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†Data-Intensive Applications and Systems Lab, École Polytechnique Fédérale de Lausanne, Switzerland
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ABSTRACT
Many scientific and geographical applications rely on the ef-
ficient execution of spatial joins. Past research has produced
several efficient spatial join approaches and while each of
them can join two datasets, the problem of efficiently join-
ing two datasets with contrasting density, i.e., with the same
spatial extent but with a wildly different number of spatial
elements, has so far been overlooked. State-of-the-art data-
oriented spatial join approaches (e.g., based on the R-Tree)
suffer from degraded performance due to overlap, whereas
space-oriented approaches excessively read data from disk.

In this paper we develop GIPSY, a novel approach for
the spatial join of two datasets with contrasting density.
GIPSY uses fine-grained data-oriented partitioning and thus
only retrieves the data needed for the join. At the same
time it avoids the overlap related problems associated with
data-oriented partitioning by using a crawling approach, i.e.,
without using a hierarchical tree. Our experiments show
that GIPSY outperforms state-of-the-art disk-based spatial
join algorithms by a factor of 2 to 18 and is particularly
efficient when joining a dense dataset with several sparse
datasets.

1. INTRODUCTION
An increasing number of scientific or GIS applications de-
pend on the efficient execution of spatial join operations. In
geographical applications, for example, spatial joins are ex-
ecuted to determine the intersection or proximity between
geographical features [26], i.e., landmarks, roads, etc. Med-
ical imaging applications need an efficient spatial join to
determine the proximity between cancerous cells [8] and in
neuroscience the join is performed to find the intersection of
neuron branches [21].

Many efficient approaches for disk-based spatial joins [5,
23] have been developed in the past. Unfortunately none of
them can efficiently and scalably join two spatial datasets
of substantially different density, i.e., of similar spatial ex-
tent but with a vastly different number of spatial elements.
Doing so, however, is a crucial operation for several applica-
tions: it is needed to efficiently add a small number of roads
or few elements to GIS datasets, to add the branches of one
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neuron to a spatial model of the neocortex and many other
applications. The efficiency of the join is pivotal as it is of-
tentimes executed repeatedly to join several sparse datasets
with one dense dataset.

To define the problem more formally, our goal is to develop
an approach for repeated spatial joins of sparse datasets with
one dense dataset. Given several sparse datasets Ai and a
dense dataset B where Ai << B (i.e., their spatial extent
is similar, but the number of elements differ), the approach
finds all pairs of spatial elements ak ∈ Ai and b ∈ B so
that ak and b intersect. While any previously developed
method [12] can be used to join a dataset Ai (with few el-
ements) and B (with a massive number of elements), the
state of the art is inefficient, as we will show with motivat-
ing experiments.

With the sparse datasets Ai repeatedly joined with the
dense dataset B, building an index on B or on all Ai and B
will speed up the join operation. The fundamental problem
of existing approaches, however, is that with a very small Ai,
only a small subset of B needs to be retrieved (and tested
against Ai). Existing approaches based on space-oriented
partitioning (e.g., PBSM [23]) create coarse-grained parti-
tions and consequently the entire dataset B needs to be read
for a join, leading to excessive disk accesses. Approaches
based on data-oriented partitioning allow for a more fine-
grained partitioning of the data, but require hierarchical
trees (e.g., the synchronized R-Tree [5], indexed nested loop
on the R-Tree [7]) to access the data and thus suffer from
well documented problems like overlap and dead space, also
resulting in excessive disk accesses.

We propose GIPSY, a novel approach that uses fine-grained
data-oriented partitioning and thereby enables the join to
read from B only the small subset needed. It avoids the
overlap inherent in data-oriented partitioning by using an
efficient crawling technique [22, 25] which is also used for
range queries on spatial data. With this novel combination
of crawling with data-oriented partitioning, GIPSY achieves
a 2 to 18× speedup compared to the fastest approaches like
the indexed nested loop [7] and PBSM [23] when joining
several Ai with B.

The remainder of this paper is structured as follows. We
first discuss related work in Section 2 and then motivate our
work with an example application from neuroscience in Sec-
tion 3. With an initial set of measurements we also demon-
strate the shortcomings of the state of the art. In Section
4 we then explain our approach, GIPSY, and evaluate it
extensively in Section 5. We conclude in Section 6.



2. RELATED WORK
Several spatial join approaches have been developed for disk
[12]. In the following, we discuss related work and categorize
it according to its use of data- or space-oriented indexes.

2.1 Data-oriented Partitioning
Spatial join methods based on data-oriented partitioning re-
quire one or both datasets to be indexed with a data-oriented
index like the R-Tree [10].

Both Datasets Indexed
The synchronous R-Tree traversal [5] requires each dataset
A and B to be indexed with an R-Tree [10] RA and RB .
The approach starts at the root nodes of both R-Trees and
synchronously traverses them to the bottom. If two nodes
nA ∈ RA and nB ∈ RB on the same level intersect, then
their children will be tested pairwise. On the leaf level, the
actual elements will be tested for intersection.

By using the R-tree as a basis, the synchronous R-Tree
traversal also inherits its problems. Inner node overlap and
dead space in the R-Tree lead to more comparisons than
necessary and therefore slows down the join. Approaches
like the R*-Tree [4] or the R+-Tree [24] have been developed
to reduce overlap through an improved node split algorithm
or duplication. The duplication of elements, however, leads
to more comparisons and to more disk accesses to retrieve
the duplicates. Duplication also leads to duplicate results
that have to be filtered.

If all data is known beforehand, bulkloading leads to effi-
cient R-Trees. Several bulkloading approaches like STR [16],
Hilbert [13], TGS [9] and the PR-Tree [2] have been devel-
oped, all with better performance than the R+-Tree or the
R*-Tree. While TGS and PR-Tree are efficient on data sets
with extreme skew and aspect ratio, Hilbert and STR per-
form similarly, outperforming the others on real-world data.

Synchronous index traversals can also be done when both
datasets are indexed with Quadtrees [1] (or Octrees in 3D).
Like in the case of the R+-Tree, however, elements are du-
plicated and results thus need to be deduplicated.

