
THERMAL-JOIN: A Scalable Spatial Join for Dynamic
Workloads

Farhan Tauheed†∗, Thomas Heinis¶∗, Anastasia Ailamaki‡
†Oracle Labs Zurich, Switzerland

¶Imperial College London, United Kingdom
‡École Polytechnique Fédérale de Lausanne, Switzerland

ABSTRACT
Simulations have become ubiquitous in many domains of
science. Today scientists study natural phenomena by first
building massive three-dimensional spatial models and then
by simulating the models at discrete intervals of time to
mimic the behavior of natural phenomena. One frequently
occurring challenge during simulations is the repeated com-
putation of spatial self-joins of the model at each simula-
tion time step. The join is performed to access a group of
neighboring spatial objects (groups of particles, molecules
or cosmological objects) so that scientists can calculate the
cumulative effect (like gravitational force) on an object.

Computing a self-join even in memory, soon becomes a
performance bottleneck in simulation applications. The prob-
lem becomes even worse as scientists continue to improve the
precision of simulations by increasing the number as well as
the size (3D extent) of the objects. This leads to an expo-
nential increase in join selectivity that challenges the per-
formance and scalability of state-of-the-art approaches.

We propose THERMAL-JOIN, a novel spatial self-join al-
gorithm for dynamic memory-resident workloads. The algo-
rithm groups objects in spatial proximity together into hot
spots. Hot spots minimize the cost of computing join as ob-
jects assigned to a hot spot are guaranteed to overlap with
each other. Using a nested spatial grid, THERMAL-JOIN
partitions and indexes the dataset to locate hot spots. With
experiments we show that our approach provides a speedup
between 8 to 12× compared to the state of the art and also
scales as scientists improve the precision of their simula-
tions.

1. INTRODUCTION
Scientists no longer solely depend on studying a phenom-

ena in their laboratory or in nature. They nowadays improve
their understanding by first building three-dimensional spa-
tial models and then by simulating the models at discrete
intervals of time steps to gather key insight of the underlying

∗ This work was done while the author was at EPFL.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, VIC, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2749434.

principals that govern the phenomena. This enables scien-
tists to make discoveries and even predict the behavior of
phenomena, for example in cosmology [21] or seismology [1].

Computing the interaction between spatial objects that
make up the model is crucial for many simulations. Doing
so requires that the simulation identify at runtime all pairs
of objects whose three-dimensional extents overlap. Identi-
fying overlapping pairs of objects essentially translates into
a spatial self-join that is performed repeatedly at each time
step of the simulation. For example, to compute the gravi-
tational force on a particular planet in n-body cosmological
simulations [21], all other cosmological objects in proximity
are retrieved using a spatial self-join.

During the simulation, the location of all spatial objects is
changed at each time step to mimic the behavior of the phe-
nomena studied, i.e., the locations of objects is read from
main memory, manipulated and then updated in-place to
reflect the latest state of the object. Two aspects of this
problem introduce new challenges that limit the applicabil-
ity of known approaches. First, all objects move together,
i.e., the location of all objects is updated at every time step.
All objects moving together is in stark contrast to use cases
and applications, studied extensively in the literature, where
only a subset of objects move at any instance in time. In
case all objects move using an incremental join by re-using
old results becomes unfeasible and executing a full join from
scratch is more efficient. Second, unlike vehicular objects,
the assumption that objects move in predictable trajectories
for short distances does not hold and techniques involving
trajectories or motion approximation thus cannot be used.

Recent analyses [34, 37] have demonstrated the limita-
tions of existing join techniques for the problem of moving
objects. Furthermore, known approaches do not scale in
case scientists increase the precision of the simulation appli-
cation. Increasing simulation precision is accomplished by
increasing the number of objects in the dataset to reduce
approximation errors due to spatial discretization and by
increasing the threshold spatial region around the object to
consider the effect of more objects in a wider spatial region.
The consequence of both, i.e., increasing the number as well
as spatial extent of the objects leads to an increasing join
selectivity, which challenges known join techniques.

In this paper we present THERMAL-JOIN, an in-memory
spatial self-join algorithm for moving objects. The approach
is designed to address both the spatial aspect (high join
selectivity) and the temporal aspect of the problem (massive
and unpredictable updates). The key contributions are:

• THERMAL-JOIN leverages the dataset density to mini-
mize the cost of joining. We introduce the concept of hot

spots, i.e., regions with high spatial density, where all ob-
jects are guaranteed to overlap with each other. Hot spots
avoid the costly evaluation of overlap predicates. The ben-
efits increase as the join selectivity increases, thus making
the approach scalable.

• We use a novel linked-hash table to build, join and main-
tain a nested uniform grid. The rationale behind using
a uniform grid is to index hot spots rather than to index
spatial objects as is done in known grid-based approaches.

• The algorithm adapts and self-tunes the indexing struc-
tures used to account for the dynamic nature of the work-
load. We use a hill-climbing based approach that quickly
converges without incurring an undue performance penalty.

Unlike previous studies we analyze the performance of
competing approaches using three-dimensional datasets for
both real (neuroscience) and synthetic benchmarks. We
show that THERMAL-JOIN outperforms existing approaches
while remaining competitive in terms of memory footprint.
Most importantly, we demonstrate that THERMAL-JOIN
scales with dataset size and object extent, two characteris-
tics that are crucial to improve the simulation precision.

The remainder of the paper is structured as follows. In
Section 2 we discuss related work and in Section 3 we mo-
tivate our work. In Section 4 we present our approach
THERMAL-JOIN and discuss optimizations. We compare
THERMAL-JOIN to related approaches in Section 5, ana-
lyze its performance in Section 6 and finally draw conclu-
sions in Section 7.

2. RELATED WORK
Using our motivating application we review related work

discussing how suited it is for workloads where the position
of nearly all objects changes rapidly. We classify existing
work based on whether it primarily serves for joining static
spatial datasets (rebuilding and updating index structures
at every time step) or if it has been designed for dynamic
datasets, i.e., for joining moving objects. We do not distin-
guish whether approaches have initially been developed for
main memory or disk as the ones developed for the latter
can also be used in the former.

2.1 Iterative Static Spatial Join
One strategy is to use known static spatial join tech-

niques [16] and update or rebuild their data structures from
scratch at each time step before the join. Rebuilding the
complete index or updating nearly all the objects at ev-
ery simulation step is a considerable time investment that
substantially slows down the simulation and is difficult to
amortize over a join operation [36]. Both the nested loop
join and the plane sweep join [29] thus do not maintain aux-
iliary data structures but at the same time their join process
is prohibitively slow.

To improve the slow join process many join techniques
use indexes. Updating the index, however, is very costly
and it is typically cheaper to rebuild the index from scratch
at every iteration (and to throw away the index after leading
to short lived throw-away indexes [8]). Space-oriented parti-
tioning indexes are particularly efficient in building an index
as they use spatial grids or hierarchical space decomposition
to index the objects. For example, PBSM [27] uses a uni-
form grid to partition the data and replicates objects based
on how many partitions the object intersects with. Each

partition is locally joined using a plane-sweep approach. Be-
cause objects are replicated, the same pair of objects may
be tested multiple times, resulting in a substantial increase
of intersection tests.

Hierarchical decomposition can be used to avoid replica-
tion as the widely used Octree [3] shows. The Octree and
the MX-CIF Octree [15] are based on a uniform grid and
split a cell uniformly if the number of objects in it exceeds a
defined threshold. The objects in the split cell are assigned
to the cells in which they do not intersect with a boundary
(ideally to the children of the split cell). Similar to the Oc-
tree, S3 [19] uses a hierarchy of grids to index objects based
on the smallest grid cell that fully encloses the object. The
performance of both, S3 and Octree, suffers when objects are
mapped to the root (or cells close to the root) of the hierar-
chical structure as they then have to be compared with all
objects on lower levels, resulting in unnecessary intersection
tests. The loose Octree [30] allows for a degree of impreci-
sion so that objects can be assigned to lower levels when they
intersect only slightly with a cell. The idea of using grids to
parallelize the join has also been optimized for GPUs [33] as
well as on a larger scale on the MapReduce framework[12,
23].THERMAL-JOIN as presented here is single threaded
but can be parallelized like the aforementioned approaches.

