
Design and Evaluation of an Autonomic Workflow Engine

Thomas Heinis, Cesare Pautasso, Gustavo Alonso
Department of Computer Science

Swiss Federal Institute of Technology (ETHZ)

ETH Zentrum, 8092 Zürich, Switzerland

{heinist,pautasso,alonso}@inf.ethz.ch

Abstract

In this paper we present the design and evaluate the perfor-
mance of an autonomic workflow execution engine. Although there
exist many distributed workflow engines, in practice, it remains a
difficult problem to deploy such systems in an optimal configura-
tion. Furthermore, when facing an unpredictable workload with
high variability, manual reconfiguration is not an option. Thanks
to its autonomic controller, the engine features self-configuration,
self-tuning and self-healing properties. The engine runs on a clus-
ter of computers using a tuple space to coordinate its various com-
ponents. Its autonomic controller monitors its performance and
responds to workload variations by altering the configuration. In
case failures occur, the controller can recover the workflow exe-
cution state from persistent storage and migrate it to a different
node of the cluster. Such interventions are carried out without
any human supervision. As part of the results of our performance
evaluation, we compare different autonomic control strategies and
discuss how they can automatically tune the system.

1 Introduction

1.1 Motivation

Workflow management systems are increasingly being
applied to domains beyond traditional business process au-
tomation. Examples include e-commerce [26, 24], virtual
laboratories [1], DNA sequencing [18], scientific comput-
ing [2, 17], and Grid computing [4]. More recently, the
idea of process-based Web service composition has gained
widespread acceptance [5, 16].

In all of these scenarios, workflow engines are used in
an open environment, where the characteristics of the work-
load are not known at the time the system is deployed. Thus,
e.g., it may be difficult to choose between a centralized so-
lution or a distributed implementation of the engine. Al-

Part of this work is supported by a grant from the Hasler Foundation
(DICS Project No. 1820).

though a distributed engine may solve some of the scala-
bility issues [3, 14], it opens up the problem of configur-
ing the system in an optimal way. Considering the number
of parameters involved and the variability of the workload,
having a system administrator in charge of manually moni-
toring and reconfiguring the system does not seem a feasible
solution.

1.2 Related Work

Decentralization of workflow process execution is an im-
portant area of research. Typically this is done to support
business processes across companies without having to use
a centralized entity [6]. This type of process decentraliza-
tion can lead to higher scalability but it also introduces sev-
eral problems on its own such as the lack of a global view
over the process. It also does not address the scalability
and reliability problems per se since the problem is simply
translated to each node that executes parts of the process.

To address the afore mentioned problem, tools have been
proposed (e.g., GOLIAT [9]) which use the expected char-
acteristics of the workload to make predictions about the
performance of a certain configuration of the engine. At
deployment time, this kind of tools help system administra-
tors to determine interactively on how many resources the
engine should be distributed in order to achieve the desired
level of performance. As an extension of this approach, au-
tonomic computing [12] techniques can be used to replace
such manual (and static) configuration steps. In [15] an
approach to self-optimizing computer systems has been de-
veloped. The approach uses an online control algorithm
which relies on workload prediction to optimally reconfig-
ure a Web Server with respect to QoS goals over a limited
time horizon. The problem of adaptively replicating func-
tionality to achieve higher throughput has also been identi-
fied by the database community (e.g. [10, 27]): unbounded
replication of functionality can lead to performance losses.
The challenge therefore is to replicate distinct functional-
ity depending on the workload only when required. To the

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

best of our knowledge very little research has been pub-
lished towards applying autonomic computing principles in
the context of distributed workflow engines.

1.3 Contribution

Our goal is to add self-tuning and self-configuration ca-
pabilities to a distributed workflow engine so that it can dy-
namically determine its configuration automatically by tak-
ing into account measurements of its performance under the
actual (and unpredictable) workload. Furthermore, thanks
to the self-healing capabilities of the system, it is not re-
quired to allocate resources to the engine on a permanent
basis, as the autonomic controller can grow and shrink the
system dynamically using whatever resources are available
at the moment. The system has been implemented as an ex-
tension to the JOpera engine [20]. JOpera is a Java based
service composition tool that combines a workflow engine
with an open architecture to provide support for Web ser-
vice composition, Grid computing and specialized work-
flow engines [22]. With the extensions described in this
paper, JOpera can be initially deployed as a centralized en-
gine and gradually evolve to a distributed engine as the load
increases. Similarly, it can revert to a centralized config-
uration once the load decreases. This is possible thanks to
the flexible architecture we propose: components can be de-
ployed on a different node of a cluster and controlled inde-
pendently. Furthermore, key system modules (e.g., the ones
responsible for process navigation and task invocation) can
be replicated to handle large workloads. Other components
(e.g., the autonomic controller itself) can be paired with a
backup to achieve fault tolerance. An important additional
feature we propose in this paper is that the autonomic con-
troller can be configured by selecting different reconfigura-
tion strategies at a high level of abstraction. Each strategy
defines the information to be collected while monitoring the
system, the set of available reconfiguration actions and how
they should be applied to adjust the system’s configuration.
This allows JOpera to react dynamically to load changes
rather than using static analysis to reach an optimal config-
uration [9].

With this, the key contributions of the paper include: (1)
the novel system architecture, which is generic and can be
adopted by many engines operating under different models
and languages (e.g., BPEL [13], XL [7]); (2) the resulting
scalability and fault tolerance, which make JOpera flexible
enough to support the very large loads present in compu-
tational applications and large scale Web service compo-
sition; (3) the independence of the underlying workflow
model, which make JOpera easily extensible to support
many different kinds of services [21], thereby becoming an
ideal vehicle for building service oriented middleware plat-
forms.