One Dataset Indexed
In case an index IA exists for dataset A, the indexed nested
loop join [7] loops over dataset B and for each element b ∈ B
it queries IA to find intersecting elements. Executing a query
for each b ∈ B, however, can be a considerable overhead,
particularly if B >> A.

The seeded tree approach [18] also requires one dataset, A,
to be indexed with an R-Tree IA. The existing R-Tree IA is
used to build an R-Tree IB on dataset B and the two R-Trees
are then joined with a synchronous R-Tree traversal [5]. By
building IB based on IA, the approach can align the bound-
ing boxes and the synchronous join therefore has to compare
fewer bounding boxes. Improvements to the basic approach
use sampling to speed up building the R-Trees [17] or avoid
memory thrashing [19] but still suffer from R-Tree related
problems like overlap.

2.2 Space-oriented Partitioning
Space-oriented partitioning approaches assign all spatial el-
ements to partitions. To deal with the ambiguity of the as-
signment, i.e., one spatial element may have to be assigned
to several partitions, two classes of approaches, multiple as-
signment and multiple matching, have been developed.

Multiple Assignment
Multiple assignment replicates and copies each spatial ele-
ment (or a reference) to all partitions it overlaps with. Repli-
cating elements has the advantage that the spatial join only
needs to compare elements in each partition with each other
and not elements of different partitions. Replication, how-
ever, also has disadvantages: 1) more comparisons need to
be performed and 2) result pairs may be detected twice and
need to be deduplicated (during the join [6] or in the end).

The Partition based Spatial Merge join (PBSM [23]) uses
a uniform grid to partition the entire space of both datasets
into cells. Each element of dataset A is assigned to all cells
cA it overlaps with and all b ∈ B are assigned to cells cB
respectively. In the next phase PBSM iterates over all pairs
of cells cA and cB which have the same position and joins
them, i.e., the elements in cA are compared with the ele-
ments cB to find intersections.

Multiple Matching
Multiple matching avoids replication and assigns each spa-
tial element only to one of the partitions it overlaps with.
Because an element could be assigned to one of several dif-
ferent partitions, all the partitions that share a border po-
tentially must be compared with each other.

The Scalable Sweeping-Based Spatial Join [3], for exam-
ple, partitions space into n equi-width strips in one dimen-
sion and assigns each a ∈ A that entirely fits into strip n
to a set LAn (and b ∈ B to LBn respectively). For each n
it uses a plane-sweep approach to find all intersecting pairs
from LAn and LBn. Elements overlapping several strips,
i.e., from strip j to strip k, are assigned to sets LAjk and
LBjk. When using the plane-sweep LAn and LBn, all sets
LAjk and LBjk with j < n < k are also taken into account.

To use space-partitioning while at the same time avoiding
replication, the size separation spatial join (S3 [14]) exploits
a hierarchy of L equi-width grids of increasing granularity
(in D dimensions the grid on level l has (2l)D cells). Each
element is assigned to the lowest level where it only overlaps
with one cell. S3 maintains two hierarchies, HA for A and
HB for B. To perform the join the algorithm iterates over
each cell cA of HA and joins it with each cell of HB that
intersects with cA on a higher level. Joining means that
elements on the highest level will be compared to all other
elements. The fewer elements are assigned to the highest
level, the fewer comparisons will be needed.

3. MOTIVATION
GIPSY is motivated by the data management challenges the
neuroscientists we collaborate with in the context of the Blue
Brain Project (BBP [20]) face. We first describe the BBP,
the spatial join challenges faced in it and then motivate the
need for GIPSY with an experimental analysis.

3.1 Blue Brain Project
In order to simulate and understand the brain, the neurosci-
entists in the BBP build the most detailed and biorealistic
models with data acquired in anatomical research on the
cortex of the rat brain. They have started to build small
models of the elementary building block of the rat neocor-
tex, a neocortical column of about 10,000 neurons. The
structurally accurate microcircuits (or models) are built on
massively parallel systems (currently the BlueGene/P with
16K cores). A visualization of a small microcircuit of a few
thousand neurons is shown in Figure 1 (right).



The process of building the models starts with analyzing
the neurons in the real rat brain tissue in the wet lab, mea-
suring their electrophysiological properties as well as their
morphology, i.e., their shape. As Figure 1 (left) shows, the
morphology of a neuron is approximated with cylinders mod-
elling the dendrite and axon branches in three dimensions.

To build a small scale model, several hundred or thousand
neuron morphologies are put together in a spatial model.
Before the model can be simulated, synapses (the places
where electric impulses can leap over between different neu-
rons) need to be placed. Prior research [15] has shown that
an accurate model can be built by placing the synapses
where the branches (or the cylinders representing them)
of different neurons intersect. More precisely, synapses are
placed where a cylinder representing an axon branch and a
cylinder representing a dendrite branch intersect. The pro-
cess of placing synapses thus equals to a spatial join of the
axon and dendrite cylinders of the neurons.

Figure 1: Schema of a neuron’s morphology mod-
elled with cylinders (left) and a visualization of a
model microcircuit comprised of thousands of neu-
rons (right).

The models currently built and simulated in the BBP con-
tain up to 500,000 neurons with the goal to increase the size
of the models many times to first simulate the brain of the
rat and ultimately the human brain with ∼1011 neurons.
More importantly, the circuits will become more detailed by
modelling neurons (e.g., synapses and neurotransmitter) at
the subcellular level and therefore packing orders of magni-
tude more spatial elements in the same space. The spatial
join at the core of the model building will become more se-
lective and its efficiency is thus pivotal.

3.2 Use Cases
Currently the BlueGene/P is used to perform the spatial
join on a model. The model is partitioned and loaded into
the 16K cores of it and each core will perform the spatial join
and then report the result. Because the memory is limited
to 1GB per core, the biggest model that can be built is a
column, the smallest building block of the brain featuring
about 10 million neurons.

To attain the ultimate goal of simulating the entire brain,
bigger models need to be built. The only way of doing so is
to combine, on the disk of a single machine (or in a cluster),
several columns into one big model, either by (1) combin-
ing several columns into one model or (2) connecting two
columns with long ranging branches.