THERMAL-JOIN also uses the idea of throw-away in-
dexes based on space-oriented partitioning (grids) but at-
tempts to reuse parts of the index whenever possible. The
fundamental difference is that we do not use the grid to
index the objects but rather to find the densely populated
regions. Doing so enables us to avoid the problem of repli-
cation (every object is assigned to one grid cell only) and
unnecessary intersections (objects are assigned based on the
cells enclosing the center rather than the full object).

Data-oriented partitioning techniques avoid replication by
dividing the space based on the distribution of objects (and
assigning each object to one node only). The indexed nested-
loop join [9] builds an R-Tree on one dataset and executes a
range query on it for each object in the other dataset to find
intersecting objects. The synchronous R-Tree traversal [5]
joins two spatial datasets by traversing two R-Tree indexes
built for each dataset from the roots to the leaf levels. While
recursively traversing the trees, nodes on the same level are
tested for intersection. The CR-Tree [18] optimizes the R-
Tree for memory and targets at reducing cache misses and at
reducing the index size (mainly through quantization). The
optimizations generally improve performance by a constant
factor over the regular R-Tree but do little to address the
fundamental problem of overlap. In fact, quantization can
also degrade performance as the approximated MBRs lead
to more overlap. A further index based on the R-Tree and
optimized for memory is TOUCH [26]. It reduces the num-
ber of overlap tests considerably and thus the join time but
it is not designed for iterative changes to the dataset and
the index has to be rebuilt in every iteration from scratch.

Data-oriented approaches like the R-Tree in general are
prone to the problem of overlap and dead space [13], both
of which severely degrade join performance. For our prob-
lem of datasets changing over discrete intervals of time, re-
cent findings indicate that rebuilding the R-Tree and using
the synchronous R-Tree traversal is the most efficient ap-
proach [34].

Several approaches based on a single grid level have also
been developed for high-dimensional data (similarity join)
and can be equally used for low dimensions. The Epsilon
Grid Order [4] uses a high-dimensional grid of ε width and

chooses the order to join grid cells I/O-efficient, i.e., avoiding
thrashing. The same ideas also helps in main memory to
avoid cache pollution. Based on multiple grids and inspired
by the quicksort algorithm, QuickJoin [17] uses a recursive
partitioning technique and a nested loop join to join the
results within each partition. DBSimJoin [32] builds on the
QuickJoin technique and implements it as a non-blocking
operator using an iterator interface.

For distributed map-reduce workloads, ClusterJoin [31]
provides a framework for scalable similarity joins on skewed
datasets. SSJOIN [2] addresses the set similarity join chal-
lenge by using locality sensitive hashing to compute the
joins. Adopting similarity join techniques for spatial joins
is feasible but they are not competitive compared to tech-
niques designed for three-dimensional euclidean spaces as we
show with experiments.

2.2 Joining Moving Objects
Instead of joining the dataset at each time step from scratch,

spatio-temporal join methods [25] that are optimized for
moving objects can be used. These methods join incremen-
tally, i.e., reuse data structures built and used in previous
time steps. Similar to static spatial indexes, joins can be
performed using moving object indexes by querying the in-
dex for each object in the dataset. The ST2B-Tree [7] maps
all objects on a uniform grid and indexes each object along
with its identifier in a B+-Tree (cell identifiers are assigned
based on a space-filling curve). OCTOPUS [36] on the other
hand avoids an index and the associated maintenance cost
when the data changes over time. It is, however, only ap-
plicable for mesh spatial datasets as it relies on the mesh
connectivity to retrieve query results. The parallel imple-
mentation of a recently proposed moving object join [38] also
uses a uniform spatial grid to index the locations of objects.
The separation of the grid cells is exploited to use multiple
threads to either update or join the data simultaneously.

To reduce the overhead of frequent maintenance proposed
approaches [28, 35, 14] exploit the predictability in move-
ment of the objects by approximating them with trajec-
tories. The data structure used in the join therefore only
has to be updated when the trajectory of the moving ob-
jects changes. Similarly, the adaptive two-level hashing ap-
proach [20] classifies objects according to their speed of move-
ment. Slow moving objects are indexed with a fine-grained
grid while fast objects are indexed with a coarse-grained
grid. With our driving application, however, we cannot as-
sume any predictability of the object movement and these
techniques thus cannot be used.

3. MOTIVATION
Scientists no longer only rely on the study of a phenomena

in their laboratory or in nature. Instead, they complement
their understanding of the phenomena by building spatial
models of it and by simulating the resulting models. In
doing so they face considerable challenges in dealing with
the data involved in simulations. One challenge they face
is executing queries on fast changing spatial models used
in simulations. Spatial simulations are used across many
different scientific disciplines, from cosmology, medicine to
material sciences. The development of THERMAL-JOIN is
consequently driven by the needs of scientists who are fac-
ing performance bottleneck in simulating changes in massive
spatial datasets.

In the following we first describe the scientific use cases
and the problem in detail. We conclude this section by de-

scribing the novel data management challenges in the con-
text of this problem.

3.1 Use Cases
The application motivating the development of THERMAL-

JOIN originates from a collaboration with the neuroscien-
tists in the Human Brain Project [24]. In the collaboration
we study the performance bottlenecks and scalability of neu-
ral simulations. These simulations use part of the brain tis-
sue represented by a collection of three-dimensional cylindri-
cal spatial objects as shown in Figure 1(a). The simulations
mimic the process of neural plasticity where the structure
and connectivity of the cells change over time. In the first
step of the simulation a distance join with the distance pred-
icate d is executed to find pairs of objects within distance
d of each other. The distance join is essentially performed
by enlarging the spatial object by d in all dimensions and
testing the enlarged extent for overlap. In the next step
the electrical attraction and repulsion forces between pairs
of objects are calculated to determine how the shape and
connectivity of the neuron cells changes in subsequent sim-
ulation time steps.

Cylindrical

Spatial Object

t = 0 t = 1
Object

Extent (w)

t = 2 t = 3b)a)

Figure 1: Cylindrical object representation of neu-
rons with the spatial extent defined by the rectangle
(a). Neural structure simulation at time t (b).

Finding pairs of overlapping objects efficiently is a chal-
lenge in simulation in general, as overlap or proximity be-
tween objects (representing parts of neurons, molecules or
cosmological objects) usually defines how different spatial
objects interact with each other. There are several interac-
tion frameworks used by simulation applications that define
how the models should be built and how the simulation can
be discretized in space and time. The most widely used
methods are smoothed particle hydrodynamics (SPH) [11]
which are extensively used in computational fluid dynamics,
N-Body simulations [3] used in particle and cosmology sim-
ulations and the Lennard-Jones pair potential method [10]
used in molecular simulations. In all of these interaction
frameworks the basic but also most crucial task is to access
all pairs of overlapping objects which in the case of neu-
ral simulation takes 66% of the total time (using an octree
based join technique). This task is performed several times
during the simulation as the objects change their location
over time and the problem thus translates into an iterative
spatial self-join in main memory.

3.2 Iterative Spatial Self-Join
We first discuss the static (spatial) aspect of the iterative

spatial self-join challenge and then describe the dynamic
(temporal) aspect. Consider a spatial dataset D with N

three-dimensional spatial objects. As is standard practice
in related work [16], we use the minimum bounding rectan-
gle (MBR) as the spatial extent wi for each spatial object
si ∈ D. The problem of a spatial self-join is to find all
pairs of spatial objects (si, sj) ∈ D ×D, such that the spa-
tial object pair satisfies the predicate of spatial overlap, i.e.,
overlap(wi, wj) > 0. The self-join result does not allow re-
flexive object pairs (si, si) and counts commutative object
pairs [(si, sj), (sj , si)] as one join result. In scientific simula-
tions the spatial extent wi (also known as cut-off radius or
ε) is the same for each object in the dataset and represents a
region where an object might interact with another object,
e.g., a gravitation field.