The remainder of the paper is organized as follows.
In Section 2 we discuss the requirements for the design
of an autonomic workflow engine. In Section 3 we out-
line the architecture of the system and show how it fulfills
the requirements of self-configuration, self-tuning and self-
healing (Section 4). In Section 5 we present an extensive
performance evaluation. We conclude in Section 6.

2 System Background

In this section we describe the potential self-
management capabilities of an autonomic workflow
engine. We also describe the type of processes and
deployment environments we are targeting.

2.1 Requirements

To support autonomic behavior, the workflow execution
engine must feature self-configuration, self-tuning and self-
healing capabilities.

Self-configuration entails switching the system’s config-
uration on the fly without manual intervention and, most
importantly, without disrupting the system. This requires
the workflow execution engine to provide mechanisms to
expose the state of its configuration as well as to support
means to dynamically and efficiently change the configura-
tion.

The self-tuning capabilities should ensure that system
reconfiguration leads to a configuration which is optimal
given the current workload. In order to enable self-tuning
capabilities the workflow engine must give access to its in-
ternal state such that control algorithms can analyze current
and past performance information in order to plan config-
uration changes in response to the current workload. Our
assumption is that the characteristics of the workload affect
the system’s performance and that the self-tuning algorithm
can optimally adapt the system to the workload by monitor-
ing key performance indicators.

Finally, the system also needs to provide self-healing ca-
pabilities [25]. This means that it should be able to detect
configuration changes due to external events, such as fail-
ures of nodes. If a discrepancy between the model of the
configuration and the actual configuration is detected, the
self-healing functionality should perform the necessary re-
covery actions. From this, we identify the requirement to
support mechanisms for detecting failures and configuration
changes of the cluster and to query the workflow execution
state in order to determine how the running processes have
been affected.

2

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

2.2 Workload Assumptions

The workload is assumed to be a collection of concur-
rent workflow processes. In general, users may define an
arbitrary process and initiate its execution at any time. In
our evaluation we focus on a worst case scenario where
many processes are submitted for execution simultaneously.
However, neither the size nor the structure of the processes
is taken into account when designing the self-tuning algo-
rithm, which should be able to deal with the execution of
any process that can be normally submitted to the engine.

Furthermore, in this paper we do not deal with work-
load prediction issues. Our autonomic engine is purely re-
active in that it observes the current load and reacts to it. A
pro-active system would try to anticipate workload changes
before they occur [23]. Since JOpera collects a detailed his-
tory of past executions, a data mining algorithm could an-
alyze it and use it to predict future workflow arrival times.
We will pursue that option as part of future work.

2.3 Deployment Environment

We assume that JOpera runs on a dedicated cluster of
computers and can use these resources exclusively. With
this assumption, the main goal of the autonomic features is
to ensure the optimal configuration of the cluster. This re-
quires both efficient resource utilization as well as a good al-
location of the available nodes to the different system com-
ponents. The assumption of a dedicated cluster does not
imply that the cluster configuration is static. Clearly, the
pool of nodes assigned to the engine can change over time
and, as in every cluster-based system, nodes may fail. In
practice, the system could be extended to use shared nodes
that are also used for other purposes. However, this is a re-
source management problem orthogonal to the autonomic
issues we want to explore in this paper.

3 System Architecture

In this section we describe the main features of JOpera’s
architecture that are used to implement autonomic behavior
(JOpera is publicly available [20]).

3.1 Workflow Execution

Workflow processes (or workflows) model the interac-
tions between different tasks by defining the data flow and
control flow between them. The data flow defines data ex-
changes between tasks whereas the control flow constrains
the order of task invocations [8].

The execution of a process begins with a request sent
through the corresponding API of the engine. Processes
can be started by users or invoked from other processes.

Navigators
(Process

Execution)

Workflow Engine API

Task
Space

Tuple
Space

Event
Space

Process
Space

Process
Execution

State

Performance
Information

Legend

Dispatchers
(Task

Execution)

Thread

Figure 1. Logical architecture of the JOpera
distributed workflow execution engine

The engine API queues such requests into the process exe-
cution requests space (or process space). As shown in Fig-
ure 1, these requests are handled by the navigator, which 1)
creates a new workflow instance into the process execution
state space and 2) begins with the actual enactment of the
workflow. To do so, the navigator uses the current state of
the execution of a process to determine which tasks should
be invoked next based on the control and data flow depen-
dencies that are triggered by the completion of the previous
tasks. Once the navigator determines that a certain task is
ready to be invoked, the corresponding tuple is stored in the
task execution request space (or task space).

The invocation of the tasks is managed by the dispatcher
component. The name of this component is derived from its
function of executing tasks by dispatching messages to and
from the corresponding service providers. These include,
e.g., worklist handlers for tasks that should be carried out
by human operators, but also standard compliant Web ser-
vices, as well as many other kinds of services [21]. After
the execution of the task has been finished, the dispatcher
notifies the navigator through the event space. More pre-
cisely, the dispatcher packages the results of the invocation
into a task completion tuple, which is posted into the event
space. Such tuples are then consumed by the navigator in
order to update the state of the execution of the correspond-
ing process and carry on with its execution.

The main reason for separating the execution of the
workflows from the execution of their tasks lies in the ob-
servation that these operations have a different level of gran-
ularity. It is to be expected that the execution of task per-
formed by the dispatcher may last significantly longer than

3

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

the time taken by the navigator for scheduling it. With our
approach, the platform supports the parallel invocation of
multiple tasks belonging to the same process. Furthermore,
a slow task does not affect the execution of other processes
running concurrently because these two operations are han-
dled asynchronously by different threads. This is already an
important departure from existing workflow engines where
navigation and dispatching are serially executed by a single
thread.

