      - type: dice.relationships.ContainedIn 
        target: StormMasterVM 
      - type: dice.relationships.storm.ConnectedToZookeeperQuorum 
        target: ZookeeperCluster 
 
  WordCount: 
    type: dice.components.storm.Topology 
    properties: 
      monitoring: 
        enabled: true 
      application: resources/wordcount.jar 
      topology_name: dice-wordcount 
      topology_class: org.apache.storm.starter.WordCountTopology 
    relationships: 
      - type: dice.relationships.storm.SubmittedBy 
        target: StormNimbus 

Listing 2: An example of a node template declaration in a blueprint for Storm 

As illustrated, all the node template types and the relationship types are from the DICE deployment 
library and start with the “dice.“ prefix. We have replaced the more generic node types and 
relationship types as well as the platform-specific ones with our own. For instance: 

● dice.firewall_rules.storm.Nimbus represents a security group or a firewall that 
enables only the ports needed by Storm’s nimbus to pass through. The user doesn’t need to 
know any of these ports, because we set them in the library. 

● dice.hosts.ubuntu.Medium will make the orchestrator instantiate a virtual machine of 
a medium flavour and with Ubuntu as its OS. The flavour specification and the base image 
to be used in provisioning this virtual machine have been set by the Administrator in the 
DICE Deployment Service, so again the user doesn’t have to set any additional parameters 
or supply inputs. 

● dice.components.storm.Nimbus type defines a Storm platform’s nimbus (i.e., a 
Storm cluster master) node. Like in Y1, this makes the Cloudify use the Chef runlist 
declared in the library to install, configure and start the Storm’s nimbus service and all the 
libraries that are required. The StormNimbus node template also has a property 
monitoring set to { enabled: true }. As a result, this node will be connected to the 
DICE Monitoring Tool [4] at the address defined by the Administrators. 

● dice.components.storm.Topology type enables that a user’s own Storm application 
gets submitted to the Storm cluster defined in the blueprint. 



Deliverable 5.2. DICE delivery tools – Intermediate version. 

Copyright © 2017, DICE consortium – All rights reserved 21 

● dice.relationships.storm.SubmittedBy is a relationship type, which tells 
Cloudify that it should use the target node as a submission point of the supplied 
application. 

In Y1, the DICE Deployment Services supported submission of only the blueprint YAML file as an 
input for the deployment. This mode is still supported, and it works fine for the applications that 
either do not need any artifacts such as .jar files or data dumps, or if these artifacts are available 
for download at a network address. But for a more dynamic environment such as the IDE, where 
the compiled libraries can quickly change, it is more convenient to bundle the blueprint with all 
the additional resources and submit the bundle for deployment. Cloudify already supported this 
mode, and in Y2 we have enabled it for the DICE Deployment Service as well. Now we can 
reference .jar files with the user’s Storm topology (in dice.components.storm.Topology), 
Spark application (in dice.components.spark.Application), the user’s script file (in 
dice.components.misc.ScriptRunner) or any other similar resource as a file path in the 
bundle. 

 

 
Figure 6: An example view of the DICE Deployment Service’s web GUI. 

Continuing from the example from the extract in Listing 2, the blueprint needs to be bundled into a 
.tar.gz file with the application .jar file. Listing 3 shows an example content of such a bundle. 

 

└── wordcount 
    ├── blueprint.yaml 
    └── resources 
        └── wordcount.jar 

Listing 3: Contents of an example blueprint bundle for Storm word count 

This bundle is ready to be submitted to a logical deployment container of choice. The deployment 
takes several minutes of time, the duration being dependent on complexity of the blueprint and 
available resources in the test bed. The web GUI will display the rough progress of the deployment. 
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When the deployment is finished, it will result in a view similar to that in Figure 6, where a table 
will display any outputs declared in the blueprint. In the shown example, the view contains an URL 
to the web user interface of the Storm’s nimbus node that the user can click and navigate to the 
Storm cluster interface. 

4.2.3 Validation and results 
The goal of the validation is to prove that the tools function as intended. For the DICE Deployment 
Service, the expected behaviour can be summarized by a specification in the Gherkin11 language 
[10] as shown in Listing 4. For the tool to be usable and reliable, the sequence described in the 
behaviour needs to work in the prescribed manner every time even after a high number of 
executions. 

Given that a DICE Deployment Service instance is available at 'URL' 
And the logical deployment container 'CONTAINER_UUID' is available 
And I have a blueprint for a Storm application in '/home/matej/storm-wordcount.tar.gz' 
When I submit my blueprint to container 'CONTAINER_UUID' at 'URL' 
Then the deployment to 'CONTAINER_UUID' should succeed in less than 90 minutes 
And the deployment's outputs should provide values for nimbus_url and topology_id 
When I query for the topology with topology_id at nimbus_url 
Then the Storm topology should be running 

Listing 4: A specification for the expected behaviour of DICE Deployment Service when deploying a Storm 
application 

The listed behaviour applies to a Storm topology, where we based the success criteria on the 
requirement that the Storm topology is live and running at the end of the sequence. More granular 
criteria such as the correct operation of the Storm topology is beyond the scope of the validation, 
because it already belongs to the functional testing of the application’s logic itself. 

We can devise similar behaviours for other supported technologies. 

In our validation runs, we were able to consistently and reliably execute the required sequence. 
However, we did find that the reliability of the deployment strongly depends on the reliability of the 
underlying platform. If the test bed is too heavily loaded with tasks that take up a lot of I/O 
bandwidth, then parts of the deployment process would sporadically time out and fail. Also the 
platform manager needs to be able to reliably provision and release network addresses. We argue 
that in the first case, such a test bed is not usable for any serious use, because it would starve regular 
applications and processes as well. In the second case, the issue is also outside the scope of DICE. 