3.2.1 Combining Columns
Using the BlueGene/P to build the models limits the size of
the biggest model to the size of the supercomputer’s main
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Figure 2: Illustration of the use cases.

memory, i.e., 10 million neurons or a column. To build big-
ger models, several columns need to be combined and hence
the columns need to be spatially joined with each other. To
speed up the join, only the branches (cylinders) penetrating
the neighboring column are used for the join. Figure 2 (left)
illustrates how columns C1 and C2 (view from top) are com-
bined: only the few neuron branches (black lines) from C2
penetrating the neighboring column C1 (black lines inside
C1) need to be joined with the neurons in C2 (gray lines
in C2). All neurons and branches are modelled with thou-
sands cylinders each and, in this use case, the sparse dataset
(the cylinders making up the black lines from C2 inside C1)
containing several hundred thousand cylinders is joined with
the dense dataset (the cylinders representing the gray line
of C1) containing several hundred million cylinders.

3.2.2 Building Mesocircuits
In this use case one or few neuron branches are added to one
or several columns. The added branches model the growth
of mid-range fibers, i.e., model how branches penetrate a
column. Also, in this case, the added branches interact with
the neurons in the column, making the detection of touches
between incoming branches and the rest of the circuit via a
spatial join necessary. The number of cylinders added to the
column in this case is typically several thousand. The sparse
dataset is thus much smaller than in the previous use case,
while the dense dataset contains a similar number of cylin-
ders. Figure 2 (right) shows how the branches (dashed lines)
are added to the neurons of the two columns (hexagons) to
connect them.

3.3 Motivating Experiments
What is common among the aforementioned use cases is
that two datasets of entirely different density, i.e., number
of elements in the same space, are spatially joined. Sev-
eral approaches for the spatial join of datasets have been
developed, none, however, can efficiently join datasets of
contrasting density. We illustrate the problem with experi-
ments where we join a sparse dataset containing 800’000 el-
ements with increasingly dense datasets containing between
50 and 450 million elements (20GB on disk for 450 million
elements). We increase the density of the dense dataset to
emulate increasingly detailed models (more elements in the
same space), leading to growing overlap in indexes based
on data-oriented partitioning. Both datasets contain boxes



with length 1 in each dimension placed with a uniform ran-
dom distribution in a space of 1000 space units in each di-
mension. The description of the datasets and the setup used
for these experiments is in Section 5.1.

We compare broadly used approaches like the Partition
Based Spatial Merge Join (PBSM [23]), the synchronized
R-Tree (R-Tree [5]) and the indexed nested loop (INL [7]).
The results of the join are shown in Figure 3.3.

Figure 3: Total execution time as a result of joining
uniform datasets of different densities.

We distinguish between three phases of each join: (1) Pre-
processing, the time to index (or partition the data in case
of PBSM), (2) I/O Time, the time to read partitions or disk
pages into memory, and (3) the time for joining the parti-
tions (or disk pages in case of the R-Tree) in memory, the
In-memory Join Time.

The major problem for the data-oriented approaches, INL
and R-Tree, is overlap [10]. Overlap leads to too many
pages retrieved from disk and to too many (repeated and
thus unnecessary) comparisons. Excessive disk reads due
to overlap, however, do not result in longer execution time
because many disk pages can directly be retrieved from the
OS cache. Repeatedly read pages on the other hand will
have to be compared multiple times, resulting in consider-
ably longer In-memory Join Time. The R-Tree suffers more
from overlap than INL because it compares all children of
intersecting nodes of both R-Trees pairwise, resulting in a
substantially higher In-memory Join Time.

Space-oriented approaches like PBSM, on the other hand,
suffer from the coarse-grained partitioning. Configuring PBSM
is difficult: choosing the grid too coarse-grained leads to big
partitions and consequently to too many elements compared
pairwise when joining partitions. Setting it too fine-grained,
i.e., small partitions leads to excessive replication, resulting
in more comparisons and consequently a slower join. The
configuration used (253 partitions) for the experiment is the
best we were able to identify with a parameter sweep. Still,
because the sparse dataset typically has at least one element
in each partition, the entire dataset has to be retrieved for
the join, resulting in excessive I/O.

4. THE GIPSY APPROACH
With GIPSY we want to overcome the problems of ap-
proaches based on data-oriented as well as space-oriented
partitioning. As outlined previously, space-oriented approaches
cannot partition the dense dataset fine-grained enough so
that the join can only retrieve the data needed from disk.
Partitioning more fine-grained results in small partitions,
therefore more replication and consequently a slower join.

Data-oriented approaches, on the other hand, suffer from
overlap resulting in unnecessary pages retrieved from disk
followed by unnecessary comparisons.

4.1 Overview
The novelty of GIPSY lies in avoiding the coarse-grained
partitioning of space-oriented approaches and using the fine-
grained data-oriented partitioning. At the same time it
avoids the excessive disk page reads and comparisons be-
cause of overlap in the tree structure of data-oriented ap-
proaches. Instead of traversing a tree structure top down,
GIPSY cleverly traverses the data itself using a crawling
approach [22, 25].

More precisely, GIPSY indexes the dense dataset and takes
the elements of the sparse dataset and visits them one after
the other by walking between them using the index on the
dense dataset. Once it arrives at the location of a particular
element e of the sparse dataset, it uses crawling to detect all
elements of the dense dataset that intersect with e and then
walks to the next element. Using an index on the dense
dataset and traversing it directed by the elements of the
sparse dataset makes the join particularly efficient for the
repeated join of a dense dataset with multiple sparse ones.
Figure 4 illustrates how GIPSY uses the sparse dataset to
direct walking in the dense dataset.

Dataset A 

Dataset B 

Figure 4: GIPSY uses the sparse dataset to
walk/crawl through the dense dataset.

To enable GIPSY’s novel approach of combining data-
oriented partitioning with crawling to execute a spatial join,
we need an efficient method to partition the dataset data-
oriented, and to add & store the information needed for
walking/crawling. Additionally, we need an effective method
to find a start element for the walk as well as an order in
which the elements of the sparse dataset can be visited with
minimal distance between them.

In the following we discuss the methods, algorithms and
data structures needed.