During the simulation the location of each spatial object
is changed (updated in-place) by the simulation application
to mimic the behavior of the phenomena studied, making
the problem of a spatial (self-) join more challenging. The
spatial extent wi and number of objects remain constant for
a during simulation (but can change for different simulation
runs) because each object represents a physical entity (plan-
ets or stars) that remains the same during the course of the
simulation (as shown in Figure 1(b)). The changes are ap-
plied iteratively at discrete intervals that affect every object
in the dataset. This is different from previous work [28, 14]
where only a subset of objects change location or velocity.

Our goal is to design a general solution, not limited to
a particular simulation application. We therefore treat the
simulation application as a black box and do not rely on
the update mechanism of the spatial objects to optimize
the approach. The changes to location of the objects are
therefore treated as unpredictable. This means known ap-
proaches based on time parametrization and predictable tra-
jectories [28, 35] are ill-suited.

3.3 Data Management Challenge
Even for reasonably small dataset sizes (a few gigabytes

in main memory) an iterative spatial self-join can take hours
to complete and it therefore creates a substantial bottleneck
in simulation applications. To make matters worse scien-
tists want to increase the precision of their simulations by
first, increasing the spatial dataset size (to increase the spa-
tial resolution of the models) and then increasing the three-
dimensional objects’ extent (to consider more surrounding
objects to compute the interaction). Both, increase in dataset
size and object extent, make simulations more realistic but
at the same time they also increase join selectivity resulting
in poor scalability of known approaches for self joins.

1

10

100

1000

10000

10 20 30

CR-Tree Join

 Loose Octree Join

EGO

TOUCH

PBSM

MIXCIF Octree Join

Plane Sweep

Nested LoopTo
ta

l J
oi

n
Ti

m
e

[s
ec

]

Volume of Object [Micron3]

Figure 2: Effect of join selectivity on self-join time.

To demonstrate the effect of join selectivity we perform
an experiment using a small neural dataset consisting of one
million objects. Figure 2 shows the results of a self-join for
one time step of the simulation by comparing existing in-

memory join techniques. We change only the volume of the
objects extent w from 10µm3 to 30µm3 to increase the join
selectivity. As the experiment shows, the join time increases
by one order of magnitude and the performance of known
methods approaches the prohibitively slow nested-loop join.

Existing approaches reduce the join time by minimizing
the unnecessary overlap tests between objects that are far
apart in space. If, however, the join selectivity increases,
the “necessary” overlap tests between objects that satisfy
the join predicate increase quadratically, making known ap-
proaches inefficient for datasets with high join selectivity.

4. THE THERMAL-JOIN APPROACH
THERMAL-JOIN, the approach we develop, addresses

the problem of high join selectivity by organizing the dataset
into hot spots, i.e., regions of very high spatial density. The
intuition behind THERMAL-JOIN is to process a self-join
within each hot spot as efficiently as possible while minimiz-
ing the overhead of joining objects of a hot spot with objects
in its surrounding spatial region. A hot spot is a region in
which all objects are guaranteed to overlap with each other
and it thus makes pair-wise overlap tests among objects that
are in the hot spot unnecessary. The proposed join strategy
used in THERMAL-JOIN is therefore fundamentally differ-
ent to existing join approaches where the focus has been to
provide better join performance by minimizing the unneces-
sary overlap tests between objects far apart in space.

Finding hot spots in spatial datasets in simulations can
become expensive as the dataset changes unpredictably at
every time step of the simulation. We use a two-level nested
spatial grid to do so efficiently. In contrast to existing grid-
based solutions, the primary purpose of using the grid in
THERMAL-JOIN is to provide efficient access to hot spots
instead of using the index structure to query the dataset
and to locate objects in spatial proximity of each other.
The choice of using a spatial grid further favors efficient
rebuilding and maintenance as the dataset changes during
the simulation.

In the following we describe the THERMAL-JOIN ap-
proach in detail and highlight the key insights it uses for self-
joining dynamic spatial datasets. We divide the approach
into three phases:

1. Index Building: In Section 4.1 we describe how to build
the spatial grid structure using a linked-hash table data
structure that provides efficient access to the hot spots
and also to the neighboring regions while keeping the
memory footprint low.

2. Joining: In Section 4.2 we describe the join algorithm
that uses the grid index. We divide the joining phase
into two parts, first joining objects within each grid cell
(internal Join) and then each grid cell with adjacent cells
(external Join).

3. Index Maintenance: As the dataset changes during
simulation we tune the grid index to provide better join
performance. In Section 4.3 we describe how to find an
efficient configuration for the grid index and also a mech-
anism to recycle grid cells to further minimize the index
building/maintenance time and memory footprint.

4.1 Index Building
The index building of THERMAL-JOIN requires efficient

means to build and maintain spatial grids. In the following
we describe in detail the spatial grid indexes used along with

the linked-hash data structure that we use to implement the
grid index and to avoid both the problem of overlap and
that of empty grid cells.

Join algorithms based on data-oriented partitioning like
variants of the R-Tree [5, 26] suffer from the overhead of
overlapping nodes in the tree structure and high index build-
ing cost. To avoid the issue of overlap we partition the
datasets using space-oriented partitioning or, more precisely,
by using a uniform spatial grid. The spatial objects of the
model dataset are mapped to the grid based on their center
and therefore are not replicated unlike space-oriented join
techniques like PBSM [27]. Avoiding replication is pivotal
as it makes the technique scale with the increasing spatial
density of the dataset joined.

Real simulation datasets have a skewed data distribution
that cause the majority of the grid cells to remain empty.
Managing empty cells is crucial because it can be a substan-
tial overhead in terms of storage space required. For exam-
ple, just using a null pointer to indicate an empty cell for a
rather coarse resolution 3D grid with (1000 × 1000 × 1000)
cells requires 7.5GB of space in memory. Our approach uses
a hash table that only keeps cells that have at least one ob-
ject assigned to it. This reduces the memory consumption
significantly but the cost of accessing (spatially) neighbor-
ing cells during the join phase increases as hash lookups are
required which cause a significant overhead due to collisions
(particularly in the case of fine grained grids).

Hash (cell ID)

Hash (cell ID)

Hash (cell ID)

ID, MBR, atr1, atr2
ID, MBR, atr1, atr2
ID, MBR, atr1, atr2
ID, MBR, atr1, atr2
ID, MBR, atr1, atr2
ID, MBR, atr1, atr2
ID, MBR, atr1, atr2
ID, MBR, atr1, atr2
ID, MBR, atr1, atr2
ID, MBR, atr1, atr2
ID, MBR, atr1, atr2
ID, MBR, atr1, atr2
ID, MBR, atr1, atr2
ID, MBR, atr1, atr2

Spatial Dataset P-Grid
Hash Table

P-Grid Cells

Cell ID
Cell MBR
Min Object MBR
Cell Age
Object List
Hyperlinks

Cell ID
Cell MBR
Min Object MBR
Cell Age
Object List
Hyperlinks

Cell ID
Cell MBR
Min Object MBR
Cell Age
Object List
Hyperlinks

Cell ID
Cell MBR
Min Object MBR
Cell Age
Object List
Hyperlinks

Figure 3: Linked-hash table data structure.

THERMAL-JOIN addresses the problem by using a linked-
hash table that provides direct access to neighboring cells
through pointers (hyperlinks) introduced in the index build-
ing phase as shown in Figure 3. This means we can use the
same hash table for both index building and join phase. Dur-
ing index building hash lookups are used to map objects to
their respective cells while in the more costly join phase the
hyperlinks are used to avoid hash lookups when accessing
neighboring cells.

THERMAL-JOIN uses a two-level nested grid. The pri-
mary (permanent) grid, or simply P-Grid, is built and main-
tained to reflect the most recent location of each object for
the last time step. For each cell of the P-Grid it is possible to
further divide the space using a temporary throw away grid
T-Grid to enhance join performance. Crucially, as opposed
to many hierarchical grid [19] or tree based techniques [30],
the resolution of each T-Grid built for each cell of P-Grid
can be different and in many cases a T-Grid is not even
required to further organize a cell of the P-Grid.