3.2 Distributed Workflow Execution

Decoupling process navigation from task invocation en-
ables the system to scale along two orthogonal directions.
In case a large task invocation capacity is required, the dis-
patcher thread can be replicated across multiple nodes to
manage the concurrent invocation of multiple tasks. Like-
wise, if many processes have to be executed concurrently,
the navigator can also be replicated. The resulting pool of
navigator and dispatcher threads are loosely coupled by us-
ing tuple spaces as depicted in Figure 1. We have chosen to
use tuple spaces primarily for their persistent data storage
capabilities as well as for the simple API provided. This
way, navigators generate tuples containing task execution
requests which are consumed by the dispatchers. Similarly,
dispatchers send tuples back to the navigators to notify them
of the results of the invocations. Thus, it is possible to
scale the system to run on a cluster of computers, as naviga-
tors and dispatchers can be physically located on different
nodes. However, at most one thread (dispatcher or naviga-
tor) is running on a node at a given time.

Thanks to the flexibility provided by tuple spaces, it be-
comes feasible to dynamically reconfigure the system, as
the number of navigators and dispatchers can be increased
or decreased without having to stop the whole system. To
do so, the system offers a reconfiguration API that makes it
possible to control which thread is running on each node of
the cluster. Tuple spaces also offer a convenient mechanism
for instrumenting the system in order to gather performance
information that can be fed back into the self-tuning algo-
rithm of the autonomic controller.

3.3 Scalable Workflow Execution

Although tuple spaces offer good abstractions for decou-
pling and replicating the navigator and dispatcher threads,
they pose a potential scalability bottleneck [19]. To address
this problem, we use several layers of caching between
the tuple space and the threads producing and consuming
tuples. As this optimization affects the self-configuration
mechanisms, in this section we describe it in more detail.

Instead of running only one tuple space server on a dedi-
cated node, the distributed workflow engine replicates such

Workflow
Engine
Thread

Workflow
Engine
Thread

Prefetch

Flush

Take

Write

Cluster Node Cluster Node

Cluster Node

Global
Tuple
Space

Local
Tuple
Space

Local
Tuple
Space

Local
Memory
Cache

Local
Memory
Cache

Figure 2. Layers of caching between each
thread and the global tuple space

tuple space server on each node of the cluster. One of the
replicas is then configured to act as the global space, while
all of the others are considered to be local with respect to
the thread that is running on a particular node (Figure 2).

When a tuple is written by a thread, its destination is
chosen in order to place it as closely as possible to the con-
sumer. Thus, if a navigator posts an event to itself (e.g.,
when a workflow calls another workflow), the correspond-
ing tuple is written in the local memory cache. However, if a
dispatcher should notify a navigator of a completed task ex-
ecution, the dispatcher will write a tuple in the space which
is nearest to the receiving navigator, i.e., its local one. In all
other cases the tuple is written in the global space. With the
added complexity of maintaining a routing table which de-
fines in which space the tuples should be written into, these
optimizations help to reduce the load on the global tuple
space [22].

This routing table is also used when reading tuples. In
order to increase the throughput of the threads, each thread
pre-fetches into its memory cache all relevant tuples, which
are located both in the local and global spaces. This way,
the tuples are immediately available when a thread is ready
to take one.

The routing table contains a mapping between the ID of
a process instance and the address of the node on which the
navigator thread executing this process instance is located.
This mapping is created when a navigator thread first be-
gins running a particular process and is removed when the
process is finished. However, if a system reconfiguration
occurs and a navigator thread should be stopped, such map-
ping is also temporarily removed so that tuples are routed
to the global space until the process execution is migrated
to a different node. Also in this case, all cached tuples are
flushed to the global space.

4

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

4 Autonomic Capabilities

In this section we describe the design of the autonomic
controller of the workflow engine. Figure 3 shows its
main components (self-tuning, self-configuration, and self-
healing) and the interactions between them.

4.1 Self-Tuning

The self-tuning component is responsible for determin-
ing whether the current system configuration is optimal. In
case an imbalance is detected and a change of configuration
is needed, the self-tuning component submits a reconfigura-
tion plan to the self-configuration component. To do so, the
self-tuning component acts upon three different strategies.
The information strategy describes which performance in-
dicators should be monitored in order to enhance the over-
all performance of the system. The optimization strategy
defines how to achieve an optimal configuration, i.e., an
optimal partitioning of the cluster between navigator and
dispatcher threads. The selection strategy describes how to
map the reconfiguration decision onto the cluster.

4.1.1 Information Strategy

By considering the architecture of the workflow engine
(Figure 1), there are several points that can be instrumented
to provide performance indicators. For example, since
the navigator and dispatcher threads communicate asyn-
chronously through tuple spaces, it is possible to sample
the current space size in order to detect whether the system
is balanced. In case the size of the space grows, it is likely
that there are not enough consumers processing its tuples
and too many producers of tuples. Conversely, if the size of
a space decreases, there may be too many consumers (or too
few producers). The information strategy therefore defines
that the variation in the size of the tuple spaces of tasks and
processes should be monitored to detect imbalances in the
system’s configuration.

4.1.2 Optimization Strategy

The goal of the optimization strategy is to establish a con-
figuration such that the number of navigator and dispatcher
threads is balanced. Since navigator threads produce task
invocation requests and dispatcher threads consume them,
the task tuple space is solely influenced by the internal sys-
tem’s configuration defined in terms of the number of dis-
patchers and navigators. This does not hold for the process
tuple space where processes are submitted by the API and is
therefore subject to external influences which are indepen-
dent of the configuration of the system.