4.2 Indexing the Dense Dataset
Unlike mesh datasets indexed with DLS [22], the datasets
we use (spatial datasets in general) do not have any inher-
ent connectivity information like mesh edges. In GIPSY
we therefore first partition the dataset and then store in-
formation needed for crawling in additional data structures,
similar to other crawling approaches [25].



Algorithm 1 Partitioning Algorithm

Input: elements: all spatial elements of B
partitionsize: number of elements in each partition

Output: partitions: resulting partitions
Data: x partitions: set of partitions

y partitions: set of partitions

calculate number of partitions in each dimension
pn = 3

√
size(elements)/partitionsize

sort elements on x-coordinate
make pn partitions of consecutive x-coordinate values
insert partitions into x partitions

foreach partition p ∈ x partitions do
sort p on y-coordinate
make pn partitions of consecutive y-coordinate values
insert partitions into y partitions

foreach partition p ∈ y partitions do
sort p on z-coordinate
make pn partitions of consecutive z-coordinate
values
insert partitions into partitions

end
end
return partitions

4.2.1 Partitioning the Dense Dataset
To partition the dense dataset we use an approach similar to
Sort-Tile-Recursive (STR) [16], a method initially designed
for bulkloading R-Trees. While we are not interested in the
R-Tree it produces, its approach to data-oriented partition-
ing is useful so that spatially close elements can be stored
on the same disk page, thereby preserving spatial locality.

Similar to STR, GIPSY first sorts the dense dataset on
the x-dimension of the element center and partitions the
elements along this dimension. All resulting partitions are
sorted on the y-dimension and partitioned again. Finally,
the resulting partitions are also sorted on the z-dimension
and partitioned. The process is illustrated with pseudocode
in Algorithm 1.

Figure 5 illustrates the partitioning. The solid lines rep-
resent the partition MBRs (minimum bounding rectangle),
whereas the dashed lines represent the elements MBRs that
wrap more tightly the actual spatial elements.

Figure 5: Partioning of the dataset with solid lines
for the partitions and dashed lines for the elements
MBRs.

By choosing the size of the partitions at every step of the
partitioning process, we can precisely determine the size of
the final partitions. This (a) ensures that a partition fits
on a disk page and (b) gives us a parameter to control the

granularity of the partitioning. In GIPSY, the size of the
partitions is always chosen so that it fits on a disk page, i.e.,
of size 4K or a multiple. GIPSY stores the elements in each
partition together on a disk page called elements page.

4.2.2 Crawling Information
In order for GIPSY to work, we need to determine and store
the information that enables walking/crawling. The rele-
vant information are the partitions and their neighborhood
relation, i.e., what partition neighbors what other partitions.

Storing the Crawling Information
For each partition we store the minimum bounding rect-
angle (MBR) of the elements and the partition. The ele-
ments MBR is the minimum bounding box containing all
elements on a page whereas the partition MBR is the mini-
mum bounding rectangle of the partition. Most importantly,
we also need to store the neighbors of each partition. We
store all information in summary records: each record sum-
marizes a partition p and stores a pointer to the elements
page of p, p’s partition MBR, p’s elements MBR, as well
as the neighbors of p (the partitions intersecting with p or
touching p).

Determining the Crawling Information
The information of the partitions follows directly from the
partitioning process. We determine the neighbors by per-
forming a spatial self-join on the partition MBRs. This
computes, for each partition p, what partitions n neighbor
(touch or intersect) p. Any spatial join method can be used
for the self join. Nevertheless, in GIPSY we use PBSM be-
cause we identified it as the quickest method to perform a
one-off spatial join.

As Figure 6 shows, all summary records are stored on disk
pages called summary pages. We store as many summary
records on a summary page as possible. When retrieving a
summary record, it is likely that neighboring ones (spatially
close ones) will also be retrieved and preserving spatial lo-
cality will thus improve performance. As a consequence, we
use the Hilbert space filling curve [11], calculate the Hilbert
value of each summary record (of the center of its parti-
tion MBR) and store on the same summary page summary
records with consecutive Hilbert values. On the summary
pages we do not store the partition identifier as a neigh-
bor but instead store the identifier of the summary page it
is stored. Such an approach simplifies and speeds up the
join process as no mapping (correlating the summary page
identifier with the disk page identifier) needs to be queried
repeatedly.

Elements Pages 

Summary  
Pages 

Page, Page MBR, Partition MBR, Neighbors…. 

Page, Page MBR, Partition MBR, Neighbors…. 

Page, Page MBR, Partition MBR, Neighbors…. 

Page, Page MBR, Partition MBR, Neighbors…. 

Page, Page MBR, Partition MBR, Neighbors…. 

Page, Page MBR, Partition MBR, Neighbors…. 

Page, Page MBR, Partition MBR, Neighbors…. 

Page, Page MBR, Partition MBR, Neighbors…. 

Page, Page MBR, Partition MBR, Neighbors…. 

Page, Page MBR, Partition MBR, Neighbors…. 

Page, Page MBR, Partition MBR, Neighbors…. 

Page, Page MBR, Partition MBR, Neighbors…. 

Figure 6: The data structures of GIPSY: summary
pages, elements pages and pointers between them
(arrows between summary records).



Algorithm 2 Directed Walk

Input: startrecord: start crawl record
ak: spatial element of sparse dataset Ai

Output: closestrecord: closest summary record to ai

closestrecord = startrecord;
while (distance(closestrecord.elementsMBR, ak) > 0 AND
!chekgettingaway()) do

records = read all neighbor records of closestrecord;
foreach summary record r ∈ records do

if distance(r.elementsMBR, ak) <
distance(closestrecord.elementsMBR, ak) then

closestrecord = r;
end

end
end
return closestrecord

4.3 Joining the Datasets
To finally join the datasets, GIPSY takes a sparse dataset
Ai (without indexing it) and iterates over all its elements
a ∈ Ai. It uses the start summary record at the beginning
of the join and walks in the dense dataset to find the spatial
location of the first element a1 of the sparse dataset. For
that matter it uses a directed walk: it recursively reads all
neighboring summary records and picks the one closest to
a1 (smallest distance of the elements MBR to a1). As Algo-
rithm 2 illustrates with pseudocode, this process is repeated
until a summary record intersecting with a1 is found. If no
neighbor record closer to a1 can be found and the elements
MBR of the closest record still does not intersect with a1,
then a1 does not intersect with any element from B.