Another important validation criterion for the DICE Deployment Service is one we have already 
expressed: the deployments need to succeed in a reasonable time. In Listing 4 we have set the upper 
limit to conservative 90 minutes. Compared to a traditional approach where we perform deployment 
of all services manually, this goal represents several levels of magnitude in improvement: hours 
instead of days or weeks. However, since we are aiming for a DevOps approach, the less time spent 
spinning up a new deployment means a faster feedback on the quality of the deployed application. 

To quantify the time needed to deploy a blueprint, we ran repeatedly a selected set of blueprint 
deployments and timed their durations from submission into an empty logical deployment container 
until the DICE Deployment Service declared that the deployment has succeeded. We measured the 

                                                 
11 https://cucumber.io/docs/reference  

https://cucumber.io/docs/reference
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time required for complete teardown of a blueprint in similar manner: we took a fully deployed 
blueprint, started teardown procedure and measured the time until the DICE Deployment Service 
reported termination. 

Table 1 shows the results. We ran the experiments on XLAB’s internal OpenStack Mitaka. The Max 
level of dependence column represents the length of the longest path in blueprint’s dependency 
DAG, not counting any virtual resources that are created almost instantly. For example, level 1 
represents an application with services that are all peers and where none of the services depends on 
any other service. Level 2 represents a two-tier application, where a service (e.g., a database) needs 
to be deployed before another one (e.g., an application) can be deployed and configured. Figure 7 
graphically shows these results, with the orange line representing median values, the boxes extend 
from the lower to upper quartile values of the data, and the whiskers extend over complete range of 
the data. The labels on the x axis correspond to the Code name column in Table 1. 

Table 1: Summary and results of timing deployments 

Blueprint Code name Technologies used Max level of 
dependence 

Deployment 
time [s] 

Teardown 
time [s] 

Storm WordCount wordcount Zookeeper, Storm 3 445 70 
Spark Pi sparkpi Spark 3 442 55 
Storm WikiStats wikistats Zookeeper, Storm, 

Cassandra 
4 480 85 

Hadoop cluster Hadoop Hadoop 4 550 65 
Data pipeline kafka-pipe Zookeeper, Kafka, 

Cassandra, user scripts 
4 510 70 

 

 
Figure 7: Blueprint deployment times 

 

From the table, we can see that the deployment times are roughly correlated with the max level of 
dependence. The biggest range of the deployment time is for the Data pipeline due to intermittent 
delays introduced by the difficulties in our testbed. 
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Figure 8 illustrates further details on the timings of a particular deploy for Hadoop, where the 
scheduling due to dependencies is clearly visible. The node templates named *_ip_* and *_fw_* 
instantiate into OpenStack’s floating IP and security group (firewall) instances, respectively, which 
takes a minimal time to perform. Then the *_vm_* nodes follow, bringing up the virtual machines. 
Then the service configuration can follow: first, the name node, which has to exist before any other 
nodes can work, following by the resource manager and data nodes, all in parallel. Finally, the 
orchestrator instantiates the node managers. 

 
Figure 8: Apache Hadoop deployment timeline 

 

4.2.4 Obtaining Deployment Tool 
The DICE Deployment Tool is available on GitHub in multiple components: 

● https://github.com/dice-project/DICE-Deployment-Service – the thin wrapper and the 
RESTful web service interface of the DICE Deployment Tool. 

● https://github.com/dice-project/DICE-Deployment-Examples – example blueprints for all 
the supported technologies. 

● https://github.com/dice-project/DICE-FCO-Plugin-Cloudify – the client for the FCO and 
the plug-in used by the Cloudify TOSCA blueprints for orchestrating deployments in the 
FCO. 

● https://github.com/dice-project/DICE-Deployment-Cloudify – this repository contains the 
TOSCA definitions and the scripts for supporting the configuration of the supported Big 
Data services. 

● https://github.com/dice-project/DICE-Chef-Repository – Chef repository with the 
cookbooks that the TOSCA definitions refer to. 

https://github.com/dice-project/DICE-Deployment-Service
https://github.com/dice-project/DICE-Deployment-Examples
https://github.com/dice-project/DICE-FCO-Plugin-Cloudify
https://github.com/dice-project/DICE-Deployment-Cloudify
https://github.com/dice-project/DICE-Chef-Repository
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4.3 DICE Continuous Integration 
4.3.1 Main components 
The DICE Continuous Integration comprises the following components: 

● Jenkins Continuous Integration12, a popular and powerful open source solution, currently 
at version 2.36 (the long-term support version), 

● DICE Jenkins plug-in, which collects quality testing performance results and visualises 
them in Continuous Integration project summary, 

● sample job configurations for DICE tools. 

 
Figure 9: Deployment diagram of the DICE Continuous Integration 

Figure 9 shows an example deployment of the DICE Continuous Integration. Components created 
by DICE are highlighted in blue. In this set-up, the Jenkins runs as a central service. The main 
Jenkins node is complemented by Jenkins Worker nodes, which are running on the remote nodes 
that are hosting DICE tools such as Configuration Optimisation on an Enhancement Tool. The DICE 
tool project on the diagram represents a generic Continuous Integration project, which runs the 
DICE tool on top of a user’s DIA. 

We provide additional details on the set-up in the following subsections. 

4.3.2 Tools usage 
Jenkins Continuous Integration runs as a central service, which has access to the test bed. The web 
user interface of Jenkins, in turn, has to be accessible to the users from their development 
environment. The Administrator also has to install the DICE plug-in. 

                                                 
12 https://jenkins.io/  

https://jenkins.io/
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4.3.2.1 Build performance monitoring 
The DICE plug-in is suitable for handling any Continuous Integration job, which results in a report 
on the application’s performance. In DICE, both the Quality Testing tool and the Configuration 
Optimisation tool. The purpose of this exercise is to provide build performance monitoring, i.e., the 
ability to see the history of the general performance of the history of DIA’s versions, e.g., average 
or maximum latency, batch processing time etc. In this context, we are not handling high-granular 
runtime performance monitoring, because that is available from DICE Monitoring Tool’s Kibana 
service [4]. 

