
On-the-Fly Data Synopses: Efficient Data Exploration
in the Simulation Sciences

Thomas Heinis†, David A. Ham‡

†
Department of Computing

‡
Department of Mathematics

Imperial College, London, UK

ABSTRACT
As a consequence of ever more powerful computing hard-
ware and increasingly precise instruments, our capacity
to produce scientific data by far outpaces our ability to
efficiently store and analyse it. Few of today’s tools to
analyse scientific data are able to handle the deluge cap-
tured by instruments or generated by supercomputers.

In many scenarios, however, it suffices to analyse a
small subset of the data in detail. What scientists analysing
the data consequently need are efficient means to ex-
plore the full dataset using approximate query results
and to identify the subsets of interest. Once found, in-
teresting areas can still be scrutinised using a precise,
but also more time-consuming analysis. Data synopses
fit the bill as they provide fast (but approximate) query
execution on massive amounts of data. Generating data
synopses after the data is stored, however, requires us to
analyse all the data again, and is thus inefficient.

What we propose is to generate the synopsis for simu-
lation applications on-the-fly when the data is captured.
Doing so typically means changing the simulation or
data capturing code and is tedious and typically just a
one-off solution that is not generally applicable. In con-
trast, our vision gives scientists a high-level language
and the infrastructure needed to generate code that cre-
ates data synopses on-the-fly, as the simulation runs. In
this paper we discuss the data management challenges
associated with our approach.

1. INTRODUCTION
Over the last half century, computer simulations

of natural phenomena have become an indispens-
able part of the scientific method [2, 17]. For the
study of many natural phenomena, building a model
and simulating it complements the understanding
developed using traditional methods. In fields as di-
verse as cosmology, seismology and climate science,
simulation is essential in understanding phenomena
when a physical experiment is impossible.
The models used today are as big and detailed

as the memory of the simulation infrastructure al-
lows, and with every successive hardware genera-
tion, the models grow larger. As the computing in-

frastructure evolves, the amount of data generated
increases. Even today, datasets may be as large
as petabytes and are growing rapidly [10], making
them di�cult to store.

Storage capacity, however, is only one aspect of
the problem. The data generated by simulations is
so big that the analysis of the data is also a severe
challenge. Complete analysis, however, is rarely re-
quired and what scientists need instead is explo-
rative access to the data to find interesting sub-
sets that need further detailed and time-consuming
analysis. Data synopses providing approximate (with
a tight bound for the maximum error) but fast query
results are a promising first step to allow for the
scalable exploration of simulation results.

Creating the synopses after the simulation out-
put has been written to disk, however, means revis-
iting and analysing all the data; a time-consuming
process (multiple times depending on the synopsis).
We consequently propose to develop a broadly ap-
plicable approach through generating code for cre-
ating the synopsis on-the-fly, according to the needs
of the scientists and optimised for the architecture
used. This would leverage and complement recent
work [11, 12] on the development of high-level lan-
guages to generate low-level, hardware-optimised
simulation code. We envision a system in which,
given the simulation code and model, the user de-
scribes the architecture and the questions they are
interested in and the system generates the code to
produce this exact synopsis as the simulation runs.

To build such a system, we need to address sev-
eral challenges. First, we need to define a language
the user can use to express their interest. Second,
depending on the user’s interests, a particular type
of synopsis must be chosen. For example, if a user
needs to ask for simple range or count queries, a syn-
opsis based on histograms may be su�cient. Third,
the generation of the synopsis needs to be fast and
thus optimised for the hardware architecture used.
Finally, to make the best use of the space needed
to store the synopsis, we need synopses which are
more accurate in areas that scientists are interested



in and less so elsewhere.
Explorative queries on scientific data [9] (poten-

tially relying on model-based compression [14]) have
already been proposed in the past. Our vision ap-
plies similar ideas of approximate query answers (al-
beit not with iterative, i.e., with improving preci-
sion [9, 1]) to the simulation sciences to automat-
ically produce data synopses. Work on reasoning
about approximate and uncertain data [6] ideally
complements our work in that it can be used to
reason about approximate query answers.

2. BACKGROUND
The vision we propose touches on three di↵erent

areas of research.