The P-Grid is built by calculating the cell each object
belongs to. The assignment is based on the information of
what cell the center of an object falls into. Once the unique

Algorithm 1 THERMAL-JOIN: Index Building Phase

Input: Dataset: Spatial model dataset
Data: PGrid: Empty hash table of cells
Output: PGrid: Hash table with objects assigned
foreach object ∈ Dataset do

center ← object.MBR
cellID ← calculateCellID(center)
targetCell← PGrid.hashlookup(cellID)
if targetCell.found() then

targetCell.objectlist.insert(&object)
else

cell← newCell()
cell.objectlist.insert(&object)
PGrid.insert(cellID,&cell)

end
end
foreach cell ∈ PGrid do

cell.objectlist.sortX()
neighborsList← getNeighbors(cell)
foreach n ∈ neighborList do

neighborCell← PGrid.hashlookup(n)
cell.Hyperlinks.insert(&neighborCell)

end
end
return PGrid

identifier of the cell containing the object is obtained, the
identifier is used to perform a hash lookup to determine if
a new cell is needed or if the object pointer can be assigned
to an existing cell’s object list. Once all the objects are
assigned to their grid cells, the object lists are sorted along
the x-dimension to facilitate the join phase. Furthermore,
for each cell we find all the neighboring adjacent cells and
add their pointers to the hyperlink list to provide efficient
access to neighboring cells. The algorithm used to build
a P-Grid is described in pseudocode in Algorithm 1. The
temporary T-Grid is built during the join phase for each
cell. We will discuss this process in Section 4.2.

The algorithm described terminates by returning a P-Grid
hash table with all objects assigned based on their centers
and each cell linked to neighboring cells. This algorithm is
used for building the P-Grid from scratch. Its performance
can be further improved by re-using cell structures during
index maintenance, described in Section 4.3.

4.2 Joining
Once the P-Grid is constructed the join phase can start.

It works by processing each P-Grid cell from the hash table
in no particular order. The algorithm works in two parts;
first, joining objects in each cell with its adjacent P-Grid
cells (external join) and then joining all objects within each
P-Grid cell (internal join).

4.2.1 External Join
Assigning objects based on the center has the advantage

that every object is assigned to only one P-Grid cell, thereby
avoiding object replication. In order to retrieve accurate join
results, however, the objects assigned to each cell need to be
joined with the objects assigned to adjacent grid cells as
well. To avoid any pair of cells being considered for external
join more than once we only consider half of the adjacent
cells. The number of adjacent cells taken into account for
the external join depends on the P-Grid cell width and the
width of largest object in the dataset. For example, if the

P-Grid resolution is set such that the width of the cell is
equal to the width of the largest object then we only need
to consider half of the immediate adjacent cells, e.g., only the
cells located in northwest, north, northeast, east direction
as shown in Figure 4(a) (as a two-dimensional illustration).
For three-dimensional datasets the number of adjacent cells
is 13. In case the P-Grid resolution is set such that the
width of the cell is less than the width of the largest object
in the dataset then multiple layers of adjacent cells need to
be considered for the external join as shown in Figure 4(b).
The number of layers of adjacent cells can be calculated by
dividing the P-Grid cell by the width of the largest object.

P-Grid: Adjacent cells considered for External Join
P-Grid: Cell with at least one object assigned

b) a)

Figure 4: Adjacent cells used in the external join,
(a) when P-Grid cell width = largest object width,
(b) when P-Grid cell width ≤ largest object width.

The getNeighbors(x) function in Algorithm 1 computes
the cell identifiers of half of the adjacent cells in order to
introduce hyperlinks that provide efficient access to these
adjacent cells. THERMAL-JOIN determines the size of the
largest object in the dataset while loading the dataset.

Once the index is built and the hyperlinks are created,
we join each object ai assigned to every cell A in the P-
Grid with all the objects bjk in each adjacent cells Bk of A.
The join is performed using the plane-sweep approach which
explains why we sorted the object list of each cell on the x-
dimension during building as described in Algorithm 1. We
use an optimized variant of plane-sweep approach, i.e., if
the MBR of any object ai encloses the entire MBR of cell
Bk then we can avoid expensive overlap tests for this object
during the external join and directly report that all bjk ∈ Bk

overlap with ai. This is because the MBR of cell Bk encloses
the center of all objects assigned to it and therefore every
object in Bk is guaranteed to overlap with ai.

4.2.2 Internal Join
The concept of hot spots is central to THERMAL-JOIN.

We define a hot spot as a grid cell, whose width in dimension
k is equal to or less than the width of the smallest object
assigned to that cell in dimension k (smallest object with
respect to dimension k). By choosing the width of the cell
less than or equal to the width of the smallest object we can
ensure that irrespective of where the centers of the objects
are located inside the cell, all objects will overlap with each
other and therefore expensive pair-wise overlap tests can be
avoided, thereby substantially accelerating the internal join.

Naturally, designing the P-Grid such that each cell is equal
to the width of the smallest object in the entire dataset
means that all cells are hot spots. However, if the dataset
contains only a few very small objects this strategy forces
the grid to have a very fine resolution. Doing so speeds up
the internal join but will also increase the overhead for the
external join because smaller cells mean that more adjacent

Algorithm 2 THERMAL-JOIN: Joining Phase

Data: PGrid: Hash table with objects assigned,
TGrid: Empty array of cells

Output: results: List of object pairs (result of the join)
foreach cellA ∈ PGrid do

foreach cellB ∈ cellA.Hyperlinks do
results← PlaneSweep(cellA, cellB)

end
if cellA.MBR ≤ cellA.minObjectMBR then

results← allCombinations(cellA.objectlist)
else

TGrid.initialize(cellA.minObjectMBR)
foreach o ∈ cellA.objectlist do

center ← o.MBR
id← calculateCellID(center)
TGrid.cellArray[id].objectlist.insert(&o)

end
foreach subCell ∈ TGrid do

results← allCombinations(subCell.objectlist)
neighborSubCells← getNeighbors(subCell)
foreach neighbor ∈ neighborSubCells do

results← PlaneSweep(subCell, neighbor)
end

end
TGrid.clear()

end
end
return results

cells need to be considered as shown in Figure 4. Making
the P-Grid cell larger than the smallest object, on the other
hand, requires fewer adjacent cells to be considered but not
all P-Grid cells satisfy the condition of a hot spot and the
internal join may thus take longer. Setting the P-Grid reso-
lution introduces an interesting trade-off that we will discuss
in Section 4.3.

T-Grid

Spatial
Object

Empty
P-Grid
Cell

Empty
T-Grid
Cell

Figure 5: Nested T-Grid built for each P-Grid cell.

If any P-Grid cell is a hot spot then the join results can be
directly reported by generating all possible pair-wise com-
binations (without overlap test) for objects assigned to that
grid cell. The case where a P-Grid cell is a hot spot is shown
in Figure 5 (top left cell).

Joining the objects in a P-Grid cells that are not hot spots
is more challenging. The objects assigned to the same P-
Grid cell are densely packed together with a considerable
chance (but no certainty) that all of the objects will overlap
with each other. Using a plane-sweep approach to join inside
the P-Grid cell, as we use for the external join, is not efficient
anymore, because the plane-sweep join degenerates into a
nested-loop join given the high object density.

We repeat the process of creating hot spots within P-Grid
cells that do not satisfy the condition of hot spots them-
selves. Objects assigned to the same P-Grid cell are likely to
have a smaller variation in terms of object width compared
to the entire dataset and we can thus design the nested grid
T-Grid such that the width of each cell in T-Grid is exactly
equal to the width of the smallest object assigned to the P-
Grid cell. Each P-Grid cell that is not a hot spot can there-
fore have a different resolution for the sub grid (T-Grid) as
is shown in Figure 5.

The resulting cells in the T-Grid are certain to be hot
spots and consequently no further recursive subdivision is
necessary. Similar to joining the P-Grid we join objects as-
signed to the T-Grid in two phases, i.e., first joining objects
between two different T-Grid cells using an optimized vari-
ant of the plane-sweep approach described in Section 4.2.1,
followed by a quick internal T-Grid cell join by simply re-
porting all pair-wise combinations of objects assigned to the
cell as join results. The implementation we use for the T-
Grid is different from the P-Grid. We use an array to man-
age the grid cells instead of a linked-hash table because the
T-Grid in practice has only a few cells and therefore the
space overhead of representing empty cells is insignificant.
Moreover, using an array implementation makes building
the T-Grid very fast. This means we can now build the grid
on demand and throw it away after we have processed the
internal join for a P-Grid cell as described in Algorithm 2.