The user needs to first create a Jenkins freestyle type project, configured such that it is able to obtain 
from a VCS (Git, SVN, …) the application to be tested. The project needs to have one or more build 
steps, which execute the load testing of the application under test. The result of the build steps has 
to be a JSON file in a fixed path within the workspace. For example, the test might create a file 
results/metrics.json with contents shown in Listing 5. 

{ "latency": 2.3, "throughput": 3 } 
Listing 5: An example JSON file containing build’s performance metrics 

The project then needs to have a post-build action named DICE’s Quality check. Figure 10 shows 
an example view of the setting, which will ensure that the DICE plug-in will capture the metrics 
output file after the end of each build run. 

 
Figure 10: Configuring the DICE plug-in’s post-build action in the build settings 

We recommend to also add a post-build action typed Archive the artifacts. On the artifacts list add 
the results/metrics.json file and any output files that are a side product of the load generating 
tool. This is in particular useful if the next executions will benefit from results of the current run. 

With these project parameters set, the project’s job can now execute one or more builds. When the 
user then visits the project page in Jenkins, the result will be similar to the one on Figure 11. This 
view shows several interesting features: 

● On the left side in the navigation list, the link DICE graph leads to a custom page 
described later in this section. 

● On the right side of the page, a graph is showing past builds’ results. 
● In the middle, Jenkins provides links for the last successful build’s artifacts (Last 

Successful Arifacts). We can see the metrics.json entry containing the previous 
(assuming it was successful) build’s testing outputs. These artifacts have a well-defined 
URL, e.g.: http://jenkins-address.lan/jenkins/job/WikiStats-
QT/lastSuccessfulBuild/artifact/mock-qt/results/metrics.json 
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Figure 11: Example view of the project’s status. 

Clicking on the DICE graph link brings the user to a more detailed view of the history of the builds. 
Figure 12 shows an example of this view. 

 
Figure 12: DICE Quality Testing history view in the Jenkins Continuous Integration. 
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4.3.2.2 Scheduling DICE tools 
As already described, DICE Continuous Integration can serve as a glue between DICE components 
in the DICE DevOps methodology. In this section, we provide specific instructions on how to create 
projects that use other DICE tools. We assume that the central Jenkins node has already been 
installed and configured by the ADMINISTRATOR. 

In setting up the DICE environment, ADMINISTRATOR installs the DICE tools (Configuration 
Optimisation, Enhancement Tools, etc.) on one or more dedicated nodes in the test bed. We 
recommend that the ADMINISTRATOR also installs a Jenkins worker on each DICE tools host. 
This will make the execution of the Continuous Integration jobs easier, because Jenkins will take 
care of transmitting all the necessary files from and to the main Jenkins service. Another benefit is 
that we can prepare the build step scripts as if they are being executed locally to the DICE tools 
installations (because they actually will be). 

The ADMINISTRATOR then needs to add new nodes in Jenkins control panel and assign proper 
tags that reflect what tools are available on this node. This will enable filtering out the workers 
actually capable of running the tool relevant for the Continuous Integration projects. 

For each of the DIA project (i.e., a branch in the VCS containing the DIA’s development line) and 
for each DICE tool, the ADMINISTRATOR needs to create a new Jenkins project and set run 
restrictions based on the assigned tags from previous step. 

Table 2 summarizes the main settings to be set for a Configuration Optimisation project. The 
Configuration Optimisation wrapper run_bo4co.sh optimizes configuration for selected blueprint 
and stores final result. These results are then archived by the Jenkins and displayed using DICE 
Quality Check Jenkins plugin. 

Table 2: Continuous Integration project for scheduling Configuration Opt 

Tool Configuration Optimisation 

Source Code 
Management 

Configure source of input data for this project (blueprints, configuration, 
etc.). 

Build step Execute shell: 
configuration_optimization/run_bo4co.sh $BLUEPRINT $PARAMETERS 

Post-build 
Action 

Archive the artifacts: 
results/* 

Post-build 
Action 

DICE’s Quality check: 
results/summary.json 
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Table 3 illustrates setting up a Quality Testing project. Quality Testing wrapper run_qt.sh runs 
selected application on variety of inputs and returns one or more quality metrics. These metrics are 
archived by Jenkins and displayed using DICE Quality Check plugin. 

Table 3: Continuous Integration project for scheduling Quality Testing 

Tool Quality Testing Tool 

Source Code 
Management 

Configure source of input data for this project (blueprints, configuration, 
etc.). 

Build step Execute shell: 
quality_testing/run_qt.sh $BLUEPRINT 

Post-build 
Action 

Archive the artifacts: 
output/result.json 

Post-build 
Action 

DICE’s Quality check: 
results/summary.json 

 

We assume that the tool will expose a RESTful interface with a simple call for triggering the tool, 
which will then handle the VCS updates and commits on its own. For this type of tool, no local 
Jenkins worker is required, as long as the RESTful interface of the tool is accessible from the main 
Jenkins node. The Enhancement tool wrapper run_et.sh takes care of notifying the tool to start 
running, complete with the proper parameters. Table 4 illustrates a set-up of such a project to run 
such a tool. 

Table 4: Continuous Integration project for scheduling Enhancement Tool 

Tool Enhancement tool 

Build step Execute shell: 
enhancement/run_et.sh $APPLICATION_ID $SCM_REFERENCE 

Post-build 
Action 

Archive the artifacts: 
output/* 

 

4.3.3 Validation and results 
Validation of the DICE Continuous Integration was informal in its nature. Our methodology was to 
create mock-ups of DICE services and scheduled a series of projects to run periodically and on-
demand. We have visually inspected the results in the Jenkins web interface. The criteria for passing 
the validation were the following: 
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● It is possible to create Continuous Integration projects, which run long-running jobs on 
schedule or on VCS update. 

● The build results are available for subsequent builds. They are also available for later 
download in the CI repository. 

● Quality testing summary results are available as a graph and as a table. The history gets 
updated with each new build. 