The optimization strategy thus defines that the number
of dispatcher threads needs to be increased when the rate

of growth of the task space exceeds a certain threshold.
Similarly, if the size of the process space increases, addi-
tional navigator threads should be started in order to exe-
cute the newly started processes. Given the limited number
of available resources, the optimization strategy must deter-
mine how many nodes should be allocated to run navigators
and how many should run dispatchers threads. Therefore, in
case there are no idle nodes left, a navigator (or dispatcher)
thread needs to be stopped in order to free a node for start-
ing a dispatcher (or navigator). Stopping a navigator im-
plies less task production capacity and starting a dispatcher
means more task consumption capacity. Thus, switching
from a navigator to a dispatcher thread effectively reduces
the growth of the task space. Conversely, if all navigators
are busy handling task completion notifications, the size of
the process space will grow and additional navigators are
required to execute the newly started processes.

4.1.3 Selection Strategy

Once the optimization strategy has determined the new con-
figuration of the system, the selection strategy compares the
new configuration with the current one in order to establish
what nodes and threads should be affected by the planned
configuration change.

Arriving at a concrete configuration that is to be sub-
mitted to the self-configuration component from an abstract
configuration plan is done by prioritizing nodes according
to how well suited they are for a configuration change. If
there are idle nodes available and threads need to be started,
the idle ones get the highest priority and are selected for the
configuration change. Similarly, if there are more threads
than necessary, idle threads should be the ones stopped.
However, if all threads are busy and there are no more idle
nodes, some need to be selected in order to apply the con-
figuration change. For example, if an additional navigator
thread needs to be started, a dispatcher thread will have to
be stopped and vice versa.

Stopping non-idle threads may be expensive and the se-
lection strategy therefore needs to take this reconfigura-
tion cost into account when deciding which thread should
be stopped. The simplest selection strategy chooses the
threads randomly, regardless of the resulting rescheduling
overhead. However, we also experimented with a smart se-
lection strategy that chooses threads with the goal of mini-
mizing the overhead caused by rescheduled tasks and pro-
cesses. In this case, threads are further prioritized by the
number of tasks (or processes) that they are currently exe-
cuting. With this heuristic, threads which are running many
processes (or many tasks) are less likely to be interrupted,
thus less work will have to be migrated to a different node.

5

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Distributed
Workflow
Engine

Self
Tuning

Self
Configuration

performance information

plan

change

actual
configuration

recover

refresh

Self
Healing

Configuration
Information

Figure 3. Interaction between the compo-
nents of the autonomic controller

4.2 Self-Configuration

As outlined in the previous section, the self-tuning com-
ponent suggests a new, optimal configuration for the cluster.
It is up to the self-configuration component to execute the
actual reconfiguration of the cluster. For this purpose the
self-configuration component captures the current configu-
ration of the cluster and applies changes to it. Implementing
the new configuration requires time and the result may not
be available immediately.

In order to execute the reconfiguration plan, the self-
configuration component uses a closed feedback-loop con-
troller that takes as input the suggested configuration of the
self-tuning component as well as the current configuration,
as it is reported by the self-healing component. As threads
are being stopped (or started) on remote nodes, this com-
ponent periodically checks the progress of these reconfig-
uration actions and ensures that the new configuration is
reached. If, in the meantime, the self-tuning component has
suggested another reconfiguration plan, the execution of the
current one will be interrupted.

4.2.1 Reconfiguration Actions

The self-configuration component can alter the configura-
tion in the following ways:
Starting Threads: In order to start a thread on a particu-
lar node, the JOpera API first needs to be started. The API
waits for start and stop commands sent to it. Starting dis-
patcher and navigator threads can be done as long as the
node is idle. The self-configuration component only needs
to issue the start command on the node and the according
thread will start working immediately.
Stopping Navigator Threads: Stopping a navigator thread
entails migrating the state of the processes the navigator
thread is working on and redirecting associated events. Mi-

grating the state of a process is done by flushing the locally
cached state into the global tuple space so that a next navi-
gator can pick it up and resume working on it. All cached
events which the navigator has not yet processed will also
be transferred into the global tuple space. Furthermore,
events that may be triggered by dispatcher threads execut-
ing task invocations that belong to a process that is about to
be migrated, are redirected to the global event tuple space.
Stopping Dispatcher Threads: In contrast to stopping nav-
igators, stopping a dispatcher thread is more difficult. Dis-
patcher threads are executing tasks that may involve the in-
vocation of a local application or the interaction with a re-
mote service provider on the Web. In some cases, it may
not be possible to transparently interrupt such executions.
Processes can contain metadata that define whether a task is
repeatable, which can be used under these circumstances to
choose the appropriate method.

More concretely, we take this into account by provid-
ing different methods of stopping a dispatcher thread. The
kill method immediately stops all active task executions
in progress on a particular dispatcher thread and ensures
that all task invocations will be repeated on a different dis-
patcher thread by placing the corresponding tuple back in
the task space. Repeating all tasks which have been execut-
ing introduces some overhead as the process execution is
delayed. Clearly, this method can only be applied to repeat-
able or resumable tasks which are more likely to be found
in scientific computing applications.

The stop method immediately ceases to take tuples from
the task space. As a consequence, no new tasks will be
started, but the dispatcher will wait for all task executions
to finish before stopping. This method has the disadvantage
that – as long as all tasks have not finished their execution –
the node is not immediately available for starting a different
thread. A dispatcher thread executing tasks which both re-
quire stop semantic and allow kill semantic, may only be
interrupted using the stop method. The engine therefore
schedules tasks with kill semantics on specific dispatcher
threads which can then be stopped immediately allowing
faster reconfiguration of the system.

4.3 Self-Healing

The task of the self-healing component is to ensure that
the workflow engine remains in a consistent state in spite
of external events affecting its configuration. To do so, the
component periodically monitors the nodes of the cluster,
checks their availability and compares their state with the
information stored in the configuration space. In addition to
this pull strategy, we also keep the configuration informa-
tion up-to-date by having the newly started threads register
with the configuration state autonomously. A failure is thus
detected as a mismatch between the known configuration

6

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

and the actual configuration of the cluster. If a failure oc-
curs, the component ensures that the affected processes and
tasks are correctly recovered by the rest of the workflow
engine. More precisely, failures are handled differently, de-
pending on what kind of thread has failed.