4.3 Index Maintenance
The discussion of THERMAL-JOIN so far has focused on

a static scenario. To make use of THERMAL-JOIN for dy-
namic, i.e., changing datasets, the grid needs to be updated
at runtime, e.g., of a simulation application. We first dis-
cuss an incremental index maintenance strategy and then
describe a mechanism to adaptively tune the index resolu-
tion at each time step of the simulation.

4.3.1 Incremental Index Maintenance
Performing the spatial self-join iteratively requires that

the index reflects the recent location of the objects at ev-
ery time step. A straightforward approach like building the
index from scratch for each time step using the method de-
scribed in Section 4.1 introduces considerable overhead. Us-
ing an incremental approach instead is likely to yield sub-
stantially better results. Existing strategies like join tech-
niques based on predictable trajectories or techniques that
assume that only a small subset of objects change their loca-
tion, will not work as we cannot assume to be able to predict
trajectory or location of all objects during simulation.

In THERMAL-JOIN we implement the idea of incremen-
tal maintenance by re-using parts of the P-Grid index. At
each time step every object’s location is inspected and the
object is assigned to a new P-Grid cell (if needed). Time in
this process can be saved by recycling data structures: for
objects assigned to the same P-Grid cell or to a non-empty
neighboring cell no new cells and hyperlinks need to be cre-
ated. The performance benefits of recycling data structures
increase considerably for fine resolution grids where many
cells need to be created.

In order to implement the incremental maintenance ap-
proach Algorithm 1 only needs to be changed so that for each
time step the P-Grid is not deleted but only the objectlist
of a cell is cleared before assigning objects based on the last
time step.

This means that if all the objects in a cell migrate away
from it, the vacant cell will still exist in the P-Grid hash
table. This becomes useful in case any object in the fu-
ture moves and tries to reuse the vacant cell. In the long
run, however, the memory footprint of the P-Grid will in-
crease and keeping empty cells will become unsustainable.
To address this issue we use a garbage collection approach
to prune out the vacant cells. A garbage collection does not
need to run at every time step instead it can be triggered
using a simple policy, e.g., garbage collection is performed if
the number of vacant cell exceeds a defined threshold, e.g.,
the number of vacant cells exceeds 35% of the total number
of cells of the P-Grid.

4.3.2 Index Tuning
Grid-based join techniques are challenging to configure

(i.e., to set the grid resolution) for optimal performance.
One approach is to develop and use an analytical model
based on the workload and the compute resources to con-
figure the grid. Doing so requires sampling the workload
to capture the data distribution and also requires in-depth
knowledge about the hardware. THERMAL-JOIN, on the
other hand, uses a more pragmatic method and iteratively
tunes the grid resolution during the simulation.

The idea of iterative tuning makes the assumption that
during the simulation the spatial distribution (not the indi-
vidual location of objects) of the workload does not change
drastically between subsequent time steps. In other words,
once tuned, the THERMAL-JOIN configuration can be used
for several simulation time steps efficiently and the overhead
of tuning can thus be amortized over several time steps. This
assumption works for real world workloads, for example,
in cosmological simulation even though the objects (stars)
change their location the distribution (clustering in galaxies)
does not drastically change between two time steps.

In THERMAL-JOIN we use two grids. The resolution of
the T-Grid is always fixed such that the width of the cells is
equal to the width of the smallest object in the dataset. The
resolution of the P-Grid can vary and the performance of
THERMAL-JOIN depends on configuring this grid properly.
We discuss the P-Grid resolution using a normalized metric
r, where r = 1 means that the grid resolution is fixed (cell
width is equal to the width of largest object in the dataset).

To understand the trade-off associated with the P-Grid
resolution, let us assume that all objects are of equal size.
If we set the resolution of the P-Grid such that r > 1 then
the cost of performing the internal join increases because the
P-Grid cell no longer is a hot spot. Using a fine resolution
grid with r ≤ 1, on the other hand, means that the cost of
internal join is reduced but at the same time the number
of cells required in the external join of the P-Grid increases
drastically, thereby increasing the cost of external join and of
building the index. The discussion implies that the function
modeling the performance of THERMAL-JOIN at time step
t is a convex function Ft(r) of resolution r with a single
global minima at the optimal resolution ropt.

The sweet spot ropt, however, is different for different
workloads. Figure 6 shows the trade-off by experimenting
with THERMAL-JOIN on four synthetic (uniform random
distribution) datasets containing 10 million objects each.
The join selectivity is increased by increasing the object
width in each dataset. The experiment shows the result
of performing self-join for one time step (static) to highlight
the convex performance function with different ropt.

To
ta

l
Jo

in
 T

im
e

 F
t
(r

)
[s

e
c]

P-Grid resolution [r]

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Object Width 15

Object Width 15

Object Width 20

Object Width 25

Figure 6: Impact of resolution r on join Ft(r).

Our goal for tuning THERMAL-JOIN is not to find the
optimal ropt but to find r′ with reasonable overhead such
that Ft(r

′) ≈ Ft(ropt). We thus use a hill climbing approach
to iteratively search for r′ starting with r1 = 1 and define
the convergence based on Equation 1.

|Fn−1(rn−1)− Fn(rn)| ≤ threshold (1)

Each time we use a different rn we need to rebuild the
P-Grid from scratch leading to a substantial overhead in
terms of building time. During the iterative hill climbing we
may encounter rn such that Fn(rn) is very high causing ad-
ditional overhead. In practice, however, we experience that
the performance spikes only appear in the first few iterations
of hill climbing when the algorithm is trying to explore the
performance function F .

Already with a threshold of 10% we see that the tuning
process converges quickly, i.e., typically in 6-8 time steps.
Once the convergence is achieved we use r′ for subsequent
time steps by turning off the iterative tuning. In case the
distribution of the workload changes during the simulation,
we need to re-tune P-Grid by turning the tuning on again.
THERMAL-JOIN does so in case of significant performance
change during simulation as described by Equation 2.

|Fn−1(r′)− Fn(r′)| > threshold (2)

5. EXPERIMENTAL EVALUATION
In this section we first describe the experimental setup and

demonstrate the benefits of THERMAL-JOIN by using real
neural simulation workload. Furthermore, we perform a sen-
sitivity analysis using a synthetic moving object benchmark
to understand the performance by changing one workload
variable at a time. Before we conclude we also analyze the
THERMAL-JOIN algorithm in depth by discussing a break-
down of the performance and the impact of index tuning.

5.1 Setup and Methodology
The experiments are run on a Linux Ubuntu 2.6 machine

equipped with 2x Intel Xeon Processors each with 6 cores
running at 2.8GHz, with 64kb L1, 256KB L2 and 12MB L3
cache and 48GB RAM at 1333MHz. The storage consists
of 2 SAS disks of 300GB capacity each. In the following
we discuss the software setup as well as the configuration
details for the competing approaches.

5.1.1 Software Setup
Each join algorithm implemented uses a single CPU core

to ensure a fair comparison. We do not use the available
implementations provided in [34] because the code assumes

two-dimensional spatial datasets and extending it to support
the three-dimensional dataset we use is not trivial [37]. The
implementations are all written in C++.

The simulation datasets are loaded in memory and orga-
nized as a list of spatial objects that includes the minimum
bounding rectangle (MBR) of each object, identifiers as well
as attributes related to the properties of the object (e.g.,
electrical conductivity, mass, etc.). The simulation software
processes the list at each iteration, i.e., it reads the objects,
changes their location and then it writes the new location of
each object in-place.

None of the join algorithms rearranges the list of spatial
objects because the simulation application assumes the ob-
ject to be in a particular order. Every approach therefore
uses pointers to objects in the list to inspect the current
location of the object (similar to Figure 3). The self-join
is performed (atomically) at every time step only after the
simulation application has completed modifying the list of
spatial objects. The dataset in main memory is therefore
always in a consistent state when the self-join is executed.