We successfully validated the tool on all criteria. This complements the validity checks of the 
behaviour of our DICE plug-in for Jenkins through test-driven development. 

4.3.4 Obtaining DICE Continuous Integration 
The DICE Continuous Integration tool consists of the standard Jenkins [21] install and a plug-in, 
which is available at the GitHub: 

● https://github.com/dice-project/DICE-Jenkins-Plugin  
 

4.4 Configuration Optimisation 
4.4.1 Main components 
The DICE Configuration Optimisation is a single tool, which can be run from the command line. It 
externally relies on the DICE Deployment Service for deploying the applications that are subject to 
optimisation, and the DICE Monitoring Tool for collecting the metrics. 

Internally, the Configuration Optimisation used BO4CO in its first iteration [2]. In the current 
release the use of the CO tool with the BO4CO algorithm introduced in [2] was extended to the 
Apache Hadoop-based DIAs. The objective was the same as for the Storm-based DIAs: to find 
optimal configuration settings for the application when having experimental or computational 
budget restrictions. Additionally, the new concept – TL4CO – is introduced and tested as a part of 
the CO tool. TL stands for ‘transfer learning’ and means that optimisation algorithm at the core of 
the CO tool is initialised using the information from previous configurations. This allows the 
algorithm to converge faster to the same solution as BO4CO. The sections below describe the 
contributions in further detail. 

4.4.1.1 BO4CO Recap 
The problem of finding a global optimal configuration in the configuration space is known to be 
computationally complex. The heart of the DICE CO tool - BO4CO algorithm, presented in detail 
in the deliverable D5.1 [2], is able to find the best possible local optimum (and, hence, the 
application configuration settings corresponding to it) with the limited experimental budget. 

BO4CO is a new auto-tuning algorithm which adopts Gaussian Processes (GPs) to iteratively 
estimate the mean and confidence interval of a response variable (such as application’s latency, 
throughput etc.) at the part of configuration space that has not been searched and sequentially drives 
the experimentation. BO4CO estimates the response surface (the surface of all possible solutions) 
of the system using historical performance data of a specific metric. According to the estimate it 
selects the next configuration which is located in the most promising region of the surface and runs 
an application with this configuration to obtain the input data for the next iteration. After a 
sufficiently large number of iterations BO4CO will eventually find an optimal configuration 
meeting the application developer’s requirements and Service-Level Agreements (SLAs) [2]. 

https://github.com/dice-project/DICE-Jenkins-Plugin
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Figure 13: Illustration of BO4CO workflow (a) initial observations; (b) a GP model fit; (c) choosing the next point; (d) 

refitting a new GP model. 

The BO4CO algorithm is illustrated in the Figure 13. At the beginning BO4CO uses Latin 
Hypercube Design (LHD) to produce an initial design, mainly because LHD ensures that the 
configuration samples are representative of the configuration space and can be taken one at a time, 
which is considered to be efficient in the high-dimensional spaces. After that, a GP model is fit to 
the observations obtained by running the application with the initial design generated in the previous 
step. Then, the model is used to calculate the selection criteria. The process is repeated until the 
configuration that can maximise the selection criterion is found. 

To use this tool, the developer specifies which configuration parameters they are interested in and 
gives each parameter a range or possible values. Then the CO tool automatically selects the next 
configuration to be tested and, once this configuration has been measured, the performance data will 
be stored into the performance data repository in order to be used in the BO4CO algorithm. The 
sequential process continues until the maximum experimental budget has been reached and dumps 
the relatively optimal configuration for the application tested. 

4.4.1.2 Transfer Learning for Configuration Optimisation (TL4CO) 
Transfer Learning for Configuration Optimisation (TL4CO) is the evolution of the BO4CO 
algorithm used as a core of the DICE CO tool. 

4.4.1.2.1 Introduction  

Current solutions for developing more efficient configuration methods focus on improving the 
search mechanisms. We propose a different perspective, a DevOps-compliant solution that exploits 
the knowledge that has been gained in one system to accelerate the tuning of other similar systems. 
For example, significant correlations between the performance data of different versions of a system 
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were observed. We hypothesise that if we initialise the optimisation algorithm with the performance 
data from previous application versions instead of the performance data from the Latin Hypercube 
experiments, it would speed up the configuration tuning [11]. This is a reasonable assumption to 
make, because the previous configurations – even though they might not be optimal – would be 
‘closer’ to the optimum than the Latin Hypercube Design. 

We address the problem of finding optimal configurations under the following restrictions: (i) a 
configuration space composed of multiple parameters; (ii) a limited experimental budget is 
available; (iii) experimental data contains measurement noise. In this context, we demonstrate that 
transfer learning significantly contributes to the configuration optimisation process. While the 
literature on performance tuning (also known as auto-tuning [12]) is abundant with existing 
solutions for networked systems, databases, batch and stream processing, systems that address some 
of the above challenges (e.g., rule-based [13], design of experiments [14], model-based [12], [15], 
[16], [17], [18], search-based [17], [19], [20], [21], [22], [23], [24] and learning-based [25]), we 
only found one study that considers transfer learning [11]. 

Specifically, we propose TL4CO – an algorithm that leverages Multi-Task Gaussian Processes 
(MTGPs) [26] to continuously estimate the mean and confidence interval of the system performance 
at yet-to-be explored configurations. Using Bayesian Optimisation [27], the configuration 
optimisation process can account for all the available prior information, the acquired data on the 
current version, and apply a variety of kernel estimators [28] to locate regions where optimal 
configurations may reside. The key benefit of MTGPs over GPs that we benefit from in this work 
is that the prior information helps the model to converge to more accurate predictions much earlier. 
To validate the significance of transfer learning, we run the CO tool with TL4CO initialisation on 
the NoSQL benchmark (Apache Cassandra) and complex event processing application Social 
Sensor [29].  