Once an intersection record, a summary record of which
the elements MBR intersects with the element a1, is found
the directed walk ends and the crawl phase starts. The goal
of the crawl phase is to find all elements of the dense dataset
intersecting with a1. Starting with the intersection record,
the crawl phase, similarly to the walk phase, recursively vis-
its all neighbors until no more element intersecting with a1
can be found. More precisely, it starts with the intersec-
tion record and recursively retrieves all summary pages that
contain referenced neighbor records. If the elements MBR
of a summary record intersects with a1, then the elements
page is retrieved and all elements are tested for intersection.
If the partition MBR of a summary record does not inter-
sect, then the neighbors are not visited and hence the crawl
phase ends when no more crawl record with a partition MBR
intersecting with a1 can be found. Algorithm 3 illustrates
the crawl phase with pseudocode. If no summary record of
which the elements MBR intersects with a1 can be found,
then a1 does not intersect with any element and we walk to
the next element in A.

Query 

Q 

R 
S 

Figure 7: Starting with parti-
tion Q, GIPSY has to recur-
sively visit all neighbors with
intersecting partition MBRs.

The algorithm
also illustrates why
GIPSY needs to
store and use both,
the partition and
elements MBRs.
The elements MBR
is needed in the
join process to de-
termine whether
or not to retrieve
an elements page
(if the query in-

Algorithm 3 Crawl Algorithm

Input: intersectionrecord: crawl record with page MBR in-
tersecting with a ∈ Ai;
range: MBR of spatial element a ∈ Ai

Output: result: spatial elements
Data: squeue: summary record queue

visitedqueue: already visited elements queue

enqueue intersectionrecord into squeue

while squeue 6= ∅ do

dequeue summary record s from squeue

if s.elementsMBR intersects with range then
retrieve elements page ep referenced in s
foreach element ∈ p do

if element MBR intersects range then
put element into result

end
end

end
if s.partitionMBR intersects with range then

foreach neighbor in s do
if neighbor is not in visitedqueue then

enqueue neighbor summary record in squeue
end

end
end

end
return result

Algorithm 4 GIPSY Join

Input: elements: array of spatial elements Ai

startrecord: summary record from where to start
join

Output: elements: set of elements Ai intersecting with el-
ement from B

Data: intersectionrecord: summary record holding the cur-
rent intersection record
intersectingelements: elements ∈ B intersecting with
an element inAi

intersectingrecord = startrecord;
foreach element a ∈ elements do

intersectionrecord =
directedWalk(a, intersectingrecord);
intersectingelements = crawl(intersectionrecord);
add all intersectingelements to elements;

end
return elements

tersects with the elements MBR). The partition MBR, on
the other hand, is needed to guarantee correctness: given a
partition (and its summary record) Q, even if the elements
MBR of Q’s neighbor R does not intersect with the query,
R’s neighbor S elements MBR might. Consequently GIPSY
cannot stop visiting R’s neighbors only because its elements
MBR does not intersect with the query, but only if the par-
tition MBR does not intersect as Figure 7 illustrates.

As the pseudocode in Algorithm 4 shows (using Algorithm
2 as directedWalk and Algorithm 3 as crawl), after finding
all elements of the dense dataset that intersect with a1, the
same process, i.e., directed walk and then crawling, is re-
peated to find the intersections of the following elements ak
until all elements of Ai intersecting with elements of the
dense dataset B are identified.



4.4 Visiting Order
The order in which the elements of the sparse dataset are vis-
ited has an impact on the distance walked and consequently
also on the execution time of the join. While walking a
longer distance and retrieving more summary pages does
not automatically need to translate into more time needed
to access the disk (due to caching of the OS), walking longer
will, however, mean more time is spent on comparing sum-
mary records to elements of the sparse dataset.

An ideal visiting order minimizes the overall distance walked,
similar to the travelling salesman problem (TSP). Unfortu-
nately, the TSP is NP-hard and we have to resort to heuris-
tics to find an order that approximates the optimal order in
reasonable time. We have implemented several strategies to
sort the sparse dataset and evaluate them in the experimen-
tal section in Section 5.

4.5 Start Point
To visit the elements of the sparse dataset, GIPSY needs to
start at a particular summary record of the dense dataset
and walk through it. GIPSY could start with a random (or
chosen by some heuristic) summary record, use a directed
walk to the closest summary record of a1 (the first element
of the sparse dataset) and then start the join process. This
method, however, depends on the randomly chosen sum-
mary record as well as the sparse dataset and may thus
involve an infeasibly long walk.

To reduce the distance between the start point and the
first element of the sparse dataset, we index all summary
records of the dense dataset. Any spatial index could be used
to index the dense dataset so that a first summary record
close to an element of the sparse dataset can be retrieved. To
avoid the issue of overlap and also to speed up the process of
building the index we refrain from using an R-Tree or related
spatial indexes. Instead we calculate the Hilbert value of
each summary record (the Hilbert value of the center of the
elements MBR) and index them with a B+-Tree.

To find the summary record to start from, we execute
the range queries (the Hilbert values of the sparse dataset
elements) on the B+-Tree in order to find the first intersec-
tion, i.e., the summary record with the closest Hilbert value
to one of the elements of the sparse dataset. This summary
record does not necessarily contain the first element of the
sparse dataset but will be spatially close to it and GIPSY
will walk to it and start the traversal there.

The B+-Tree can also be reused in case of an extremely
sparse dataset: instead of an infeasibly long walk between
two elements ai and ai+1 of the sparse dataset, it may be
more efficient to use the B+-Tree instead to find a summary
record close to ai+1. In our experiments, however, we have
not encountered a dataset where using the B+-Tree repeat-
edly improves performance.

5. EXPERIMENTAL EVALUATION
In this section we describe the experimental setup & method-
ology, compare GIPSY against state-of-the-art spatial join
approaches and analyze its performance. We use real neu-
roscience datasets and, to study the impact of dataset char-
acteristics on the performance and to make the experiments
reproducible, synthetic datasets where we control number,
size and distribution of the elements.

