
Configuring Spatial Grids for Efficient Main
Memory Joins

Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki

École Polytechnique Fédérale de Lausanne (EPFL), Imperial College London

Abstract. The performance of spatial joins is becoming increasingly
important in many applications, particularly in the scientific domain.
Several approaches have been proposed for joining spatial datasets on
disk and few in main memory. Recent results show that in main memory,
grids are more efficient than the traditional tree based methods primarily
developed for disk. The question how to configure the grid, however, has
so far not been discussed.
In this paper we study how to configure a spatial grid for joining spatial
data in main memory. We discuss the trade-offs involved, develop an an-
alytical model predicting the performance of a configuration and finally
validate the model with experiments.

1 Introduction

Spatial joins are an operation of increasing importance in many applications.
Whether for spatial datasets from astronomy, neuroscience, medicine or others,
the join has to be performed to find objects that intersect with each other or
are within a given distance of each other (distance join). An efficient execution
of this operation is therefore key to improve overall performance.

In this context main memory joins are becoming increasingly important be-
cause many datasets fit into the main memory directly. Even if they do not, and
the join has to be performed on disk, a crucial part of a disk-based join is the
in memory join. While the strategies of disk-based approaches to partition the
data (replication or no replication, space-oriented partitioning or data-oriented
partitioning) so it fits into memory differ [1], every approach requires an efficient
algorithm to join two partitions in main memory.

The only approaches specifically designed to join spatial data in memory
are the nested loop join and plane sweep join approach. The nested loop join
technique works by comparing all spatial elements pairwise and is thus compu-
tationally very expensive. The plane sweep approach [2] sorts the datasets in one
dimension and scans both datasets synchronously with a sweep plane. It has has
a lower time complexity but compares objects no matter how far apart they are
on the sweep plane.

To speed up the join time over these two slow approaches, tried and tested
tree-based indexing techniques on disk have been optimized for main memory.
Although these approaches indeed improve performance, recent research shows
that a simple grid performs best to join for one-off spatial joins in memory [3].
The problem of configuring the grid optimally, however, is challenging and re-
mains unaddressed to date.



2

In this paper we therefore develop a cost model that can be used to configure
the grid optimally. With experiments we show that the cost model can accurately
predict the performance of the join.

2 Grid-based Spatial Join

Spatial joins are typically split into two phases, filtering and refinement [4]. The
filtering phase uses a coarse grained collision detection and finds intersections
between approximations of the actual objects. The refinement phase, is used to
remove the false positive by using an exact, but time-consuming object-object
collision test. The refinement phase is a computationally costly operation with
little room for improvement and so, like other approaches for spatial joins [4],
the spatial grid-based spatial join focuses on improving the filtering phase.

On a high level, the grid-based spatial join tackles the filtering phase with a
three dimensional uniform grid and uses it as an approximate method to group
spatially close objects. In the building step we map the MBRs of the objects of
both datasets on a grid while the probing step retrieves MBRs from the same
cells (which are thus close together) and compares them pairwise.

In the following we first explain the two steps, i.e., building and probing.

2.1 Building Step

The algorithm iterates over both sets of objects and for each object calculates its
MBR and maps it on the uniform grid. The mapping process finds the grid cells
that intersect with the MBR volume and creates a pointer from each intersecting
grid cell to the MBR. By using a uniform grid we simplify the calculation of the
mapping of MBR to cell and can calculate the list of intersecting grid cells
efficiently as follows. First, we use the minimum and maximum coordinate of
the MBR to find the minimum and maximum grid cell intersecting it. Second,
we use a nested loop to iterate over all the grid cells bounded by these minimum
and maximum grid cell.

The mapping of MBR to grid cells is ambivalent as one MBR can also map
to several grid cells. To store this many-many relationship between the MBR
and the grid cell we use a hashmap which maps a list of pointers to a grid cell
identifier. To map an MBR we access the list of pointers for each intersecting
grid cell and insert the pointer in their respective list. Apart from providing a
fast access mechanism to the list of pointers the hash table also helps to reduce
the memory footprint as only grid cells containing one or more pointers to an
MBR require an entry in the hash map and no memory is wasted in storing
empty grid cells.

2.2 Probing Step

The probing step of the algorithm retrieves the mapped MBRs of the two objects
sets from the grid. The algorithm iterates over all the grid cells and separately
retrieves all the MBRs in the cell. For each cell it then compares all MBRs
representing objects from the first dataset with all MBRs representing objects
from the second dataset.