2.1 Simulation Sciences
Over the last half century, computer simulation

of physical phenomena has joined theory and exper-
iment to form a third, and indispensable, pillar of
scientific research [17]. For the vast range of phys-
ical phenomena which are continuous, the simula-
tions centre on the calculation of discrete approxi-
mate solutions to partial di↵erential equations. The
spatial extent of the simulation is typically modelled
by a finite vector of solution values, connected by
a grid or mesh structure. The scientist specifies an
initial simulation state, and the simulation state at
the next discrete time step is calculated by applying
numerical operations.
Scientists constantly push the precision, size and

duration of simulations to the limits of their compu-
tational infrastructure. The size of the simulation is
typically limited by the CPU power, speed of data
transfer and, size of main memory in which the cur-
rent state is stored.
The massive simulation result that has to be anal-

ysed considerably challenges the state of the art in
data analysis as most current approaches do not
scale well. One of the biggest challenges in simu-
lation science today is indeed the size of the sim-
ulation result. While ever bigger disks enable sim-
ulation results of increasing size to be stored, the
lack of scalable analysis tools limits the simulation
duration in many instances [13]: why simulate for
longer if the results cannot be analysed?

2.2 Generating Simulation Code
Numerical methods and simulation hardware have

become so sophisticated in recent years that it takes
scientists enormous levels of e↵ort and very spe-
cialised computational skills to take advantage of
them [12]. They frequently spend months or years
reinventing implementations for numerical methods
that are not optimal for the underlying highly paral-
lel hardware. To make matters worse, the resulting

code is often hundreds of thousands of lines, making
it very di�cult and time-consuming to maintain in
the face of ever more sophisticated algorithms de-
signed for ever more complex computer hardware.

Recent advances, however, have introduced higher-
level languages to formulate the simulation problem
on a mathematical level with only a few hundreds
of lines of code [11, 12]. The mathematical spec-
ification is used to automatically generate highly
optimised code for the hardware it is run on. Using
a high-level language combined with code genera-
tion creates a critical separation of concerns: the
scientist specifies the numerical algorithm but not
its implementation. It is the role of the code genera-
tion system to produce a high performance parallel
implementation highly optimised for the underlying
hardware platform.

The Unified Form Language (UFL), which is em-
ployed by both the FEniCS [11] and Firedrake [12]
automated simulation packages, enables scientists
to work at this very high level, specifying mathe-
matical operations over data stored in a wide range
of representations on a computational mesh.

2.3 Data Synopses
Research in data synopses has in the past primar-

ily been driven by applications like data streams
and cardinality estimation for query processing [5].
In their very nature, however, they present a great
opportunity to accelerate approximate query execu-
tion in the context of big data.

The basic idea of data synopses is that the full
dataset is summarised, typically by using compres-
sion [5]. The synopsis acts as a surrogate for the
data and is queried instead of the full dataset. Through
compression or summarisation, the synopsis is usu-
ally considerably smaller than the full dataset itself
and consequently queries are executed faster. The
execution time of a query depends primarily on the
size of the synopsis. The size of the synopsis in turn
depends on dataset characteristics, for example how
compressible the data is, and is further controlled
by the level of the compression.

Because of its substantial compression ratios, lossy
compression is often used leading to imprecise rep-
resentations of the data. Data synopses based on
lossy compression can consequently only answer queries
approximately. Clearly, there is a trade-o↵ between
the size of the data synopsis (and thus query exe-
cution time) and the quality of the approximation:
the smaller the synopsis is, the less accurate the
approximation is and thus the bigger the error. Re-
gardless of the quality of approximation used, the
key to data synopses is to provide a user with tight
error bounds expressing how accurate the result is.

Data synopses have in the past primarily been
used for data streams and cardinality estimation



(for query planning) [5]. With data growing be-
yond what can be today handled e�ciently, how-
ever, data synopses are rediscovered and are consid-
ered an interesting approach: instead of analysing
the potential petabytes in big data applications in a
time-consuming process, substantially smaller syn-
opses can be queried almost instantly.
One major obstacle hindering adoption of data

synopses is that the process to build them is time-
consuming. Only once the experiment data is writ-
ten to disk, are the synopses computed. All data,
terabytes or more, has to be (potentially repeat-
edly) again read from the disk, loaded into memory,
processed and written to disk. Having researchers
wait until the synopsis is built before they can anal-
yse the data considerably limits productivity [13].
Considerable e↵ort in the past has primarily de-