5.1 Setup

Hardware: The experiments are run on Red Hat 6.3 ma-
chines equipped with 2 quad CPUs AMD Opteron, 64-bit @
2700 MHz, 4 GB RAM and 4 SAS disks of 300GB (10000
RPM) capacity as storage. We only use one of the disks for
the experiments, i.e., no RAID configuration is used.
Software: All algorithms are implemented single-threaded
in C++ for a fair comparison.
Setting: We experimentally compare the Indexed Nested
Loop Join (INL), Synchronized R-Tree Traversal (R-TREE),
Partition Based Spatial Merged Join (PBSM) and our ap-
proach - GIPSY. R-TREE and PBSM use the plane sweep
algorithm as the in-memory join.

Due to the absence of appropriate heuristics, we set the
parameters of related approaches optimally after a param-
eter sweep. In case of PBSM we found the configuration
with 253 partitions to be the most efficient. This config-
uration provides the best trade-off between the number of
elements needed to be compared by the plane sweep algo-
rithm and the number of elements replicated, deduplicated,
additionally written/read to/from disk. INL and R-TREE
have shown the best performance with a fanout of 135.

The disk page size in all experiments is 8 KB. Experimen-
tal conditions assume a cold file system cache, i.e., after the
preprocessing/indexing step (PBSM: partitions creating, as-
signing elements; R-Tree based approaches: index building;
GIPSY: partitioning the space, introducing neighborhood
information, B+-Tree building) OS caches and disk buffers
are all cleared.

5.2 Experimental Methodology
We use two different types of datasets in the experiments:
(1) to control the dataset characteristics (number, size and
distribution of elements) and demonstrate general applica-
bility we use synthetic datasets and (2) to demonstrate the
impact on our use cases we also use neuroscience datasets.

Synthetic Datasets: We create synthetic datasets by dis-
tributing spatial boxes in a space of 1000 space units in
each dimension of the three-dimensional space. The length
of each side of each box is determined with uniform ran-
dom distribution between 0 and 1. Spatial elements are
distributed in space depending on the data distribution.

We use three different data distributions - uniform, nor-
mal (µ = 0, σ = 220) and clustered and always join datasets
of the same distribution. For the clustered dataset we choose
uniformly randomly centers of the clusters in the three-
dimensional space and place between 500 to 1000 spatial
elements around the cluster center using a normal distribu-
tion (µ = 0, σ = 220). The number of spatial elements in
the datasets is between 10K and 450M. The corresponding
size on the disk is between 468KB and 20GB.

Neuroscience Datasets: To evaluate GIPSY on real data
we use a small part of the rat brain model represented with
450 million cylinders as elements. We take from this model
a contiguous subset with a volume of 285 µm3 and approx-
imate the cylinders with minimum bounding boxes. In the
spatial join process axons are represented by one dataset,
dendrites by the other and the detected intersections rep-
resent synapses. The number of spatial elements in the
datasets is between 10K to 250M. The corresponding size
on the disk is between 468KB and 11GB.

Approach: Like most spatial join methods we focus on



the filtering step [12], i.e., finding pairs of spatial elements
whose approximations (MBRs) intersect. The refinement
step of the join, detecting the intersection between the actual
shape of the elements, is a computationally hard problem
with little room for improvement. We do not consider the
refinement step in the experimental evaluation.

In all experiments we fix the size of dataset A (sparse
dataset) and gradually increase the size of dataset B (dense
dataset). We increase the density of the dense dataset to
emulate the increasingly detailed models the neuroscientists
build. To build more biorealistic models, they increase the
number of elements in the same space, i.e., they increase
the density, leading to growing overlap in indexes based on
data-oriented partitioning.

Inspired by the use cases from Section 3.2 we evaluate
GIPSY with two different types of experiments where the
density of the sparse dataset differs. Based on the use case
in Section 3.2.2 we use sparse datasets that contain only a
few thousand spatial elements for a first set of experiments.
The second set of experiments is inspired by Section 3.2.1
and uses sparse datasets with 800× more spatial elements
(several hundred thousand elements).

In all experiments we measure the total execution time
and the number of I/O operations during the spatial join
process. The total execution time is measured for two dif-
ferent scenarios, for a one-time operation (joining dataset
A with B) or for a repeated spatial join operation (joining
several datasets Ai with one B).

We break the total execution time in preprocessing time,
I/O time and in-memory join time. The preprocessing time
is the time necessary to build the initial data structures
(PBSM: partitions creating, assigning elements; R-Tree based
approaches: index building; GIPSY: partitioning the space,
introducing neighborhood information, building the B+-Tree).
The I/O time is time spent on data writing/loading during
the join process and the in-memory join time is the time
needed to join data in memory, i.e., comparing the spatial
elements and related operations.

In case of the repeated spatial join we reuse the index
(partitions for PBSM, tree for R-TREE and INL) which is
created during the first spatial join process and reused there-
after. The total execution time for these experiments thus
contains the preprocessing time only once.

5.3 Synthetic Datasets
We evaluate GIPSY on synthetic data with two sets of ex-
periments both inspired by the two neuroscience use cases
described in Section 3.2.

5.3.1 Combining Columns
In the following set of experiments we fix the size of dataset
A to 800K and join it once with datasets B of increasing
size from 50M to 450M, in steps of 100M. All datasets have
a uniform distribution. Figure 8 shows the total execution
time broken down into preprocessing time, I/O time and in-
memory join time. In this experiment GIPSY outperforms
all other algorithms and its improvement over PBSM, the
fastest state-of-the-art approach, is between 16% - 25%.

The performance of state-of-the-art data-oriented approaches,
i.e., R-tree based approaches, is degraded due to overlap. In
case of R-TREE the overlap problem is more evident and
affects primarily the in-memory join (it also affects I/O but
this is not obvious because the OS caches disk pages). The
R-TREE approach is affected by overlap in two R-Trees.

Figure 8: Total execution time as a result of one
spatial join, combining columns.

Overlap at higher levels in each tree means that more R-
Tree nodes overlap between the trees and consequently their
children are compared pairwise, leading to a considerably
bigger number of comparisons which ultimately results in
an increase of the in-memory join time.