3

Because MBRs can be mapped to several cells, intersections between the
same pair of MBR’s may be detected multiple times. This leads to a) additional
computational overhead (because of additional comparisons) and b) duplicate
results. The spatial grid-based spatial join thus use a global (across all grid cells)
set based data structure in a postprocessing step to deduplicate the results before
reporting them.

3 Configuring the Grid-based Spatial Join

As we discuss in the following, the performance of the algorithm we propose for
filtering depends on the configuration, i.e., the grid resolution used, as well as
the data distribution.

3.1 Impact of Data Skew

Uniform grids are very sensitive to data skew and using them in spatial join
algorithm can lead to performance degradation because in dense regions the
number of MBRs mapped on a grid cell increases and consequently the number
of comparisons required increases too. All MBRs may be mapped to one single
grid cell. In this scenario the performance of spatial grid hash join becomes
equivalent to a nested loop join because all MBRs need to be compared pairwise
and the total number of comparisons is O(n2). Even worse, all MBRs may be
mapped to the same multiple cells and the nested loop is executed comparing the
same MBRs several times (resulting in duplicates that need to be eliminated).

The problem of data skew can be addressed by setting a finer grid resolution.
With a finer grid resolution also the objects or their MBRs in very dense regions
of the datasets will be distributed to numerous grid cells instead of just a few.
As we will discuss in the next section, the resolution, however, cannot be set
infinitely fine-grained, but reducing the cell size still helps to address the problem
of data skew.

3.2 Impact of Grid Resolution

Changing the grid resolution, i.e., making it coarser or finer grained directly
affects the performance of the algorithm.

In case of a fine resolution, an MBR is likely to be mapped to many grid
cells and the memory footprint therefore increases. This also leads to degraded
performance because more comparisons need to be performed in the probing
phase. The number of comparisons increases because MBRs mapped to several
cells need to be compared more than once.

In case the resolution is coarse, each grid cell contains many MBRs and
hence the performance degrades because all MBRs in the same grid cell need to
be compared pairwise, thereby increasing the number of comparisons. A coarse
resolution, however, lowers the memory consumption of the algorithm because an
MBR is less likely to be mapped to many grid cells, thereby reducing duplication
(even if pointers are used). Additionally, the probability of comparing the same
pair of MBRs several times because they are assigned to several cells (as is the



4

problem of a fine resolution) is considerably reduced, reducing the overall number
of comparisons.

Both extremes have advantages and disadvantages and it is difficult to set the
resolution intuitively. In the following we therefore develop an analytical model
that will predict the optimal grid resolution for two sets of objects in terms of
number of total comparisons.

3.3 Analytical Model

To determine the optimal resolution we develop a cost model for predicting the
time for the join. Like our algorithm we also split the cost model into building
and probing costs.

Building Cost The building phase loops over the MBR of each of the Nd

objects in the first dataset and for each MBR finds the intersecting grid cells
using the getCell (gC) function. For each cell a hashLookup (hL) is performed
to obtain the list of pointers that point to the MBR and in the end the pointer
of the current MBR is added to the list using insertPointer (iP). The resulting
cost is summarized in the following equation with Ci as the number of cells an
MBR intersects with:

BuildingCost =

Nd∑
i=1

gC(MBRi) +

Ci∑
j=1

[hL(j) + iP (&MBRi)]

 (1)

The cost of the getCell (gC) function is defined as follows:

gC(MBRi) =

Ci∑
j=1

vertexToGridCell(j)

To determine the actual building cost we need to know the duration of each
individual operation and the number of iterations of each loop. vertexToGridCell
and insertPointer both are constant time operations and for the sake of simplic-
ity we also assume hashLookup to be a constant time operation (this essentially
means we use a tuned hash table which is collision-free). The execution time of
all these operations heavily depends on the hardware platform they are executed
on. We use microbenchmarks to determine their execution time.

Nd, the number of objects in the first dataset, is a given and Average(C),
the number of cells an average object’s MBR maps to, is calculated as follows
(instead of calculating Ci for each object we use an approximation, i.e., Aver-
age(C)).

Average(C), the number of cells an average MBRi maps to depends on the
average volume of the MBR and on the grid resolution. On average, the MBR
of an object particular MBRi the number of cells it is mapped to, can be ap-
proximated by V olume(MBRi)/V olume(gridCell). This, however, is only an
approximation and it underestimates the number of grid cells because the exact
number of grid cells intersecting depends on the exact loation of MBRi relative



5

to the grid cells. If MBRi is exactly aligned with the grid cell then the combined
volume of the grid cell is equal to the volume of MBRi. If, however, MBRi is
not aligned, then the combined volume of the grid cell is greater than the volume
of MBRi to at most the volume of a single grid cell.