Handling Dispatcher Thread Failures: In case a dispatcher
fails, the tasks that were managed by it are lost and have to
be restarted. The self-healing component queries the state
of the execution of the process to determine which were the
tasks currently assigned to the failed thread. These tasks are
automatically restarted by resubmitting the corresponding
task into the task execution request space. This recovery
procedure is very similar to the one carried out when the
self-configuration component kills a dispatcher in order to
reconfigure the system. Also in that case, some tasks may
have to be re-executed.

Handling Navigator Thread Failures: Should a navigator
thread fail, the state of the execution of the process is still
available in the global process execution state space because
the navigators perform work only on a cached copy of the
state. The self-healing component can recover the processes
by simply removing their entries in the tuple routing table
which point to the failed navigator. This way, all pending
events can be routed through the global space until another
navigator becomes available to process them.

5 System evaluation

The goal of the system evaluation is to analyze the auto-
nomic capabilities of the workflow engine. In particular, we
want to explore how the system adapts to different workload
conditions automatically and how it reacts to failures. In the
first part we study how, given a workload as described in
Section 2.2, the autonomic controller reconfigures the sys-
tem optimally by using the self-configuration as well as the
self-tuning component. Then we present an interesting self-
healing result where the engine not only recovers the exe-
cution of its tasks, but can also re-balance its configuration
to optimally use the nodes which remain available after a
failure.

5.1 Experimental Setup

For the experiments, JOpera has been deployed on a
cluster of up to 20 nodes. Each node is a 1.0GHz dual P-III,
with 1 GB of RAM, running Linux (Kernel version 2.4.22)
and Sun’s Java Development Kit version 1.4.2. One addi-
tional node was allocated to the global tuple space server,
running IBM’s T-Spaces v2.1.3 [11].

T
im

e
[s

]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Dispatchers

Number of Navigators

15 14 13 12 11 10 9 8 7 6 4 3 2 1 05

0

200

400

600

800

1000

1200

1400

1600

1800

0 seconds
20 seconds

Task Duration

Figure 4. Time required to execute two dif-
ferent workloads of 1000 processes using all
possible static configurations

5.2 Base line

In this section we motivate the need for an autonomic
controller by showing that the optimal configuration of the
engine is highly sensitive to the workload. Furthermore,
we use these results to validate the self-tuning component,
which should dynamically find the optimal configuration so
that the self-configuration component can correctly config-
ure the system.

JOpera can also be configured statically. In this case, the
number of dispatchers and navigators is fixed and no dy-
namic changes will be applied at runtime as the autonomic
controller is disabled. In order to determine the optimal
static configuration for a given workload, we have carried
out a series of experiments using different configurations in
order to determine the configuration which minimizes the
response time of the system. Figure 4 depicts the total ex-
ecution times of two different workloads: 1000 concurrent
processes containing 10 parallel tasks of duration of 0 sec-
onds (workload 0) and 1000 processes containing 10 paral-
lel tasks of duration of 20 seconds (workload 20). A total
of 15 nodes were used in the experiments and all possible
configurations starting with 14 navigators and 1 dispatcher
up to 14 dispatchers and 1 navigator were tested.

The results of experiments in Figure 4 and 5 clearly illus-
trate that the optimal configuration for the two workloads is
not the same. For workload 20, the optimal configuration is
the one using 9 dispatchers and 6 navigators while for work-
load 0 the best configuration is the one using 5 dispatchers
and 10 navigators. On the one hand, Figure 5 shows that –

7

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

S
p
e
e
d
u
p

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Dispatchers

Number of Navigators

15 14 13 12 11 10 9 8 7 6 4 3 2 1 05

0

1

2

3

4

5

6

0 seconds
20 seconds

Task Duration

Figure 5. Speedup relative to the slowest con-
figuration (D=1, N=14) of Figure 4 achieved
using all possible configurations

in the worst case – the penalty of a misconfigured system
is a factor of 5 in performance. On the other hand, if the
system is optimally configured to handle one workload, its
performance will suffer when it is subjected to a different
one.

This is shown in Figure 6 (right two columns), where we
take both of the optimal configurations and use them to run
a combined workload of two peaks separated by 120 sec-
onds, the first consisting of workload 0 and the second of
workload 20. With the configuration optimal for running
workload 0, the time is 826 seconds, while the other config-
uration is faster with only 758 seconds.

5.3 Autonomic Behavior

Figure 7 shows the behavior of the system as it auto-
matically adapts its configuration to different workloads.
We first describe the trace of one experiment, obtained by
sampling various performance indicators and logging their
values at regular intervals (every second). Then, we com-
pare different selection strategies combined with a differ-
ent choice of reconfiguration actions to determine the cor-
responding reconfiguration overheads.

5.3.1 Self-Configuration

Figure 7a shows the size of the process execution requests
tuple space over time. This gives a good overview of the
rate at which processes are queued to be started (the curve

691 701
717 724

758

826

500

600

700

800

900

1000

Autonomic Static

Navigator

Dispatcher

Selection
Strategy

Stopping
Action

smart

kill

random

kill

smart random

stop

10

59

6

stop

Figure 6. Comparison of the execution time
when using different strategies to run the
combined workloads

grows) and instantiated and executed by navigators (the
curve drops). It also directly reflects the workload which
is applied to the system, which – in this experiment – con-
sists of two peaks with varying characteristics.