veloped four types of synopses. First, random sam-
pling [15] is very well suited for aggregate queries
and takes samples at random either out of the re-
sults of the running simulation as they are streamed
from the supercomputer to disk or after the dataset
is stored on disk after the simulation. The former,
sampling as the simulation runs, is very e�cient,
but requires all potential queries to be known at
runtime already. For the latter, in case the dataset
is stored on disk, samples can be taken online, at
query time from the full dataset, or o✏ine. For mas-
sive data, however, taking the samples online from
the full dataset, as the query is asked, is unlikely
to be feasible due to the high cost of random access
to disk. Instead, sampling for big data needs to
take samples o✏ine. A second well-researched type
of synopses are histograms [8] which play a central
role for cardinality estimation in databases. His-
tograms summarise the data into bins, each with
its own value range, e.g., the bins store count of
values/tuples in its range. Doing so makes them
particularly useful for range-count queries, but they
are also used for general analysis queries [5]. Syn-
opses based on wavelets summarise and approxi-
mate the data through wavelets [3]. Essentially,
wavelet transformation is applied to relations or to
time series, resulting in a collection of wavelet co-
e�cients. The size of the synopsis depends on how
many coe�cients are stored, which in turn defines
the accuracy with which queries can be answered.
The size of the synopsis, however, alone does not
define the query execution time: at runtime, query
execution can choose to ignore coe�cients, thereby
reducing query execution time, but also precision.
Synopses based on sketches are a relatively new de-
velopment [4]. As opposed to sampling, all data is
considered for sketches, but only a small summary
is retained (e.g., for a sum query all values are added
up and only the sum is stored). A di↵erent sketch
has to be defined for each query and this approach

thus requires considerable e↵ort.

3. ON-THE-FLY SYNOPSIS GENERATION
At the core of our approach is the idea of using

data synopses for the e�cient exploration of data
produced as the result of the simulation. Producing
the synopses after the data has been written on disk
means revisiting all the data again to compute the
and is therefore costly.

3.1 Core Idea
Instead, we propose to instrument the model code

to generate the synopsis in a unified mesh and vec-
tor data model during the simulation. Given a space
budget and, potentially, priorities specified by the
scientists, the system will select an appropriate syn-
opsis representation and resolution. This will en-
able scientists to e�ciently analyse, query and ex-
plore the simulation result approximately (with a
tight maximum error bound) as soon as the data is
output: possibly even while the simulation still con-
tinues. Scientists will specify queries in a high level
mathematical manner and the required query code
will be generated automatically. Scientists can use
the synopsis with or without the full dataset (and
writing all data to disk may be avoided). In some
cases the synopsis alone already allows for a de-
tailed enough analysis whereas in other instances,
the synopsis serves as a surrogate for finding in-
teresting phenomena that are then analysed in the
complete dataset.

As we will discuss later, the choice of the type
of synopses heavily depends on the type hypothesis
to be validated through the simulation. As a conse-
quence, we further propose that scientists formulate
queries (based on the simulation model) they wish
to answer using the simulation results.

The queries can additionally help to improve the
usefulness of the synopsis. Given a limited space
budget, the scientist may also be able to indicate
areas or time ranges of interest a priori. We thus
propose to generate synopses with variable preci-
sion, i.e., having a higher precision in areas of inter-
est and lower precision elsewhere. Higher precision
translates to smaller error bounds of the approxi-
mate answers but also requires more space. Clearly,
it is not wise to only focus on this range as other
queries could no longer be answered, so variable pre-
cision introduces an interesting trade-o↵ in the face
of a limited space budget. The queries serve as a
crucial hint to generate a synopsis with more details
in areas of the data where scientists want to query.

To optimise the generation of the synopsis, we
also require information about the underlying hard-
ware. Information about the hardware is used as
input to the code generation, so that computing



and storing the synopsis as well as the result can be
optimised for the underlying hardware. Doing so
can optimise use of limited computation power and
bandwidth to storage devices, therefore ultimately
reducing interference with the running simulation.
Ultimately our goal is to generate the code to

e�ciently compute and store a synopsis of the sim-
ulation results on disk, along with code for the sim-
ulation itself. The synopsis written is of variable
precision and the code generation is based on a
space budget, the simulation model, the user queries
used as hints, as well as information about the un-
derlying hardware. The resulting code e�ciently
generates a data synopsis that will enable scientists
to quickly and scalably analyse simulation results,
without having to tinker with code or deal with the
peculiarities of data synopses and hardware.
While similar ideas could be used for observation

sciences as well, doing so is di�cult in practice. Al-
though pushing filters deep into the data acquisition
pipeline is already standard practice so that events
of little interest are filtered close to the detector, the
instruments in the observational sciences are cus-
tom built, making code generation challenging.