5.1.2 Competing Approaches
We use the fastest in-memory self-join approaches to com-

pare against THERMAL-JOIN based on the results we ob-
tained in Figure 3. First we use the synchronous R-Tree
traversal which has recently been identified as the fastest
in-memory join approach [34]. Second, we use a grid based
join technique Epsilon Grid Order (EGO) [4] proposed for n-
dimensional similarity joins and finally, we also include two
recent approaches, the in-memory join algorithm TOUCH [26]
and the join algorithm based on the space-oriented loose Oc-
tree [30]. In the following we discuss the configuration of
each approach:

• CR-Tree: We implement the synchronous R-Tree join us-
ing a cache conscious variant of the R-Tree. Using the
CR-Tree [18] not only improves performance but also re-
duces the memory footprint by using quantized tree nodes.
To perform a self-join the tree is built only once using
the STR R-Tree [22] bulkloading technique, while two
pointer based synchronized breadth-first-search traversals
are used to implement the algorithm. We perform a pa-
rameter sweep to determine the best tree fan-out (i.e., 11)
for our workloads.

• TOUCH: Similar to the CR-Tree join, we use a parameter
sweep to find the best fan-out (i.e., 2) for our workloads.

• Loose Octree: We build an indexed nested-loop variant of
the join algorithm over a Loose Octree index that promises
fast index building. After building the index the same
dataset of spatial objects is used as range queries to find
all overlapping object pairs by taking care not to report
reflexive and commutative pairs. By performing a param-
eter sweep we found that the looseness factor of p = 0.1
yields the best join performance.

• EGO: We implement the epsilon grid order join for three-
dimensional in-memory workload. The grid resolution
(epsilon) is based on the object size used in the dataset.

• THERMAL-JOIN: we do not need a parameter sweep
to configure the resolution of the P-Grid as the algo-
rithm self-tunes at runtime. We use 10% as the conver-
gence threshold to terminate the hill-climbing approach.
Garbage collection is triggered if the vacant cells exceed
more than 35% of the total cells.

100

0
30
60
90

120
150
180
210
240

0 10 20 30 40 50 60 70 80 90

EGO TOUCH CR-Tree Loose Octree THERMAL-JOIN

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90

EGO TOUCH CR-Tree Loose Octree THERMAL-JOIN

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

EGO TOUCH CR-Tree Loose Octree THERMAL-JOIN

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90
a) Simulation Time step [#]

N
um

be
r o

f J
oi

n
Re

su
lts

 in
 M

ill
io

ns

100

b)
Simulation Time step [#]

Jo
in

 T
im

e
pe

r
Ti

m
e

st
ep

 [s
ec

]

100 d)
Simulation Time step [#]

M
em

or
y

Fo
ot

pr
in

t
[M

B]

c)
Simulation Time step [#]

N
um

be
r o

f O
ve

rla
p

te
st

s i
n

10
0

M
ill

io
ns

100

Figure 7: Neural simulation for 100 time steps. (a) Join selectivity in terms of number of join results, (b)
total join time per time step, (c) total overlap tests per time step and (d) memory footprint per time step.

5.2 Neural Simulation
We use a real neural simulation workload as described in

Section 3.1 for comparing the performance of THERMAL-
JOIN with existing approaches. The dataset represents a
small part of the rat brain tissue containing 1692 neurons.
The full dataset contains the branches of the neurons (as
illustrated in Figure 1) modelled with 4 million cylindri-
cal objects amounting to 160 MB on disk. Already with a
small dataset like this the self-join can take several hours
as we show with experiments. We fix the object extent to
15micron3 and present the results for the full 100 time step
simulation. Subsequently we study the scalability of the
competing approaches by increasing the dataset size as well
as object extent.

5.2.1 Full Simulation
During the simulation the objects change their location

which can also lead to a change of the distribution of the spa-
tial objects. This affects the join selectivity: if, for example,
the spatial density of a region increases, the number of join
results for a time step increases as well as is shown in Figure
7(a). In Figure 7(b) we can see how existing approaches are
very sensitive to the join selectivity because the number of
overlap tests required dominates the join time (takes more
than 95% of the join time and increases with the selectivity).

The join based on the loose Octree provides the second
best performance for this dataset. THERMAL-JOIN on the

other hand provides a further speedup from 9.4× to 11.1×
when compared to the loose Octree. Crucially, THERMAL-
JOIN is the least sensitive to the join selectivity thanks to
the concept of hot spots that reduce the number of overlap
tests as corroborated by Figure 7(c).

In terms of memory footprint, EGO, CR-Tree and TOUCH
remain unaffected by the join selectivity as shown in Figure
7(d). Both CR-Tree and TOUCH approaches use variants of
the R-Tree algorithm where the number of nodes in the tree
depends on the dataset size rather than the distribution.
The CR-Tree, however, uses quantized MBRs that reduce
the space required for each node and it is thus more space
efficient than TOUCH. EGO simply builds a spatial grid
where objects are assigned to at most one grid cell similar
to Octree techniques but no hierarchical structure is used,
making it memory efficient. The nodes of the loose Oc-
tree [30] do not have a fixed number of objects assigned to
them and as the distribution of the dataset becomes denser
in certain areas, more objects can be assigned to the same
node, thereby decreasing the number of nodes and the mem-
ory footprint when the join selectivity increases.

For THERMAL-JOIN we observe considerable spikes of
memory consumption which is due to the index being tuned
during at certain time steps. This tuning is not done once
because the dataset changes distribution considerably dur-
ing the simulation, triggering the tuning process three times
in 100 time steps. The hill-climbing method used for tuning

the P-Grid often explores the option of using very fine grid
resolutions that increase the number of cells required and
therefore increase the memory footprint. Apart from the
spikes, it appears that the memory footprint measurement
resembles a saw-tooth function. This is because of incre-
mental building of the P-Grid and then periodic garbage
collection to deallocate vacant cells.

To
ta

l J
oi

n
Ti

m
e

[m
in

]

Dataset Size [Million of Objects]

To
ta

l J
oi

n
Ti

m
e

[m
in

]

Object Size [Micron3] b) a)
0

100

200

300

400

500

1 2 3 4

THERMAL-JOIN
Loose Octree
CR-Tree
TOUCH
EGO

0

10

20

30

40

50

60

70

80

10 15 20 25

THERMAL-JOIN
Loose Octree
CR-Tree
TOUCH
EGO

Figure 8: Scaling-up neural simulations in terms of
(a) dataset size, (b) object width.

5.2.2 Scalability
We study the scalability with shorter duration simula-

tions, i.e., only until the first 10 time steps to measure
the join time for larger and more selective neural datasets.
In Figure 8(a) we increase the dataset size based on the
neural samples provided by the neuroscientists where the
larger neural datasets are built by increasing the number
of neurons (roughly 420 neurons resulting in approximately
1 million objects) considered for each experiment. In this
experiment the object extent (or object width) is fixed to
15micron3. Increasing the number of spatial objects used
in the neural simulation in the same space increases the den-
sity of the dataset and thus also increases the join selectivity.

In this experiment THERMAL-JOIN outperforms com-
peting approaches by a factor of 11.4× to 12×. Interestingly,
although the loose Octree performs better for the dataset
with one million objects, it scales poorly compared to the
CR-Tree. This is because the join using the loose Octree
uses a simple indexed nested-loop while the CR-Tree bene-
fits from the synchronized traversal method as the dataset
size grows. Although EGO uses a very efficient grid-based
index, the join uses a nested loop join and therefore does
not scale as the number of objects increase in each grid cell.

In Figure 8(b) we increase the object extent and keep the
number of objects fixed to one million objects. In this exper-
iment the CR-Tree again scales better than the loose Octree
as the join selectivity increases. For THERMAL-JOIN the
speedup increases from 8× to 12× suggesting that its benefit
will further increase with increasing join selectivity.

5.3 Synthetic Benchmark
Experimenting with real workloads is essential to assess

how approaches behave in real world scenarios. When doing
so, however, understanding the impact of each individual
workload characteristic on the performance is difficult. We
therefore use a synthetic benchmark to isolate each charac-
teristic and perform a sensitivity analysis by changing six
different workload characteristics.