4.4.1.2.2 The need for transfer learning: a motivating example.  

WordCount is a popular benchmark [30] that counts the number of words in the incoming stream. 
A Processing Element (PE) reads the input messages from a data source and pushes them into the 
system. The sentences are then split by the Splitter component and then counted by a Counter. 

Figure 14 (a,b,c,d) shows the response surfaces for 4 different versions of WordCount, where 
splitters  and counters, as configuration parameters, are varied. WordCount υ1; υ2 (also υ3; υ4) are 
identical in terms of the source code, but the deployment is different (we have deployed several 
other systems that compete for capacity in the same cluster). WordCount υ1; υ3 (also υ2; υ4) are 
deployed on a similar environment, but they differ in terms of the source code (we have artificially 
injected delays in the source code in the latter versions). 

We have measured the correlation coefficients between the four versions. They are summarised in 
the Table 5 (upper triangle shows the coefficients while lower triangle shows the p-values). The 
correlations between the response functions are significant (p-values are less than 0.05). However, 
the correlation differs from version to version, and also some versions have inverse correlations 
(e.g. υ1; υ3). Also, more interestingly, different versions of the system have different optimum 
configurations: xυ1 = (5; 1); xυ2 = (6; 2); xυ3 = (2; 13); xυ4 = (2; 16). Current practices do not 
systematically use the knowledge gained from previous versions for performance tuning of the 
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current version under test despite such significant correlations [31]. The main reason is that the 
inherent search and optimisation techniques in current tuning methods cannot exploit the historical 
data to accelerate the sample generation or restrict the search space. 

The response functions f(·) of the Figure 14 represent the dependency between the application’s 
data-processing time (latency) and two configuration parameters – counters and splitters, for each 
of the four WordCount versions described above. These functions are strongly non-linear, non-
convex and multi-modal. The performance difference between the best and worst settings is 
substantial, e.g., 65% in v4, providing a case for tuning. Moreover, the non-linear relations among 
the parameters imply that if one tries to minimise latency by acting just on one of the parameters, 
this may not lead to a global optimum [17]. 

 

 
Figure 14: The response functions corresponding to 4 versions of WordCount that are different in terms of either code 
or infrastructure 

Table 5: Performance measurements across different versions are significantly correlated, Pearson (Spearman) 
coefficients 

 v1 v2 v3 v4 
v1 1 0.41 (0.49) -0.46 (-0.51) -0.50 (-0.51) 
v2 7.4e-06 (5.5e-08) 1 -0.20 (-0.27) -0.18 (-0.24) 
v3 6.9e-07 (1.3e-08) 0.04 (0.003) 1 0.94 (0.88) 
v4 2.5e-08 (1.4e-08) 0.07 (0.01) 1.2e-52 (8.3e-36) 1 

 

4.4.2 Tool’s usage 
The tool works from the command line. The experiment details to be carried out are encoded in the 
configuration file with the relative path conf/exp_mt_config.yaml. 

The configuration file is comprised of several important parts: runexp specifies the experimental 
parameters, services comprises the details of the services which the CO tool uses, application 
contains the details of the application (e.g., Storm topology and the associated Java classes), and, 
most importantly, the details of the configuration parameters are specified in the vars field. 

Listing 6 shows an example of parameters which specify the experimental budget (i.e., total number 
of iterations), the number of initial samples, the experimental time, polling interval and the interval 
time between each experimental iterations, all in milliseconds: 
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runexp: 
  numIter: 100 
  initialDesign: 10 
  ... 
  expTime: 300000 
  metricPoll: 1000 
  sleep_time: 10000 

Listing 6: Example experiment settings in the TL4CO configuration file 

Listing 7 demonstrates how to specify the configuration parameters that the CO tool will use in the 
optimisation process. The definition is complete with the name of the parameter, the names of the 
nodes in the DDSM/TOSCA model of the DIA, and various parameters defining the search space. 

vars: 
  - paramname: "mapreduce.map.memory.mb"  
    node: ["namenode"]  
    options: [128 512 1024 2048 4096] 
    lowerbound: 0 
    upperbound: 0 
    integer: 0 
    categorical: 1 

Listing 7: Example of the specification of the target DIA’s configuration parameter in the TL4CO’s configuration file 

To run the CO tool with TL4CO, the user then simply runs the start-up script, as shown in the Listing 
8. 

$ ./run_tl4co.sh 
Listing 8: Running the TL4CO from the command line 

 

4.4.3 Validation and results 
4.4.3.1 BO4CO for Apache Hadoop 
4.4.3.1.1 Hadoop Configuration Parameters 

There are hundreds of configuration parameters in Hadoop, and they can be infrastructure-specific 
or application-specific. Hadoop provides default values for each configuration parameter which are 
put in the default XML parameters files and are inaccessible to users. Users can change settings by 
changing the non-default empty configuration files. There are three ways to change the 
configuration parameters: through hard-coding them in the application, through XML files (change 
them manually) and through command line interface [32]. 

Hadoop provides Configuration class and Set() method that allow users to access configuration 
parameters and change parameters’ values within the application, as shown on the Listing 9. 

 
Listing 9: Setting configuration parameters in the application code 

It is also possible to set parameter values directly in the XML files provided by Hadoop. Users can 
put property-value pairs into core-site.xml, hdfs-site.xml, mapred-site.xml and yarn-
site.xml. Listing 10 shows an example for how to set basic parameters in hdfs-site.xml. 
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Listing 10: Setting configuration parameters via XML files 

Users can also change default parameter values in the command line interface when submitting a 
Hadoop job. There are methods for shell scripts like -conf and -D which allow users to specify 
the configuration settings. Listing 11 shows an example of modifying configuration parameters 
when submitting a job via the command line interface. 

 
Listing 11: Setting configuration parameters via command line 

In this report we focus on the parameters that might affect Hadoop’s performance. Hadoop 
configuration parameters potentially affecting its performance can be classified into three broad 
categories: related to the CPU utilisation, I/O and memory utilisation [32]. 