3.2 Application Example
To better understand the brain and develop new

drugs for brain-related diseases, the scientists in
the Human Brain Project [13] build small-scale bio-
realistic spatial models of a rat brain to simulate
them in-silico. The spatial models they design are
based on millions of three-dimensional cylinders,
where several thousand cylinders together recon-
struct the spatial shape of one neuron.
In their simulations on a supercomputer (Blue-

Gene/Q) they study the propagation of electrical
impulses through the models. At every time step of
the simulation, the voltage (or other parameters) at
each cylinder of every neuron (out of the billions in
the model) is measured. The simulation output is
essentially the state over the course of the simula-
tion, i.e., one time series per cylinder of the model.
The resulting datasets are oftentimes of unprece-

dented size but do not need to be examined in de-
tail in a first instance. Instead, to understand the
simulation result, multiple queries of an explorative
nature are asked. An example of a frequent post-
simulation analysis used to understand the simu-
lation data is to determine in what areas of the
model the measured parameter, e.g., voltage, ex-
ceeds a particular threshold. To find such events,
the neuroscientists execute queries with a combi-
nation of spatial, temporal and voltage predicates.
Analyses based on the simulation model in general
follow this template, i.e., restricting the temporal,
spatial as well as voltage values to particular ranges.
Data synopses generated on-the-fly are ideal for

this application scenario. Data synopses can be gen-
erated instead of the simulation data and allow for
a substantially faster approximate analysis and ex-
ploration. Alternatively, in case the synopsis is gen-
erated along with the full data, it can be used to find
interesting areas while the detailed analysis can be
performed on the identified subsets in the full data.

Researchers in general typically carry out exper-
iments with assumptions or expectations and they
consequently are predominantly interested in par-
ticular ranges of the values (areas, temperature ranges,
etc.). This information can be based on previous
analyses or on assumptions by the researchers but is
crucial, as the synopsis can be more precise in areas
of interest and more approximate in others. This
is no di↵erent in the Human Brain Project, where
researchers may be interested in finding particular
events (shapes of the voltage curve) in a voltage
range between 10 and 23. Clearly, a higher preci-
sion of the synopsis in this range is helpful for them.

Writing such synopses to permanent storage is
challenging as the underlying simulation hardware
typically features novel and cutting edge hardware
components. The BlueGene/Q used in the Human
Brain Project, for example, features SSD storage
that can be used to bu↵er the simulation output.
Doing so is essential when generating synopses as
the simulation results can be bu↵ered and sum-
marised/consolidated (using the CPUs of the SSD
racks) on-the-fly as the simulation is running, before
writing the synopsis to the disk.

4. RESEARCH CHALLENGES
Generating code for on the fly synopses entails

several interesting data management challenges around
synopses themselves (choice of adequate type as well
as synopses with variable precision), the language
to express user queries used as hints and finally op-
timising their computation used for the hardware.
We discuss each of the challenges in the following.

4.1 Data Synopses
The research challenges around synopses centre

around deciding what type of synopsis to use, as
well as how to configure it. More challenging is the
how to support variable precision in data synopses.

4.1.1 Data Synopsis Type and Configuration

One research question that needs to be addressed
is the choice of data synopses. Most types of syn-
opsis developed in the past primarily focus on an-
swering aggregate queries. Histograms [8] are ideal
for aggregates while sampling [15], wavelets [3] or
sketches [4] can be used for more general queries.

It is therefore key to understand, based on the
sample queries the user provides, what questions



need to be answered and what type of synopsis is
suitable for these queries. If the sample queries
hint at aggregate queries, a synopsis based on his-
tograms can be used. Also based on the queries is
the decision on how to configure the synopsis. In
the case of histograms the question is what statis-
tics are stored per bin (e.g., for maximum predi-
cates, each bucket must store the maximum value).
If sketches are used, the example queries indicate
what information the sketches need to capture.
In the context of the Human Brain Project (HBP),

the simulation output primarily comprises of time
series measuring the voltage in di↵erent areas of
the brain. The queries asked for the most part are
threshold queries, e.g., in what time series does the
voltage exceed a given threshold. For this type of
queries wavelets may be most suitable.