We use the benchmark described for moving object datasets [6]
to calculate iterative self-joins. Unless stated, we use the fol-
lowing default workload characteristics of the benchmark.
We use a uniform random distributed benchmark with 10
million three-dimensional spatial objects (with a size of 400MB)

inside a boundary defined by (0,0,0) and (1000,1000,1000).
Each object has a fixed object width of 15 units and the sim-
ulation lasts for 10 time steps. During the simulation each
object is assigned a uniform random motion vector that is
used to translate the object by 10 units at each time step.
If the objects intersect with the boundary of the spatial ex-
tent the motion vector is inverted to ensure that the spatial
boundaries remain the same.

Similarly, a second benchmark is created representing a
skewed workload with 10 million objects and 15 units of
object width. The skewed distribution is created using a
normal distribution with the center of the cluster chosen
randomly (uniform) and a spread defined by the standard
deviation sd = 1. All objects within the skewed cluster
have the same motion vector so that during simulation the
distribution is preserved.

In the following experiments we use the uniform bench-
mark to understand the impact and benefits of THERMAL-
JOIN by changing only one characteristic at a time, i.e.,
dataset size, object width, variation in object width and
translation distance. We exclude the performance measure-
ment when changing the aspect ratio of each object (while
keeping the volume of the object constant). As expected we
found no significant difference in terms of performance for
THERMAL-JOIN and the competing approaches because
none of the techniques depend on the aspect ratio of the
spatial objects used. Similarly, for the skewed benchmark,
we change the spread of the cluster, i.e., the standard devi-
ation of the normal distribution and the number of clusters.

5.3.1 Dataset Size
In a first experiment we study the impact of the dataset

size by increasing the dataset size of a uniform benchmark
from 10 million objects (400MB) to 50 million objects (2GB).
As the results in Figure 9(a) show, using more objects in
the dataset degrades the performance of the loose Octree
further compared to TOUCH and the CR-Tree. In this ex-
periment the THERMAL-JOIN outperforms competing ap-
proaches and yields a speedup of 7.1× when compared to
the second best technique, the CR-Tree. Some results for
TOUCH, the loose Octree and EGO are missing as they did
not finish execution within the 72 hour time limit we set.

5.3.2 Object Size
We next increase the width of the objects from 5 to 25

units uniformly so that all objects have the same extent in
all dimensions. This increases the volume of the objects
cubically and therefore increases the selectivity of the join.
As Figure 9(b) shows THERMAL-JOIN provides a speedup
of 7.2× compared to the CR-Tree.

5.3.3 Variation in Object Size
Although the objects in scientific simulations have the

same size, in Figure 9(c) we also experiment with differ-
ent object sizes (widths) of the smallest and largest object
to further study the behavior of THERMAL-JOIN. The ob-
ject width difference of zero in Figure 9(c) denotes that all
objects have the same width of 15 units, while the difference
of 4 units means the smallest object has a width of 13 units
and the largest object 17 units (in all dimensions). Crucially,
although the width changes linearly on the x-axis the differ-
ence in terms of volume of the objects increases cubically,
e.g., in case of a width difference of 16 units, the volume of
the largest object is 35 times larger than the smallest object.

Objects are chosen uniform randomly between the two
extreme object sizes. In the best case, when all objects have

a)
Dataset Size [Millions]

To
ta

l J
oi

n
Ex

ec
ut

io
n

Ti
m

e
[h

ou
rs

]

b)
Object Size [unit3]

To
ta

l J
oi

n
Ex

ec
ut

io
n

Ti
m

e
[h

ou
rs

]

c)
Object Width Difference [unit]

To
ta

l J
oi

n
Ex

ec
ut

io
n

Ti
m

e
[h

ou
rs

]

d)
Translation per Time step [unit]

To
ta

l J
oi

n
Ex

ec
ut

io
n

Ti
m

e
[h

ou
rs

]

e)
Distribution Skew [SD]

To
ta

l J
oi

n
Ex

ec
ut

io
n

Ti
m

e
[h

ou
rs

]
f)

Clusters in Distribution [#]

To
ta

l J
oi

n
Ex

ec
ut

io
n

Ti
m

e
[h

ou
rs

]

0

10

20

30

40

50

60

70

10 20 30 40 50

Loose Octree
TOUCH
CR-Tree
THERMAL-JOIN

0

5

10

15

20

25

30

5 10 15 20 25

0

5

10

15

20

25

30

0.5 0.75 1 1.25 1.5

0

2

4

6

8

10

0 4 8 12 16

0

5

10

15

20

25

1 2 3 4 5
0
1
2
3
4
5
6
7
8

5 15 25 35 45

Figure 9: Sensitivity analysis using a synthetic benchmark.

the same size (difference zero), THERMAL-JOIN achieves
a speedup of 13.7×. For the worst case the performance of
THERMAL-JOIN decreases but it still achieves a speedup of
10.4× over related work. The performance drops because in
the worst case the T-Grid needs to be built for each P-Grid
as it does not satisfy the condition of a hot spot.

5.3.4 Temporal Resolution
In this experiment we change the temporal resolution of

the simulation by increasing the distance each object is al-
lowed to move between any two time steps. Doing so does
not affect the distribution of the dataset.

The results shown in Figure 9(d) confirm the results ex-
pected, i.e., none of the techniques depend on the dynam-
ics of the simulation. While TOUCH, CR-Tree and the
loose Octree are rebuilt from scratch at every time step,
THERMAL-JOIN uses incremental building and garbage
collection to keep the overhead of building the index low,
both in terms of space and performance. In the extreme
case where an object always changes its P-Grid cell (making
big jumps), the overhead is equal to rebuilding the P-Grid
index from scratch. This effect is visible when we move the
objects by 45 units (and the speedup is reduced by a small
fraction from 13.3× to 13.0×). Similarly, the garbage collec-
tion strategy loses its effectiveness and the memory footprint
increases by 27%.

5.3.5 Distribution Skew
To test sensitivity to distribution skew, we use a skewed

benchmark and change the spread of the normal distribution
to measure the impact on the performance. Using the stan-
dard deviation <1, reduces the spread and increases the join
selectivity. Figure 9(e) shows higher join selectivity favors
THERMAL-JOIN and therefore it outperforms competing
approaches and achieves a speedup of 8.8×.

5.3.6 Clustering
Another way to vary the spread of the skewed distribution

is to create several small clusters rather than just one. Keep-
ing the standard deviation constant at one, we divide the
same number of objects among many clusters. The density
around the smaller clusters is relatively lower than the den-
sity of a single cluster. Although THERMAL-JOIN outper-

forms competing approaches, the speedup drops from 12×
to 5× because the join is no longer as selective as with a
single cluster as Figure 9(f) shows.

6. THERMAL-JOIN ANALYSIS
In this section we present experiments that highlight the

internal working of THERMAL-JOIN, i.e., how do the join
phases and the memory footprint change when we change
the P-Grid resolution. We conclude by briefly discussing
the applicability of THERMAL-JOIN based on the design
choices we made along with limitations of the approach.

6.1 P-Grid resolution
In the following experiment we analyze and break down

the performance of THERMAL-JOIN and describe how it
changes as we change the grid resolution. In Figure 10(a) we
vary the grid resolution r from 0.5 to 2 and then observe the
cost of building and performing the self-join. For the experi-
ment we use a real neural workload with one million objects
with object width equal to 15micron3. As we increase the
resolution from r > 1 the cost of internal join starts to be-
come substantial. This is because the P-Grid cells are no
longer hot spots. As we decrease the resolution, i.e., r < 1
we increase the building and join time substantially because
there is a considerable number of cells that require a long
time to build and then to perform the external join despite
all the objects are in hot spots.

a) b)

0

50

100

150

200

250

300

350

400

M
e

m
o

ry
 F

o
o

tp
ri

n
t

[M
B

]

P-Grid Resolution [r]

0

1

2

3

4

5

6

To
ta

l
T

im
e

 [
se

c]

P-Grid Resolution [r]

External Join

Internal Join

Building

Figure 10: Effect of changing grid resolution r on
(a) join time, (b) footprint of THERMAL-JOIN.