4.4.3.1.2  CPU-related Hadoop configuration parameters. 

As shown in the Table 6, there are some parameters which might directly affect the CPU 
performance. 

A good configuration parameters tuning strategy is necessary for better CPU performance for a 
Hadoop job. 

Table 6: CPU-related Hadoop configuration parameters 

Parameter name Default value Description 
mapred.map.tasks 2 number of map tasks executed per job 
mapred.reduce.tasks 1 number of reduce tasks executed per job 
mapred.tasktracker.map. 
tasks.maximum 2 number of map tasks executed simultaneously by 

a task tracker per job 
mapred.tasktracker.reduce. 
tasks.maximum 2 number of reduce tasks executed simultaneously 

by a task tracker per job 
mapred.map.tasks. 
speculative.execution 

true if true, then multiple instances of some map tasks 
may be executed in parallel 

mapred.reduce.tasks. 
speculative.execution true 

if true, then multiple instances of some reduce 
tasks may be executed in parallel 
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4.4.3.1.3  Memory-related Hadoop configuration parameters 

As shown in Table 7, there are some parameters which might directly affect the memory 
performance. 

Memory availability can influence how long a task would take to finish. 

Table 7: Memory-related Hadoop configuration parameters 

Parameter name Default value Description 
mapreduce.map.memory.mb 1024 memory limit for map task 
mapreduce.reduce.memory.mb 1024 memory limit for reduce task 
mapreduce.task.io.sort.mb 100 memory limit when performing sorting task 
mapreduce.task.io.sort.factor 10 number of streams to be merged when 

performing sorting task 
mapred.child.java.opts -Xmx200m memory heap-size required 

 

4.4.3.1.4  I/O-related Hadoop configuration parameters 

As shown in the Table 8, there are some parameters which directly affect the performance of I/O. 
I/O parameters have a significant impact on the speed of the HDFS read and write operations.  

Table 8: I/O-related Hadoop configuration parameters 

Parameter name Default value Description 
dfs.blocksize 134217728 block size in bytes for file 
dfs.replication 3 number of blocks replicated 

mapreduce.map.output.compress false 
decide whether map output is 
compressed or not 

mapreduce.output.fileoutputformat. 
compress.type RECORD compression type of job output 

mapreduce.map.output.compression. 
codec 

org.apache.hadoop.io. 
compress.DefaultCodec 

compression codec when map outputs 
are compressed 

 

There are a lot of parameters that need to be set for Hadoop and tuned independently for each 
application, since different applications have different features. Each new release of Hadoop might 
deprecate some parameters as well as introduce new parameters which makes manual configuration 
tuning process even more labour-intensive.  

4.4.3.2  Experiments and evaluation 
4.4.3.2.1  Testbed setup 

We use a cluster of three VMs to perform tests, including one NameNode and three DataNodes. The 
master node is both NameNode and DataNode. All the VMs used for testing are hosted on the 
Imperial College’s Infrastructure-as-a-service private cloud based on Apache CloudStack. The host 
name of master node is ‘cloud-vm-47-223’. The operating system of the Master node of the cluster 
is Ubuntu v15.10 and the hardware statistics are shown in the  

Table 9 and Table 10: 
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Table 9: Master Node Hardware 

Item Value 
Number of CPU cores 2 
CPU, MHz 1000 
Memory, MB 3072 
Disk size, GB 30 

 
Table 10: Slave Node Hardware 

Item Value 
Number of CPU cores 2 
CPU, MHz 2000 
Memory, MB 2048 
Disk size, GB 100 

 

The host names of slave nodes are ‘cloud-vm-45-22’ and ‘cloud-vm-45-25’ respectively.  

4.4.3.2.2  Test plan 

We use 1GB dataset to perform the tests on two different widely-used Hadoop MapReduce 
benchmark applications – Wordcount [30] and Terasort [33]. WordCount was introduced earlier 
in the Section 4.4.1.2.2, and Terasort measures the amount of time it takes to sort 1 TB of 
randomly distributed data. We test each application with two configurations: two and five parameter 
configurations (we vary these parameters while the rest remain unchanged throughout the 
experiments). For two-parameter experiments we chose mapreduce.job.reduces and 
mapreduce.tasktracker.reduce.tasks.maximum because they influence each other during the 
job execution [34]. For five-parameter experiments we selected parameters that might have 
significant impact on the Hadoop performance. The test plans for these two sets are shown in the 
Table 11 and Table 12 respectively: 

Table 11: Test plan for 2-parameter configuration 

Parameters Default values WordCount TeraSort 
mapreduce.job.reduces 1 1, 2, 3 1, 2, 3 
mapreduce.tasktracker.reduce. 
tasks.maximum 2 2, 3 2, 3 

 

Table 12: Test plan for 5-parameter configuration 

Parameters Default values WordCount TeraSort 
mapreduce.job.reduces 1 1, 2, 3 1, 2, 3 
mapreduce.tasktracker.map. 
tasks.maximum 

2 2, 3 2, 3 

mapreduce.tasktracker.reduce. 
tasks.maximum 2 2, 3 2, 3 

mapreduce.task.io.sort.mb 100 100,110,120 100,110,120 
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mapreduce.task.io.sort.factor 10 10,20,40,80 10,20,40,80 
 

According to [12], the optimal setting for mapreduce.tasktracker.reduce.tasks.maximum 
should be set between half of the number of CPU cores per node and two times of the number of 
CPU cores per node, i.e. in our case between 1 and 4. Here we choose values 2 and 3 to reduce 
experiments time. As listed in the Table 6, mapreduce.job.reduces sets the  number of reduce 
tasks per job [35], which should be approximately equal to the number of reduce slots as found in 
[34]. Since parameter mapreduce.tasktracker.reduce.tasks.maximum controls the maximum 
number of map tasks run simultaneously by the task tracker (i.e. the number of reduce slots), we 
vary mapreduce.job.reduces in the range from 1 to 3.  