The first peak occurring at t=0 consists of 1000 processes
which execute 10 parallel tasks having a duration of 0 sec-
onds. The characteristic of the processes requires more nav-
igators than dispatchers to be started: since the tasks can be
executed in virtually no time, the dispatchers can execute
many tasks in a given period of time. As the dispatchers can
handle a lot of tasks, there is a need for a significant num-
ber of navigators handling their completion notifications as
well as issuing new ones.

As can be seen in Figure 7c, the controller configures the
system accordingly by allocating only up to 5 dispatchers,
while using the rest of the nodes to run navigators. This
configuration will change as the second peak hits the sys-
tem at t=120s when the number of processes that still wait
to be executed is already declining. As can be seen in Figure
7a, in response to this peak, the number of process execu-
tion requests waiting in the tuple space grows as the new
processes are fed into the system.

As these processes begin their execution, the size of the
task tuple space also starts to increase as a result (Figure
7b). This can be explained by the different characteristics
of the second peak. Although it still comprises of 1000
processes, executing 10 parallel tasks, the task duration has
now been set to 20 seconds. Thus, more dispatchers are re-
quired, as tasks now take longer to run. Between t=150 and
t=200, the controller attempts to balance a system which
lags behind both in the execution of processes (at t=200, the
number of waiting processes peaks at almost 1000) and in

8

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800

0
20
40
60
80

100
120
140
160

0 100 200 300 400 500 600 700 800

a)

b)

c)

d)

T
u

p
le

S
p

a
c
e

S
iz

e
T

u
p

le
S

p
a

c
e

S
iz

e
N

o
d

e
s

T
u

p
le

s

0
20
40
60
80

100
120
140
160

0 100 200 300 400 500 600 700 800

Time [s]

T
u

p
le

s

e)

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800

Navigators
Dispatchers
Idle Nodes

Processes

Tasks

Tasks restarted
Processes migrated

Figure 7. Autonomic Controller reconfiguring
the system as workload changes

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400 450

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300 350 400 450

Tasks restarted
Processes migrated

d)

c)

b)

a)

T
u
p
le

S
p
a
c
e

S
iz

e
T

u
p
le

S
p
a
c
e

S
iz

e
N

o
d
e
s

T
u
p
le

s

Time [s]

0
20
40
60
80

100
120
140
160

0 50 100 150 200 250 300 350 400 450

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450

Navigators
Dispatchers
Idle Nodes

Processes

Tasks

Figure 8. Autonomic Controller healing the
system as nodes are added and removed

9

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

the execution of tasks. Thus, the configuration does
not change significantly. Once all processes have been
queued, Figure 7c shows that actual reconfiguration starts
after t=200. More precisely, the self-tuning algorithm de-
tects the imbalance and begins to steadily increase the num-
ber of nodes allocated to the dispatcher threads, while re-
ducing the number of navigator threads. The configuration
eventually stabilizes after t=400s. The system is balanced
again, as Figure 7b shows: the number of tasks remains
stable (4000) indicating that the number of consumers (the
dispatchers) is balanced with the number of producers (the
navigators).

At t=521, all processes have been started and thereby all
the contained tasks have been put into the task execution
request space. The number of tasks in the space steadily
decreases thereafter. At second 691 all tasks have been
executed and the controller stops the dispatchers as they
become idle. Shortly afterward, the number of navigators
reaches zero, because the self-configuration component also
stops these threads as they become idle.

5.3.2 Reconfiguration Overhead

Figure 7d shows the reconfiguration overhead. Whenever
a navigator is stopped, the cached state of its processes is
transferred into a global tuple space waiting for a next nav-
igator to pick it up. More significant is the overhead intro-
duced by stopping dispatchers. If a dispatcher is stopped,
all tasks it has been executing are stopped and need to be
repeated leading to a delay in the overall execution of their
process.

In this experiment, we compare different selection strate-
gies for choosing which thread running on what node should
be stopped. The goal is to determine which strategy mini-
mizes the reconfiguration overhead. First of all, we logged
the number of tasks and processes that were rescheduled
and migrated as the corresponding thread was stopped.
From this, it can be seen that the random selection strat-
egy (Figure 7e) appears to reschedule more tasks and mi-
grate more processes than the smart selection strategy (Fig-
ure 7d). When running the same workload, the number of
reconfiguration actions is approximately the same, but the
height of the peaks is much lower, as the smart selection
strategy chooses the nodes with the least amount of work to
be repeated. This leads to an decrease of the overall execu-
tion time of 10.6 seconds (Figure 6).

In this figure we also combine the selection strategies
with a different choice of reconfiguration actions (kill vs.
stop). As the results indicate, the dominant factor regarding
execution time is the reconfiguration action. Both selection
strategies perform better by using the kill method instead of
the stop method for stopping dispatcher threads. The reason
for this is that when using the stop method, reconfiguration

does not happen immediately. Instead, the dispatcher must
wait until the longest task has been executed. In case of
our experiments with tasks lasting up to 20 seconds, in the
worst case reconfiguration was delayed by 20 seconds.

5.4 Self-Healing

The goal of the self-healing experiment is to demonstrate
the ability of the system to react to external changes affect-
ing the configuration of the cluster. In this experiment the
system is initially configured to use 15 nodes. Then, in or-
der to replace 5 of the nodes assigned to it, 5 additional
nodes are added and a bit later a different group of 5 nodes
is removed. Towards the end of the experiment, the newly
added nodes fail.

This time the workload consists of four peaks of 500 pro-
cesses occurring every 100 seconds. Each of the processes
consist of 10 parallel tasks of 10 seconds duration. Start-
ing with 15 nodes, the cluster has been grown to 20 nodes
at t=90 and has then been reduced by 5 nodes at t=140 and
again by 5 nodes at t=230. When the cluster grows by 5
nodes at t=90, the system instantly uses the additionally
available nodes by increasing both the number of dispatcher
as well as the number of navigator threads. The increase
of the number of dispatchers leads to a the task space be-
ing empty temporarily at t=100 as can be seen in Figure
8b. The task space is filled again soon because the process
space starts to grow when the second peak of the workload
is fed into the system.