The memory required on the other hand only depends on
the number of grid cells instantiated and as we increase r
so that r > 1, fewer cells are needed and thus the footprint
becomes insignificant as shown in Figure 10(b).

6.2 Applicability
We do not make any particular assumption regarding the

semantics of the simulation application and THERMAL-
JOIN thus is applicable to many different problems that
require iterative spatial self-join. Obvious non-scientific use
cases for the approach are video games. Similar to the prob-
lem of scientific simulations, in multi-player games a cut-off
radius (region of visibility) is defined for all characters that
are changing their location at discrete intervals of time.

Furthermore, the assumption that the number and the
shape of objects should remain constant during the simula-
tion does not limit applicability as no part of the THERMAL-
JOIN algorithm relies on this assumption.

6.3 Limitations
THERMAL-JOIN is designed to address the challenges of

joining highly selective datasets that change unpredictably
during the simulation. This means for cases where such ex-
treme access pattern are not observed, simpler solutions can
be used. For example, if the join selectivity is very low a
straightforward approach may be to use an iterative plane-
sweep join. In case the objects are changed over time pre-
dictably, trajectory based techniques may be more suitable.

The design choices for THERMAL-JOIN prioritize run-
time performance and scalability. In terms of memory foot-
print, however, spikes are observed due to the iterative tun-
ing. This can be improved by avoiding a very fine resolution
grid that would exceed a memory quota given by the user.

7. CONCLUSIONS
In this paper we present the THERMAL-JOIN approach,

a high performance and scalable solution for executing spa-
tial self-joins iteratively in main memory. The algorithm
is practical to use, i.e., it does not require tuning elaborate
configuration parameters and it is resilient to different work-
load characteristics as we show in Section 5.3. The approach
uses the novel concept of spatial hot spots that improve the
performance for workloads with high join selectivity such
as scientific simulations. Using real neural workloads we
show that the approach achieves speedup of 8 to 12× when
compared to the state-of-the-art and remains competitive in
terms of memory footprint.

Acknowledgements
This work is supported by the Hasler Foundation (Smart
World - Databasing the Brain, No 11031) and the EU Frame-
work Programme (FP7/2007-2013) under grant 604102 (HBP).

8. REFERENCES
[1] V. Akcelik et al. High Resolution Forward and Inverse

Earthquake Modeling on Terascale Computers. In
Supercomputing ’03.

[2] A. Arasu, V. Ganti, and R. Kaushik. Efficient Exact
Set-Similarity Joins. In VLDB ’06.

[3] G. Blelloch and G. Narlikar. A Practical Comparison of
N-Body Algorithms. In Parallel Algorithms ’97.

[4] C. Böhm, B. Braunmüller, F. Krebs, and H.-p. Kriegel. Epsilon
Grid Order: An Algorithm for the Similarity Join on Massive
High-Dimensional Data. SIGMOD Record, 30, 2001.

[5] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient Processing
of Spatial Joins Using R-Trees. In SIGMOD ’93.

[6] S. Chen, C. S. Jensen, and D. Lin. A Benchmark for Evaluating
Moving Object Indexes. In VLDB ’08.

[7] S. Chen, B. C. Ooi, K.-L. Tan, and M. A. Nascimento.
ST2B-tree: A Self-tunable Spatio-temporal B+-tree Index for
Moving Objects. In SIGMOD ’08.

[8] J. Dittrich, L. Blunschi, and M. A. Vaz Salles. Indexing moving
objects using short-lived throwaway indexes. In SSTD ’09.

[9] R. Elmasri and S. B. Navathe. Fundamentals of Database
Systems. Addison Wesley, 3rd edition, 2000.

[10] D. Frenkel and B. Smit. Understanding Molecular Simulation,
volume 1. Academic Press, 2001.

[11] R. A. Gingold and J. J. Monaghan. Smoothed Particle
Hydrodynamics-theory and Application to Non-spherical Stars.
Astrophysical journal, 181:375–389, 1977.

[12] H. Gupta, B. Chawda, S. Negi, T. A. Faruquie, L. V.
Subramaniam, and M. Mohania. Processing Multi-way Spatial
Joins on Map-reduce. EDBT ’13.

[13] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. In SIGMOD ’84.

[14] G. S. Iwerks, H. Samet, and K. P. Smith. Maintenance of K-nn
and Spatial Join Queries on Continuously Moving Points. ACM
TODS, 31(2), 2006.

[15] C. L. Jackins and S. L. Tanimoto. Oct-trees and Their Use in
Representing Three-dimensional Objects. Computer Graphics
and Image Processing, 14(3), 1980.

[16] E. H. Jacox and H. Samet. Spatial Join Techniques. ACM
TODS, 32(1), 2007.

[17] E. H. Jacox and H. Samet. Metric Space Similarity Joins. ACM
TODS, 33(2), 2008.

[18] K. Kim, S. K. Cha, and K. Kwon. Optimizing Multidimensional
Index Trees for Main Memory Access. In SIGMOD ’01.

[19] N. Koudas and K. Sevcik. Size Separation Spatial Join. In
SIGMOD ’97.

[20] D. Kwon et al. An Adaptive Hashing Technique for Indexing
Moving Objects. TKDE, 56(3):287–303, 2006.

[21] Y. Kwon, D. Nunley, J. Gardner, M. Balazinska, B. Howe, and
S. Loebman. Scalable Clustering Algorithm for N-Body
Simulations in a Shared-Nothing Cluster. In SSDBM ’10.

[22] S. Leutenegger et al. STR: a Simple and Efficient Algorithm for
R-Tree Packing. In ICDE ’97.

[23] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient Processing of
K Nearest Neighbor Joins Using MapReduce. In VLDB ’12.

[24] H. Markram et al. Introducing the Human Brain Project. In
European Future Technologies ’11.

[25] M. F. Mokbel, T. M. Ghanem, and W. G. Aref.
Spatio-temporal Access Methods. IEEE Data Engineering
Bulletin, 26:40–49, 2003.

[26] S. Nobari, F. Tauheed, T. Heinis, P. Karras, S. Bressan, and
A. Ailamaki. TOUCH: In-Memory Spatial Join by Hierarchical
Data-Oriented Partitioning. In SIGMOD ’13.

[27] J. M. Patel and D. J. DeWitt. Partition Based Spatial-Merge
Join. In SIGMOD ’96.

[28] J. M. Patel et al. STRIPES: an Efficient Index for Predicted
Trajectories. In SIGMOD ’04.

[29] F. Preparata and M. Shamos. Computational Geometry: An
Introduction. Springer, 1993.

[30] H. Samet, J. Sankara, and M. Auerbach. Indexing Methods for
Moving Object Databases: Games and Other Applications. In
SIGMOD ’13.

[31] A. D. Sarma, Y. He, and S. Chaudhuri. ClusterJoin: A
Similarity Joins Framework using Map-Reduce. In VLDB ’14.

[32] Y. Silva, S. Pearson, and J. Cheney. Database Similarity Join
for Metric Spaces. In Similarity Search and Applications. 2013.

[33] C. Silvestri et al. GPU-Based Computing of Repeated Range
Queries over Moving Objects. In International Conference on
Parallel, Distributed and Network-Based Processing, 2014.

[34] B. Sowell, M. V. Salles, T. Cao, A. Demers, and J. Gehrke. An
Experimental Analysis of Iterated Spatial Joins in Main
Memory. In VLDB ’14.

[35] Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: an
Optimized Spatio-temporal Access Method for Predictive
Queries. In VLDB ’03.

[36] F. Tauheed, T. Heinis, F. Schürmann, H. Markram, and
A. Ailamaki. OCTOPUS: Efficient Query Execution on
Dynamic Mesh Datasets. In ICDE ’14.

[37] D. Šidlauskas and C. S. Jensen. Spatial Joins in Main Memory:
Implementation Matters! In VLDB ’15.

[38] D. Šidlauskas, S. Šaltenis, and C. S. Jensen. Processing of
Extreme Moving-object Update and Query Workloads in Main
Memory. VLDB ’14.