Table 12 lists the five parameters we are interested in with their chosen ranges. The choice of the 
settings for the first and third parameters was explained above and the second parameter is similar 
to the third one, hence we also set it from 2 to 3. The parameter mapreduce.task.io.sort.mb 
controls the total amount of buffer memory to use when sorting files and it allocates 1 MB of 
memory for each merge stream by default in order to reduce seek times (time it takes for a disk drive 
to locate the area on the disk where the data to be read is stored). Normally, this parameter might 
reduce I/O times if increased, however it also requires more memory for each map task. If not much 
physical memory is available, the range for this parameter should be chosen carefully, otherwise it 
might cause job failure or stuck job. Parameter mapreduce.task.io.sort.factor indicates the 
number of streams to merge each time when sorting files and determines the number of open file 
handles. Because each merge stream occupies 1 MB of memory, this parameter should be set smaller 
than the fourth one to avoid OutOfMemory error.  

For the first group, listed in the Table 11, there are six combinations of configuration in total and 
we’ll be able to test them all (i.e. set the experimental budget numIter to 6) because it does not take 
much time to run the full set of tests. However, for the second group (listed in the Table 12), the 
total number of combinations is 144 and we limit the CO tool to 60 iterations (an experimental 
budget). Ten replications of each experiment were made to reduce experimental errors. 

4.4.3.2.3  Test data generation 

Because Wordcount and TeraSort work with text data arranged into different structures, we 
generate two datasets 1 GB each using RandomTextWriter [36], [37] and TeraGen [38], [39] 
Java scripts for WordCount and TeraSort respectively. The command for generating test data 
with RandomTextWriter is shown on the Listing 12.  

With default settings RandomTextWriter generates 10 GB of data split into 10 files, each file 
containing 1 GB of data. We set mapreduce.randomtextwriter.totalbytes to 1 GB and 
mapreduce.randomtextwriter.bytespermap to 100MB so the script would generate the total 1 
GB of data with 10 files. 

 
Listing 12: Generation of test data with Randomtextwriter via command line interface 
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The data generated is in plain text with random words, which is very suitable for WordCount. The 
format of the generated text is shown on the Listing 13. It is random in both length and letters. 

 
Listing 13: Example sample of test data generated for WordCount application 

TeraGen is a script generating test data for TeraSort. The command for the test data generation 
with TeraGen using the command line interface is shown on the Listing 14: 

 
Listing 14: Generation of test data with TeraGen via command line interface 

TeraGen generates 100 bytes of data per row in the format shown below. In order to generate 1 GB 
of data we should add ‘10000000’ to the command (the number of rows to be generated) and set 
mapred.map.tasks to 10 (which would result in 10 files).  

<10 bytes key> <10 bytes rowid> <78 bytes filler> 

The ‘key’ is some random characters with the ASCII value of each character in the range [32, 126]. 
The ‘rowid’ is an integer and the ‘filler’ contains 7 groups of characters with 10 characters in each 
group (8 characters in the last group) whose range is [A-Z]. 

4.4.3.2.4  Experimental results. 

The two chosen Hadoop applications – WordCount and TeraSort – were evaluated with the 
Configuration Optimisation tool using the experimental data from the Sections 4.4.3.2.2 and 
4.4.3.2.3. The performance metric chosen was latency (the data processing time of the application), 
measured in milliseconds. As shown in the Figure 15, for both Wordcount and TeraSort 
applications the CO tool improves their performance. Since the experiments were conducted on the 
rather small cluster with limited resources, and input data size is small compared to the real industry 
case, the tool did not produce dramatic improvement in application performance. Additionally, the 
set of parameters chosen for tuning by the CO tool was small due to the limited resources and 
computational time available, which might have also influenced the results (e.g. some of the chosen 
parameters were not that ‘influential’ on the application performance as we assumed or their default 
values are already well-tuned by Hadoop developers). However, these preliminary results look 
promising and we will continue the experiments with more powerful hardware resources and more 
parameters to tune. 
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Figure 15: Experimental results for the WordCount and TeraSort applications 

 
4.4.3.3 NoSQL benchmark optimisation (Apache Cassandra). 
Since Apache Cassandra is designed to be write-efficient [40] (i.e. its configuration is optimised for 
write operations efficiency), we set a more challenging task of optimising for the read operations as 
well. Figure 16 shows the measurements of latency versus throughput for both read and write 
operations in the 20-paremeter configuration space. The configurations that are found by the CO 
tool (with TL4CO and BO4CO algorithms), the default settings and the one prescribed by experts 
[41] are annotated. The results show that the configuration that the CO tool with TL4CO 
initialisation finds only after 20 iterations results in a slightly lower latency but much higher 
throughput compared to the one suggested by the experts. 

 
Figure 16: TL4CO in the NoSQL experiment comparing with BO4CO and expert. Each point corresponds to a 

performance (averaged over 10 min) of the system with a different configuration, resulted in 1024 points (lower 
right points are better) 
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4.4.3.4 Case study: ATC’s Social Sensor. 
We have also applied CO tool (both with BO4CO and TL4CO algorithms) to the ATC’s Social 
Sensor [29]. It is a Storm and MongoDB-based DIA, mining data from online sources (e.g. social 
media, news websites) and processing it to extract trending topics. Social Sensor is a complex event-
processing system consisting of nine distributed components and is latency-sensitive due to both 
combining data from multiple sources and looking for events in real time.  
We have selected 20 configuration parameters with two levels for each, thus creating a configuration 
space of the size |𝕏𝕏| = 220. The exhaustive search (to run all possible combinations of these 
parameters) would take 106 * 10 min = 6944 days = 19 years. We compare the throughput and 
latency obtained by running Social Sensor with configuration parameters chosen by the CO tool to 
measured using the default configuration. The results in the Figure 17 show a significant gain in 
performance with the configuration suggested by the CO tool. The improvement in throughput of 
more than twice compared to the default configuration was achieved after only 100 iterations 
(100/220 = 0,0095% of the possible configurations) which took 100 * 10 min = 16h to run.  
 