To resolve this issue we expand the volume of MBRi by half the volume of
a single grid cell, to get a better approximation for the average case.

Total(C) =

Nd∑
i=1

{
V olume(MBRi) + V olume(gridCell)/2

V olume(gridCell)

}
Average(C) = Total(C)/Nd

Probing Cost Similar to the building step, the probing step loops over each
object in the second dataset. For each object the algorithm finds the list of cells
intersecting the MBR of the object. However, instead of mapping the MBR on
the grid, the probing step retrieves the mapped MBRs from the first dataset for
testing the overlap.

ProbingCost =

Na∑
i=1

gC(MBRi) +

Ci∑
j=1

hL(j) + Sj∑
k=1

(oT (i, k) + dD())

 (2)

The operations of the probing step are overlapTest (oT), which compares
two MBRs for overlap, and deduplication (dD), which uses a hash based set to
remove duplicate results. We consider both these operations as constant time
operations, because we assume a near collision free hash set for our estimates.
The number of iterations of the loop Na is the size of the outer data set.

Similar to the building cost model, we use Average(C) to approximate the
number of grid cells that intersect with the MBRs of the outer data set.

To estimate Sj we use an approximation Average(S). Average(S) is the num-
ber of first dataset objects mapped to grid cells, but only the grid cell which
intersects the MBRs of objects of the second dataset.

The probing step typically takes the majority of the the total time of the
join. Setting the resolution optimally therefore has a substantial impact on the
performance of the overall algorithm. By using a increasingly fine resolutions,
the cell volume decreases, this increases the number of grid cells that intersect
the MBR of the outer dataset and hence the performance degrades. At the same
time, however, the number of overlap test comparisons decreases because we do
not compare objects for overlap which are not located spatially close.

3.4 Optimal Grid Resolution

The sum of both cost models is a concave up curve and the local minimum and
hence the optimal value is where the first derivative is equal to zero. To validate
the model we have tested it using experiments where we vary the grid cell size.
For the experiments we use neuroscience data where 4.5 million cylinders model
1692 neurons and we use the experimental setup described in [5].



6

In Figure 1 (a) we measure the individual components (build & probe) as well
as the total time of the join. Clearly, for both components there is an optimal
(at the same grid cell size) where the join is executed the fastest. The second
experiment (Figure 1 (b)) plots the total execution time against the analytical
model and shows that the the model can indeed be used to accurately predict
the performance and thus to determine the grid configuration.

0"

5"

10"

15"

20"

25"

30"

1" 2" 4" 6" 8" 10" 12"

Ti
m
e"
[s
ec
]"

Grid"Cell"Volume"[µm3]"

total%&me%
build%&me%
probe%&me%

(a) Time for grid-based spatial join op-
erations.

0"

5"

10"

15"

20"

25"

30"

1" 2" 4" 6" 8" 10" 12"

Ti
m
e"
[s
ec
]"

Grid"Cell"Volume"[µm3]"

Real%
Analy&cal%Model%

(b) Analytical model compared to
measurements.

Fig. 1. Validating the analytical model of the grid-based spatial join.

4 Conclusions

Whether in disk- or in memory spatial joins, the main memory join is a crucial
operation. Recent research demonstrated that grid-based approaches outperform
tree-based ones in main memory [3], but the question of how to set the optimal
resolution remains unaddressed. In this paper we described our implementation
of a grid-based spatial join and, crucially, developed and analytical model to
predict performance. Our experimental results show that with little information
about the datasets to be joined as well as the underlying hardware, the model
accurately predicts performance. While it may be difficult to estimate the exe-
cution of individual operations, microbenchmarks can be used to find accurate
values. Even in the absence of the cost of the operations, the model can still give
insight into how to configure the grid for optimal performance.

References

1. Jacox, E.H., Samet, H.: Spatial Join Techniques. ACM TODS ’07
2. Preparata, F., Shamos, M.: Computational Geometry: An Introduction. Springer

(1993)
3. Šidlauskas, D., Jensen, C.S.: Spatial Joins in Main Memory: Implementation Mat-

ters! In: VLDB ’15
4. Orenstein, J.: A Comparison of Spatial Query Processing Techniques for Native

and Parameter Spaces. In: SIGMOD ’90
5. Tauheed, F., Biveinis, L., Heinis, T., Schürmann, F., Markram, H., Ailamaki, A.:

Accelerating range queries for brain simulations. In: ICDE ’12