INL essentially repeatedly executes a small range query
on the R-Tree for every element in A. The in-memory join
time hence does not grow considerably with increasing over-
lap because every inner node of the R-Tree retrieved during
query execution only has to be compared against the range
query (unlike R-TREE where due to overlap all children of
overlapping nodes need to be compared with each other).
Overlap in INL, however, means that more nodes and thus
disk pages need to be read (in a tree without overlap, a
range query can be executed by accessing as many nodes
as the tree is high). The I/O time, however, does not grow
considerably because the OS caches disk pages.

PBSM is the fastest state-of-the-art approach, but as a
space-oriented partitioning it has to retrieve all data. The
I/O time of PBSM consequently makes up most of the ex-
ecution time. Most of the preprocessing phase is spent as-
signing elements to the partitions and because these writes
can be done sequentially, the preprocessing phase does not
take significant time. Disk accesses to read the partitions,
on the other hand, are mostly slow random reads, resulting
in substantial I/O time.

In comparison to other algorithms GIPSY spends signif-
icantly less time on comparisons and I/O operations (I/O
and in-memory join time). On average 60% of the total
execution time is spent on the preprocessing step.

In the remaining experiments we primarily compare GIPSY
with PBSM, the fastest state-of-the-art approach.

In the next experiment we join 10 different sparse datasets
of 800K elements with the same dense dataset containing
450M spatial elements. The total execution time is the sum
of all spatial joins and includes the time for building the
index on the dense dataset B just once (created during the
first spatial join and reused thereafter). As Figure 9 shows
for repeated joins, after 10 spatial joins, GIPSY already out-
performs PBSM by a factor of 2.62.

As the previous experiments showed, the main problem of
PBSM is unnecessary data retrieval when joining datasets
of different densities. In the next experiment we measure
the unique disk pages read during the spatial join when we
increase the density of the dense dataset B. As Figure 10



Figure 9: Total execution time as a result of re-
peated join, combining columns.

shows, with increasing density of B also the ratio between
PBSM and GIPSY I/O increases: for example, in the case
of joining uniform datasets of 800K with 450M elements,
PBSM needs to read 2.71 times more unique disk pages than
GIPSY. GIPSY reduces the data read from disk by using
fine-grained data-oriented partitioning.

Figure 10: Number of I/Os as a result of one spatial
join, combining columns.

5.3.2 Building Mesocircuits
Inspired by the second use case described in Section 3.2.2, in
this set of experiments we join one (or several) very sparse
datasets with a dense dataset. We decrease the size of the
sparse dataset by a factor of 800 so it contains 10K spatial
elements but use the same experimental methodology as be-
fore (increasing the dense dataset B from 50M to 450M).

The results of these experiments are shown in Figure 11.
Compared to the previous experiments only INL differs in
relative performance as its execution is slower compared to
the R-TREE. The relative performance of the R-Tree-based
approaches, however, has improved and if we take into ac-
count index reuse, i.e., we do not consider the preprocessing
time, PBSM is now slower than all other algorithms.

R-Tree-based approaches perform better than PBSM (in
a case of the index reuse) because they essentially are a
compromise between (data-oriented) fine-grained partition-
ing and the overlap problem. The overlap in the index built
on the dense dataset remains the same but because of the
fine-grained partitioning, only the few disk pages containing

Figure 11: Total execution time as a result of one
spatial join, building mesocircuits.

the data needed can be retrieved, resulting in much less ac-
cesses to the disk. The in-memory join phase (time spent on
comparing node, elements etc.) and the overall time needed
to traverse the whole R-Tree is significantly reduced for R-
TREE and INL as well.

PBSM, on the other hand, still needs to retrieve all of
the dense dataset. Figure 12 illustrates the total number of
I/O operations (logscale) executed during the join process
of PBSM and GIPSY (without the preprocessing phase). In
case of joining two datasets with 10K and 450M elements
PBSM reads 54.48× more unique pages from disk.

Figure 12: Number of I/Os (logscale) as a result of
one spatial join, building mesocircuits.

Based on the total execution time GIPSY achieves the
best results with an overall improvement of 2.35 compared to
PBSM. During a single spatial join GIPSY, however, spends
on average 90% of total execution time in the preprocess-
ing phase building the index. Not considering the prepro-
ceessing phase, i.e., if the index is reused for repeated joins,
GIPSY achieves total speedup up to 17.95 compared to the
R-TREE, the best known approach when joining repeatedly.

The experimental results comparing GIPSY with R-TREE
when repeatedly joining datasets are shown in Figure 13. We
join 10 different sparse datasets each containing 10K spatial
elements with one dense dataset of 450M elements. The to-
tal execution time is the sum of all previous spatial joins
and includes the time necessary for the preprocessing step
only once. When joining all 10 sparse datasets with the
dense dataset, GIPSY attains a speedup compared to the
synchronized R-Tree traversal of 6.78. The total execution
time, in the case of GIPSY, appears to be a flat line because
it increases minimally with each spatial join.



Figure 13: Total execution time as a result of re-
peated join, building mesocircuits.

5.4 Neuroscience Datasets
As a litmus test and to demonstrate the usefulness of GIPSY
for the neuroscientists, we also test its performance on neu-
roscience datasets. We use a similar methodology as before
and set the size of sparse dataset A to 450K spatial elements
(dendrites) for the use case described in Section 3.2.1 and to
10K for the use case described in Section 3.2.2. The dense
dataset B is increased from 50M to 250M (axons).

Figure 14 shows the results of one time spatial join for
both use cases. The R-TREE approach is significantly slower
than in previous experiments because the data distribution
leads to more overlap in both R-Trees. Our experiments on
neuroscience data show that more inner nodes need to be
retrieved for both R-Tree-based approaches as compared to
the spatial join executed on the uniform datasets (increase
in the inner node reads from 2.34 for 50M to 3.27 for 250M)
which is a good indication for increased overlap.