 
 

Figure 17: Application of CO tool (with BO4CO and TL4CO algorithms) to the Social Sensor [29] 

 

4.4.4 Obtaining Configuration Optimisation 
Both the BO4CO and the TL4CO are available at GitHub: 

• https://github.com/dice-project/DICE-Configuration-TL4CO - TL4CO 
• https://github.com/dice-project/DICE-Configuration-BO4CO - BO4CO 

https://github.com/dice-project/DICE-Configuration-TL4CO
https://github.com/dice-project/DICE-Configuration-BO4CO
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5 Conclusion 
In a highly competitive setting such as software development, any tool that can speed up the process 
of testing and deploying components of a product are bound to be valuable. Big Data technologies 
have been available in approachable open source form for several years now. However, their 
adoption by many both novice and experienced developers is still a slow process. 

The DICE delivery and configuration tools in their initial version were a prototype with a working, 
but small base of supported technologies. In one year, we have added a number of technologies to 
the library, now enabling to configure and deploy a much richer spectrum of building blocks in 
topologies of an arbitrary complexity. We also improved the usability, so that the deployment is 
even more accessible, easy to use. We find it important to empower users to use the tools in the best 
way possible for their own workflow and setting, and we believe that we have achieved that by 
offering a number of ways of invoking these tools. Web GUI, RESTful interface and command line 
utility are all valid ways to do the work. We demonstrated the usability of these interfaces by 
providing a plug-in for Eclipse [5], and by easily configuring another popular editor Sublime Text 
to perform one-click deployments right from the editor. 

Speed without sacrificing quality was also a motivation in improving the DICE Configuration 
Optimisation. By introducing the TL4CO algorithm, every run of the configuration optimisation 
produces data, which will improve results of the next run. This saves time for the users, reduces cost 
of computation needed to obtain the recommendation, while at the same improving long-term 
performance of the DIA under test. 

Considering that the DICE tools themselves are components, which need to be deployed themselves, 
we built Chef cookbooks and created TOSCA blueprints for them as well. That way, even the initial 
mandatory hurdle of having to configure and install the delivery and configuration tools is much 
smaller.  

We believe that the intermediate version of the delivery tools already represents a compelling 
package, which can be used daily or even more regularly to speed up time to market of new DIAs. 
Still, we will look into further improving the offering. This will go in two directions. First, we will 
add any missing or newly compelling technologies to the DICE TOSCA technology library. Second, 
we will research how to further increase the speed and responsiveness of the tools. The process of 
extending the DICE TOSCA technology library involves open technologies, so in principle any 
moderately skilled users can add their own building blocks by following our examples. For the less 
skilled users, the script runner node types can provide the needed minimal library extension support. 

In the final period of the project we plan to extend the functionality of the DICE Delivery Tool in a 
way to support the Privacy-by-Design paradigm. This paradigm is presented in the peer deliverable 
[6] at the modelling level. The challenge will be to use the tools available and capabilities granted 
by the Big Data building blocks to either enforce the required policies, or at least log any violations 
of the policies. 

For the Configuration Optimization, we will focus on further integrating the tool with other DICE 
tools such as the DICE IDE, DICE Monitoring Tool and Continuous Integration. 
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5.1 DICE Requirement compliance 
In the Section 2 we provided a summary of the requirements. Table 13 indicates the level that the 
DICE Delivery Tools comply in their initial release. The Level of fulfilment column has the 
following values: 

• ✗ - not supported yet 
•  - initial support 
•  - medium level support 
• ✔✔✔ - fully supported 

 

Table 13: Level of compliance of the initial version of the DICE delivery tools with the initial set of requirements 

Requirement Title Priority Level of 
fulfilment 

R5.3 Continuous integration tools deployment SHOULD ✔✔✔ 
R5.4 TOSCA format for blueprints MUST ✔✔✔ 
R5.4.1 Big Data technology support MUST  
R5.4.2 Translation tools autonomy MUST ✔✔✔ 
R5.4.5 Deployment tools transparency SHOULD ✔✔✔ 
R5.4.6 Deployment plans extendability SHOULD  
R5.4.7 Deployment of the application in a test 

environment 
MUST ✔✔✔ 

R5.4.8 Starting the monitoring tools MUST  
R5.5 User-provided initial data retrieval MUST ✔✔✔ 
R5.7.1 Data loading hook SHOULD  
R5.16 Provide monitoring of the quality aspect of the 

development evolution (quality regression) 
MUST ✔✔✔ 

R5.19 Deployment configuration review MUST  
R5.20 Build acceptance MUST  
R5.27 Configuration Optimisation MUST ✔✔✔ 
R5.27.1 Brute-force approach for 

CONFIGURATION_OPTIMIZATION 
deployment 

SHOULD ✔✔✔ 

R5.27.6 CONFIGURATION_OPTIMIZATION 
experiment runs 

MUST ✔✔✔ 

R5.27.7 Configuration optimisation of the system 
under test over different versions 

SHOULD ✔✔✔ 

R5.27.8 Configuration Optimisation's input and output MUST ✔✔✔ 
R5.43 Practices and patterns for security and privacy MUST ✗ 

 

As a part of our future work, we will continue to work towards fully supporting the requirements. 
In particular: 

• R5.4.1: we plan to provide support for MongoDB by M26. 
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• R5.4.6: a part of the TOSCA library expandability effort will be documenting the process 
needed for adding support for new technologies. 

• R5.4.8: in M25, we will enable automatic connection of Cassandra and MongoDB nodes to 
be monitored by the DICE Monitoring Tool. 

• R5.7.1: by M30 we plan to enable loading of data into Cassandra from offline files, which 
will be referenced to from the new TOSCA blueprint node types. 

• R5.19 and R5.20 will be researched and reported by M30. 
• R5.43: security and privacy by design will be a topic of research in the last year of the 

project. We expect by M30 to provide proof of concept solutions at least for Cassandra. 
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