At t=140 5 nodes running dispatchers are removed from
the cluster. Because there is still the same number of navi-
gators producing tasks but a smaller number of dispatchers
consuming them, the task space starts to accumulate tuples
at t=150 due to this imbalance. The system subsequently
adapts to this situation by stopping navigators and start-
ing dispatchers again between t=155 and t=170 as can be
seen in Figure 8c. The growth of the task space slows down
shortly after the system has readjusted the configuration.

Figure 8d illustrates the recovery actions performed by
the self-healing component: at t=140 five dispatchers are
stopped and therefore the tasks that were currently running
are automatically rescheduled. Navigators were stopped
when the system adapts to the new conditions and their pro-
cesses were rescheduled shortly after t=150.

The third configuration change at t=230 also involves
the loss of 5 dispatchers. The system reacts consistently.
Reducing the dispatchers while leaving the number of nav-
igators leads to a growth of the task space which in turn
triggers a reconfiguration. The system will subsequently re-
duce the number of navigators and increase the number of
dispatchers. This change in configuration will again con-
tain the growth of the task space. The change of the config-
uration can again be observed in Figure 8d where after the

10

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

degradation by 5 dispatchers tasks are rescheduled at t=230.
At t=250 processes are rescheduled due to the configuration
change which entails stopping navigators and starting dis-
patchers.

The different configurations are also reflected in Figure
8d: because the number of navigators changes, the slope of
the process space also changes. When for instance compar-
ing the number of navigators between t=40–100, t=130–210
and t=260–320, one can observe that the slope of the pro-
cess space size curve becomes flatter. This is a result of the
number of navigators gradually being smaller.

Since there are no additional peaks occurring after sec-
ond 310 and the system will simply execute all processes
and tasks until both spaces are empty with a stable configu-
ration of 3 navigators and 7 dispatchers after t=450.

5.5 Discussion

Although it is not impossible to find an optimal static
configuration for a given workload, it is very difficult to as-
sess the workload a priori and configure the system accord-
ingly. In our first experiments we have been able to tune the
configurations in order to execute a given workload as opti-
mally as possible. But workloads with different character-
istics lead to different optimal configurations as can be seen
in Figure 5. And if a statically configured system executes
a workload with characteristics it has not been tuned for,
its performance degrades. To overcome this, either man-
ual reconfiguration or self-tuning plus self-configuration is
required.

As the results of the self-configuration experiment indi-
cate, the autonomic controller was able to adapt the con-
figuration of the workflow engine according to the vari-
able characteristics of the workload. By combining the
workloads of the base line experiments, the autonomic con-
troller shifted the system’s configuration between the opti-
mal static ones. This had an impact on the overall perfor-
mance, as the comparison between different versions of the
autonomic controller and the optimal static configurations
indicated (Figure 6). As expected, the smart selection strat-
egy outperformed the random selection strategy. With it, the
impact of a reconfiguration is minimized, as the least num-
ber of tasks have to be restarted when stopping a dispatcher.
Combining the smart selection strategy for stopping threads
with the kill reconfiguration action leads to the most signifi-
cant speedup compared to the static configurations. Overall,
for all combinations of a selection strategy with a stopping
action the autonomic engine performed better than a stati-
cally configured one.

The self-healing experiment reflects a common situation
in the lifetime of a cluster-based system, where nodes are
rotated as some of them may have to be taken off-line for
maintenance. With traditional systems, such intervention

would require to manually determine which parts of the en-
gine would be affected by the reconfiguration and manu-
ally stop the components running on the nodes to be re-
placed. As we have shown in the previous section, the auto-
nomic controller was able to immediately detect the newly
assigned nodes and could also transparently recover and op-
timally reconfigure the engine when some of the nodes were
taken off-line.

6 Conclusion

In this paper we have presented the design of an au-
tonomic workflow engine, demonstrated its self-managing
behavior and evaluated its performance. The engine runs
on a dedicated cluster of computers and can automatically
reconfigure itself based on the current workload by using
autonomic computing techniques. This is an important con-
tribution, as workflow management systems are being more
and more applied to domains that can be characterized by
the unpredictability of their workloads, such as – for in-
stance – process-based orchestration of Web services. In
the past, distribution has been applied to the design of many
workflow engines in order to improve their scalability and
reliability. However, very little attention has been paid to
the need for properly configuring such distributed systems.
This, in practice, remains a difficult, error-prone, manual,
and time-consuming operation, especially when deploying
the system to face an unpredictable workload. In this pa-
per we have shown how to apply the autonomic computing
paradigm to greatly simplify the deployment and the main-
tenance of such systems. As our experiments indicate the
autonomic controller of JOpera can adapt the system con-
figuration optimally to unforeseeable, changing workload
characteristics. The system furthermore takes failures into
account and adapts the system’s configuration accordingly.
Although the results presented in this paper were obtained
with relatively homogeneous workloads, we will explore
the effects of workloads with more complex characteristics
as part of future work as the system is deployed in realistic
production settings.

Acknowledgements

The authors would like to acknowledge Win Bausch and
his pioneering work with the OPERA-G autonomic micro-
kernel.

References

[1] G. Alonso, W. Bausch, C. Pautasso, M. Hallett, and
A. Kahn. Dependable Computing in Virtual Laboratories. In
Proceedings of the 17th International Conference on Data

11

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Engineering (ICDE2001), pages 235–242, Heidelberg, Ger-
many, 2001.