4.1.2 Synopsis with Variable Precision

Key to the vision of generating synopses on-the-
fly is to use variable precision or resolution. Using
variable resolution allows us to reduce the space re-
quired by the synopsis, as areas which are not of
much interest can be represented with less data.
The sample queries are used to infer what ranges

(e.g., areas in a spatial model) the scientist is in-
terested in exploring and analysing. The resolution
is set higher for areas the scientist is interested in,
and lower elsewhere. Improving the precision in ar-
eas of interest can be accomplished by storing more
samples in the case of sampling, storing more coef-
ficients in the case of wavelets or by using smaller
bins in the case of histograms.
Figure 1 illustrates a synopsis with variable pre-

cision. The left hand side shows a spatial model
(of a volcano with the temperature plotted) where
the scientists are primarily interested in the center.
As consequence, the center of the model is sam-
pled with a higher frequency to produce a synopsis
based on sampling as is shown on the right hand
side (the y-axis shows sampling frequency while the
other axes show geographic location).
In the sample application of the HBP, the neuro-

scientists primarily want to study voltage spikes and
consequently they need higher resolution in ranges
where spikes occur. Similarly, they are frequently
interested in a particular spatial area. Only simu-
lating the area of the model they are interested in
is not feasible as the behaviour of the entire model
must be simulated to obtain correct results. Speci-
fying what areas to store with high precision is key
to use space and bandwidth e�ciently.
Using variable precision, however, introduces sev-

eral challenges. First, given a space budget for the
synopsis, the question is how much space should be
used for ranges that the scientist is interested in,
and how much should be used for the remaining ar-

(a) Spatial Model

Fr
eq
ue
nc
y)

0)

50)

100)

150)

200)

250)

300)

(b) Sampling Freq.

Figure 1: Sampling with higher frequency in

areas of interest.

eas. Using all space for the ranges of the areas of
interest, will make analysis of other areas outright
impossible and an adequate trade-o↵ needs to be
found. Second, query answers are straightforward
to compute if the query only touches parts of the
synopsis with the same precision. New approximate
query answering approaches, however, need to be
developed for the case where the precision is mixed.
Third, crucial to this idea is that the increased pre-
cision is also quantifiable. That is, in areas with
high precision, the error bounds are tighter com-
pared to other areas. New methods have to be de-
veloped to quantify the error bounds in case ranges
with varying precision are used.

4.2 Model Definition & Query Language
The critical insight which makes the code genera-

tion approach feasible is that a wide range of simu-
lation software employs variations of the same mesh
and vector data model. Mathematical queries writ-
ten in UFL can therefore be mapped to the data of
models which are not themselves written in UFL.
In addition to UFL, however, it will be necessary
to define a suitable spatial query language. This
will enable the scientist to specify the area or points
over which the query should operate. This language
is the layer which must be mapped to a database
query to e�ciently extract the relevant data.

4.3 Hardware Optimizations
Taking into account the available hardware can

yield considerable improvements when computing
and writing the simulation synopsis (as well as the
simulation result) to permanent storage. Writing
the synopsis e�ciently in the face of limited disk
bandwidth is crucial, as is exploiting special pur-
pose hardware to o✏oad computation of the simu-
lation result so as not to interfere with the compu-
tation of the simulation result.

Supercomputers used for simulations frequently
only have an aggregated disk bandwidth of a few
tens of Gb/s for sequential I/O shared among sev-
eral thousand cores. A BlueGene/Q deployment,
for example, has 16K cores sharing 40Gb/s of band-



width, creating a serious bottleneck. Given the
limited bandwidth, individual cores cannot simply
write data to disk whenever they have new sim-
ulation results or new data synopses information.
Instead, data has to be bu↵ered at the cores and
written to disk orchestrated, thereby wasting main
memory that could be used to store bigger models.
Novel hardware solutions to alleviate this issue

are at the ready. Active, flash-based storage [16]
can be used to a) bu↵er bursts of simulation re-
sults, and b) use spare cycles of the active storage to
compute the synopses. As a consequence, the sim-
ulation results are written on external flash drives
where their synopses can be computed on-the-fly,
thereby also o✏oading the computational overhead
of computing the synopses.
Graphics Processing Units (GPUs) are becom-

ing increasingly prevalent in the simulation sciences
where they are used to o✏oad parallel computa-
tions. The data transfer needed to move compu-
tation from the CPU to the GPU and simulation
results back again, however, is a bottleneck because
of the limited bandwidth of the PCI bus [7]. Data
has to be accumulated so it can be transferred in
a batch and incurs as little overhead as possible.
Also in this scenario, the question is where to com-
pute the synopsis and how to transfer it to the CPU
where it can be stored permanently.
Crucially, the hardware has to be considered in

order to optimise when and where to compute the
synopses and when to write it to disk. Optimising
use of the hardware, however, is beyond the abilities
of a simulation scientist and is a challenge for which
the code is ideally generated as well. The research
challenge consequently is to determine how to de-
scribe the hardware infrastructure and how to gen-
erate code that uses e�cient strategies to compute
and store data synopses. The HBP, for example,
has flash-based storage to bu↵er simulation results.
Its e�cient use, however, is beyond the abilities of
simulation scientists and using code generation to
develop code for producing synopses e�ciently on
the active storage is crucial.