In the case of the repeated spatial join we compare GISPY
to the second best approaches, i.e., PBSM (for the com-
bining columns use case) and to INL (for the mesocircuit
use case). The results in Figure 15 show a speedup of 3.5
(compared to PBSM) for the repeated join of the combin-
ing columns use case and of 2 (compared to INL) for the
repeated join of the mesocircuit use case.

5.5 GIPSY Sensitivity Analysis
In the following we analyze the impact of sort strategy, page
size and data distribution on the performance of GIPSY.

5.5.1 Impact of Visiting Order
In the walking phase GIPSY walks through the dense dataset
directed by the elements of the sparse dataset. The order in
which the elements of the sparse dataset are visited should
ensure that the overall distance is as small as possible, as
walking between the elements results in disk accesses (to
read crawl pages) and in comparisons.

In the following, we evaluate the impact of different vis-
iting strategies on the performance of GIPSY. We execute
a spatial join between a sparse uniform dataset with 800K
spatial elements and a dense uniform dataset with 100M el-
ements. We compare four different sort strategies on the
sparse dataset: none (use dataset as it is), a nested loop
sort, X-axis sort and Hilbert sort. The X-axis sort sorts the
elements based on their x-coordinate while the Hilbert sort
sorts based on the Hilbert value [11] of the center of the el-
ement. The nested loop sort compares all elements pairwise

and visits them in the order of minimal pairwise distance. In
each step we exclude the elements for which we have already
found the minimum distance from further consideration.

The results of this experiment are shown in Figure 16
where we divide the total execution time into sort time and
join time. Due to the long sort execution time we exclude the
nested loop sort from the experiment. The time necessary to
sort the sparse dataset, in case of X-axis and Hilbert sort, is
insignificant. GIPSY’s performance is degraded by a factor
of 4.8 when not using any sort strategy and 2.4 times when
sorting on the x-dimension only. Hilbert sort requires, like
the other approaches, almost no time to sort and ultimately
performs the join the fastest.

Figure 16: Impact of different sort strategies on
GIPSY performance.

5.5.2 Impact of the Data Distribution
In the following experiments we measure the impact of the
data distribution on GIPSY by running the experiments
from Section 5.3.1 on datasets with uniform, clustered and
Gaussian distribution. Figure 17 and Figure 18 show the ex-
perimental results, i.e., the spatial join time and number of
detected intersections. GIPSY’s join is divided into: Seed-
ing - time necessary to obtain start point, Walking - walk
time and Crawling - the crawling phase.

Figure 17: Spatial join time for uniform, clustered
and Gaussian data distribution.

The overall spatial join time does not vary significantly
for the three different distributions. GIPSY takes slightly
more time for joining clustered data, followed by Gaussian
and uniform data. This difference in performance can be
explained by the selectivity (Figure 18).



Figure 14: Total execution time as a result of one spatial join for neuroscience datasets, combining columns
(left) and building mesocircuits (right).

Figure 15: Total execution time as a result of repeated join for neuroscience datasets, combining columns
(left) and building mesocircuits (right).

Figure 18: Number of intersections, uniform, clus-
tered and Gaussian data distribution.

As Figure 17 shows, GIPSY in general spends signifi-
cantly less time on the directed walk compared to the crawl-
ing phase. This was the initial assumption for developing
GIPSY - we rely on spatial element proximity and ensure
to walk as little as possible by following a particular visit-
ing order. The crawling phase, on the other hand, depends
heavily on the average number of neighbors (the denser the
dataset is, the more neighbors we have to examine). The
time needed to find a start point is insignificant in all cases.

5.5.3 Impact of Page Size
As discussed, GISPY’s performance depends on the number
of neighbors the summary records stored on the summary
pages have. If the summary pages are bigger (stored on big-
ger disk pages) they contain more records to examine. In
order to measure its impact on GIPSY we execute the ex-
periments from Section 5.3.1 (combining columns use case),
varying the size of page from 4KB to 64KB.

Figure 19 shows the result of the experiment. GIPSY’s
join time is divided into: walking I/O - time spent on retriev-
ing neighborhood information in the walking phase, walk-
ing - walking related operations (e.g., distance calculations),
crawling I/O - time spent on I/O operations executed during
crawling phase, crawling - crawling related operations (e.g.,
overlap detection).

A change in the page size is a trade-off. Increasing the
page size, on the one hand, leads to fewer neighbors per sum-
mary record and fewer random reads. At the same time one
node contains more data, i.e., more summary records that
need to be examined. Because the element pages contain
more elements, their page/partitions MBRs increase, and
consequently we have more unnecessary data-retrieval/ com-
parisons. The results of the join between 800K and 450M
for page sizes of 4KB and 64KB confirm our expectation:
the time spent on I/O operations decreases while the time
spent on crawling and walking related operations increases.
In our experiments, the best performance for dense datasets



Figure 19: Spatial join time, varying the page size
from 4KB to 64 KB.

is obtained for a page size of 32KB.

6. CONCLUSIONS
In this paper we identify the problem of joining datasets of
contrasting density, i.e., joining several sparse datasets with
a dense dataset. State-of-the-art approaches do not join
these datasets efficiently. Data-oriented approaches suffer
from overlap resulting in excessive reads from disk and in
unnecessary comparisons. Space-oriented approaches can-
not partition the datasets fine-grained enough and typically
the entire dataset has to be read from disk although only a
small part is needed.

The novelty of GIPSY, the approach we develop to tackle
the challenge, lies in the efficient combination of crawling
with data-oriented partitioning to join spatial datasets. GIPSY
indexes the dense dataset with a data-oriented approach
and avoids overlap through crawling: the sparse datasets
are used to crawl through the index of the dense dataset.
Only the small parts of the dense dataset needed for the
join are retrieved.

In our experiments we show the effectiveness of GIPSY as
it outperforms state-of-the-art disk-based spatial join algo-
rithms between a factor of 2 & 18 and is particularly efficient
when joining a dense dataset with several sparse datasets.
We have tested GIPSY on neuroscience but also on synthetic
datasets, demonstrating that it can be efficiently used on
spatial datasets from other domains/applications as well.
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H. Markram, and A. Ailamaki. Accelerating range
queries for brain simulations. In ICDE ’12.

[26] M. Ubell. The Montage Extensible DataBlade
Architecture. In SIGMOD ’94.