[2] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludaescher,
and S. M. and. Kepler: An Extensible System for De-
sign and Execution of Scientific Workflows. In Proceed-
ings of the 16th Intl. Conference on Scientific and Statistical
Database Management (SSDBM), Santorini Island, Greece,
June 2004.

[3] T. Bauer and P. Dadam. A Distributed Execution Environ-
ment for Large-Scale Workflow Management Systems with
Subnets and Server Migration. In Proceedings of the 2nd IF-
CIS International Conference on Cooperative Information
Systems (CoopIS’97), pages 99–108, Kiawah Island, South
Carolina, USA, 1997.

[4] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. GridFlow:
Workflow Management for Grid Computing. In Proceedings
of the 3rd IEEE/ACM International Symposium on Clus-
ter Computing and the Grid (CCGrid03), pages 198–205,
Tokyo, Japan, 2003.

[5] F. Casati and M.-C. Shan. Dynamic and Adaptive composi-
tion of e-services. Information Systems, 26:143–163, 2001.

[6] G. Chafle, S. Chandra, V. Mann, and M. G. Nanda. De-
centralized Orchestration of Composite Web Services. In
Proceedings of the 13th World Wide Web Conference, pages
134–143, New York, NY, USA, 2004.

[7] D. Florescu, A. Gruenhagen, and D. Kossmann. XL: A Plat-
form for Web services. In Proceedings of the 1st Biennial
Conference on Innovative Data Systems Research (CIDR
2003), Asilomar, CA, USA, 2003.

[8] D. Georgakopoulos, M. F. Hornick, and A. P. Sheth. An
Overview of Workflow Management: From Process Mod-
elling to Workflow Automation Infrastructure. Distributed
and Parallel Databases, 3(2):119–153, April 1995.

[9] M. Gillmann, W. Wonner, and G. Weikum. Workflow Man-
agement with Service Quality Guarantees. In Proceedings
of the ACM SIGMOD Conference, pages 228–239, Madi-
son, Wisconsin, 2002.

[10] S. Harizopoulos and A. Ailamaki. A Case for Staged
Database Systems. In Proceedings of the 2003 CIDR Con-
ference, Asilomar, CA, 2003.

[11] IBM. TSpaces. http://www.almaden.ibm.com/
cs/Tspaces/.

[12] IBM. Autonomic Computing: Special Issue. IBM Systems
Journal, 42(1), 2003.

[13] IBM, Microsoft, and BEA Systems. Business Process Exe-
cution Language for Web services (BPEL4WS) 1.0, August
2002. http://www.ibm.com/developerworks/
library/ws-bpel.

[14] L. jie Jin, F. Casati, M. Sayal, and M.-C. Shan. Load Bal-
ancing in Distributed Workflow Management System. In
G. Lamont, editor, Proceedings of the ACM Symposium on
Applied Computing, pages 522–530, Las Vegas, USA, 2001.

[15] N. Kandasamy, S. Abdelwahed, and J. P. Hayes. Self-
Optimization in Computer Systems via Online Control: Ap-
plication to Power Management. In Proceedings of the 1nd
International Conference on Autonomic Computing (ICAC
’04), New York, NY, 2005.

[16] F. Leymann, D. Roller, and M.-T. Schmidt. Web services
and business process management. IBM Systems Journal,
41(2):198–211, 2002.

[17] R. McClatchey, J.-M. L. Goff, N. Baker, W. Harris, and
Z. Kovacs. A Distributed Workflow and Product Data Man-
agement Application for the Construction of Large Scale
Scientific Apparatus. In Workflow Management Systems and
Interoperability, pages 18–34, 1997.

[18] J. Meidanis, G. Vossen, and M. Weske. Using Workflow
Management in DNA Sequencing. In Proceedings of the 1st
International Conference on Cooperative Information Sys-
tems (CoopIS96) Brussels, Belgium, June 1996.

[19] P. Obreiter and G. Graef. Towards scalability in tuple spaces.
In Proceedings of the 2002 ACM Symposium on Applied
Computing (SAC 2002), pages 344–350, Madrid, Spain,
March 2002.

[20] C. Pautasso. JOpera: Process Support for more than
Web services. http://www.iks.ethz.ch/jopera/
download.

[21] C. Pautasso and G. Alonso. From Web Service Compo-
sition to Megaprogramming. In Proceedings of the 5th
VLDB Workshop on Technologies for E-Services (TES-04),
Toronto, Canada, August 2004.

[22] C. Pautasso and G. Alonso. JOpera: a Toolkit for Efficient
Visual Composition of Web Services. International Jour-
nal of Electronic Commerce (IJEC), 9(2):104–141, Winter
2004/2005.

[23] L. W. Russell, S. P. Morgan, and E. G. Chron. Clockwork: A
new movement in autonomic systems. IBM Systems Journal,
42(1):77–84, January 2003.

[24] A. Schmidt, T. Sindt, M. Tepegoez, and G. Joeris. FlowTEC
- An Information System Supporting Virtual Enterprises. In
Proceedings of the 2nd International Conference on Con-
current Multidisciplinary Engineering (CME’99), Bremen,
1999.

[25] M. Shaw. ”Self-Healing”: Softening Precision to Avoid
Brittleness. In Proceedings of the first Workshop on Self-
Healing Systems (WOSS’02), pages 111–114, Charleston,
South Carolina, November 2002.

[26] W. M. P. van der Aalst. Process-oriented architectures for
electronic commerce and interorganizational workflow. In-
formation Systems, 24(8):639–671, December 1999.

[27] G. Weikum, A. Moenkeberg, C. Hasse, and P. Zabback.
Self-tuning Database Technology and Information Services:
from Wishful Thinking to Viable Engineering. In Proceed-
ings of the 8th International Conference on Very Large Data
Bases, Hong Kong, China, 2002.

12

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