5. CONCLUSIONS & FURTHER IDEAS
Simulations produce massive amounts of data that

are di�cult to analyse e�ciently. What limits sim-
ulation size and length today is not only disk space,
but our capacity to analyse the data within a rea-
sonable time. Data synopses o↵er an interesting ap-
proach to the problem of the data deluge resulting
from simulations. They are, however, challenging to
compute and use, particularly for domain scientists
with little training in software development.
With this vision, we propose an approach that

avoids domain scientists having to develop highly

specialised code to write data synopses. Instead,
the code is automatically generated based on a space
budget for the synopsis, the simulation model, ex-
ample queries and a specification of the hardware
used. The synopses enable scientists to scalably
analyse massive data.

An interesting future avenue for this research is to
generate optimised code for indexes as well. Clearly,
each particular simulation will need di↵erent types
of indexes but with sample analysis queries we can
potentially infer what indexes are required.

A further interesting research question is if and
how queries can be answered based on the static
analysis or symbolic execution of the simulation code.
Clearly, randomness is inherent in scientific simula-
tions and the results will depend on the input pa-
rameters but assumptions about either can be made
to potentially reason about query results without
executing the simulation.

6. REFERENCES
[1] S. Agarwal, B. Mozafari, and et al. BlinkDB: Queries with

Bounded Errors and Bounded Response Times on Very
Large Data. EuroSys, 2013.

[2] J. L. Casti. Would-be Worlds: How Simulation is
Changing the Frontiers of Science. Springer, 1996.

[3] K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and
K. Shim. Approximate Query Processing Using Wavelets.
In VLDB ’06.

[4] G. Cormode and M. Garofalakis. Sketching Streams
Through the Net: Distributed Approximate Query
Tracking. In VLDB ’05.

[5] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine.
Synopses for Massive Data: Samples, Histograms,
Wavelets, Sketches. Found. Trends databases, 4(1):1–294.

[6] B. Gonçalves and F. Porto. ⌥-DB: Managing Scientific
Hypotheses as Uncertain Data. VLDB, 2014.

[7] C. Gregg and K. Hazelwood. Where is the Data? Why
You Cannot Debate CPU vs. GPU Performance Without
the Answer. ISPASS ’11.

[8] Y. Ioannidis. The History of Histograms (Abridged). In
VLDB ’05.

[9] M. L. Kersten, S. Idreos, S. Manegold, and E. Liarou. The
Researcher’s Guide to the Data Deluge: Querying a
Scientific Database in Just a Few Seconds. VLDB, 2011.

[10] B. Lawrence, V. Bennett, J. Churchill, M. Juckes,
P. Kershaw, S. Pascoe, S. Pepler, M. Pritchard, and
A. Stephens. Storing and manipulating environmental big
data with JASMIN. In Proceedings of the IEEE
International Conference on Big Data,, 2013.

[11] A. Logg, K.-A. Mardal, G. N. Wells, et al. Automated
Solution of Di↵erential Equations by the Finite Element
Method. Springer, 2012.

[12] G. R. Markall, D. A. Ham, and P. H. J. Kelly. Towards
Generating Optimised Finite Element Solvers for GPUs
from High-level Specifications. Procedia Computer
Science, 1(1). ICCS 2010.

[13] H. Markram and et al. Introducing the Human Brain
Project. volume 7, pages 39 – 42, 2011. Proceedings of the
2nd European Future Technologies Conference and
Exhibition 2011.

[14] H. Mühleisen, M. L. Kersten, and S. Manegold. Capturing
the Laws of (Data) Nature. CIDR, 2015.

[15] G. Piatetsky-Shapiro and C. Connell. Accurate Estimation
of the Number of Tuples Satisfying a Condition. In
SIGMOD ’84.

[16] F. Schürmann and et al. Rebasing I/O for Scientific
Computing: Leveraging Storage Class Memory in an IBM
BlueGene/Q Supercomputer. In Supercomputing, Lecture
Notes in Computer Science. 2014.

[17] H. Stephan. The World as a Process: Simulations in the
Natural and Social Sciences, 2005.


