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ABSTRACT 
One of the most challenging tasks for the database administrator is 

to physically design the database to attain optimal performance 

for a given workload. Physical design is hard because it requires 

the selection of an optimal set of design features from a vast 

search space. There have been many commercial tools available to 

automatically suggest the physical design, for a given a set of 

queries. These tools are, however, based on greedy heuristic 

pruning, which reduces their usefulness. Furthermore, they are not 

interactive, as the APIs to simulate the indexes and tables are 

product specific and hidden from the database administrators. 

Finally, all these tools are built specifically for commercial 

systems and there is lack of automated physical designers for open 

source DBMSs. In this demonstration we introduce –PARINDA - 

an interactive physical designer for an open source DBMS. Given 

a workload containing a set of queries, this tool allows the DBA 

to efficiently simulate various physical design features and get 

immediate feedback on their effectiveness. It also incorporates 

recent advances in non-greedy physical design techniques to 

provide close to optimal suggestions. Although it has been 

prototyped for several different DBMSs, we demonstrate the 

usefulness and efficiency of the tool while running on the open 

source DBMS—PostgreSQL--using large real-world scientific 

datasets and query workloads. 

1. INTRODUCTION 
Physical design of databases seeks to optimize the performance of 

the database by adding design features, such as horizontal and 

vertical partitions, indexes, or materialized views, in order to 

speed up the queries in the workload. Without support from the 

DBMS, the only way a database administrator (DBA) can decide 

on the optimal physical design structures is to build them 

manually, and then estimate the query execution time for 

combinations of the design features. This task is both cumbersome 

and expensive, as building design features, such as indexes takes a 

considerable amount of time and planning. Therefore, automating 

the physical design selection is crucial. 

Researchers have proposed several automated physical design 

techniques for commercial DBMSs [8][11][12]. They all scale 

using greedy heuristics to prune away the search space. The 

greedy pruning makes the tools feasible, but reduces their 

usefulness by pruning away many useful candidates. They also do 

not allow the DBA to experiment with the design features without 

actually building them. Finally, there has been no such designer 

tool for an open source DBMS. Even though the cost of the 

DBMS is a major factor in deciding for an open source DBMS, 

the lack of such automated tools makes the operation of  an open 

source DBMS more expensive than a commercial system. 

In this demonstration, we introduce a new automated physical 

design tool – PARINDA (PARtition and INDex Advisor) - for an 

open source DBMS. Given a database and a set of queries, the 

tool does not prune away the candidate space greedily. Hence, it 

searches through all useful candidate features before suggesting 

the optimal set of features. It allows the DBA to interactively 

estimate the benefit of new physical design features by simulating 

the design features efficiently. Finally, it automatically rewrites 

the queries to get the full benefit of the suggested design features. 

In this demonstration, we use PostgreSQL as the underlying 

DBMS for PARINDA. We do so because compared to other open 

source DBMS, PostgreSQL has a mature cost-based optimizer. 

PARINDA first modifies the optimizer to enable what-if physical 

design features. These features are not actually built on the disk. 

They are simulated by creating statistics in the DBMS catalog. 

Since the query optimizer primarily deals with statistics, it cannot 

differentiate between the real design features and the what-if ones. 

Therefore, these what-if structures allow the DBA to estimate the 

benefit they would get if the structures were actually present in 

the database. Simulating the structures makes the operations 

orders of magnitude faster and allows the DBA to explore a larger 

solution space interactively. 

Even with the what-if design features, the search space is too large 

for the DBA to manually find the optimal set of features. Solving 

the automated physical design problem is computationally hard 

[9] as well. We implement two practical state-of-the-art search 

techniques to search for the optimal set of features, which use 

efficient heuristics to search for close to optimal design features. 

To search for the optimal set of partitions, we use the AutoPart 

technique [7] and to find the optimal set of indexes we use the ILP 

technique [10]. Using these techniques on analytical queries, we 

achieve speedups ranging from 2x to 10x. 

Demonstration Structure: This demonstration presents a new 

tool which extends PostgreSQL by adding automatic physical 

design features. Because scientific data sets are usually very big 

and involve complex queries, we demonstrate the effectiveness of 

the tool using a real-world SDSS [1] dataset and query workload. 

We demonstrate three physical design scenarios. In the first 

scenario, the DBA manually selects the combination of design 

features and the tool determines the benefit of using the 

combination. The second one finds the optimal partitions for a 
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given query workload. And the last one automatically finds the 

optimal indexes for the workload. 

Organization: The rest of the paper is organized as follows: 

Section 2 discusses related work. We describe the overall system 

architecture and the interaction of various components in Section 

3. Section 4 discusses the demonstration scenarios in detail and 

we conclude in Section 5. 

2. RELATED WORK 
Researchers have proposed many techniques for automated 

physical design for the last three decades. Due to space restriction, 

we list only the recent commercial automated physical design 

tools, such as  Data Tuning Advisor (DTA) for SQL Server [8], 

Design Advisor for DB2 [11], and  SQL Access Advisor for 

Oracle [12]. All these tools use what-if design features, which 

were first proposed by Finkelstein et al. [2]. Design Advisor also 

provides a set of candidate design features, given a set of queries. 

SQL Access Advisor also contains a SQL tuning technique, which 

changes the SQL to make it perform better on the database. All 

these commercial tools are based on greedy heuristics, and do not 

allow the DBA to directly simulate the design features. 

The automated physical designers for open source DBMSs are 

relatively new compared the commercial ones. Recently Thiem et 

al. proposed an automated physical designer for the Ingres DBMS 

[5]. Their focus is more on integration of performance monitoring 

and tuning, instead of pure physical design. Also, their tool does 

not suggest partitions. Monterio et al. implement and design an 

index suggestion tool for PostgreSQL [3]. They, however, do not 

compute the size of the indexes accurately, and assume it to be 

zero. This severely affects the accuracy of the optimizer using 

their what-if indexes. Kao et al. propose changing the optimizer to 

store the optimizer access path decisions in a data structure and 

suggest the frequently requested access path [4]. This, however, 

requires drastic changes to the optimizer, and cannot suggest 

indexes which are not applicable to the existing access paths. 

COLT [13] also suggests indexes on PostgreSQL, but limits itself 

to only single column indexes whereas PARINDA can suggest 

multicolumn indexes. 

3. SYSTEM ARCHITECTURE 
This section describes the system architecture at a very high level 

and then discusses the important components of the system in 

more detail. 

Figure 1 shows the architecture of the PARINDA tool. We modify 

the PostgreSQL query optimizer to add the what-if components. 

The what-if components are used to simulate physical partitions, 

indexes, and presence or lack of join methods. There are three 

components using the what-if components: the automatic indexing 

component, the automatic partitioning component and the 

interactive partitioning/indexing component.  

The automatic partitioning component takes as input the query 

workload, the original physical design, and several DBA defined 

constraints such as the maximum space taken by replicated 

columns in the partitions. The output is composed of the new 

partitions which optimally improve the workload execution time, 

and the new rewritten queries reflecting the new partitions. 

 

The automatic index component has as input the query workload, 

the physical design and a size constraints. The output represents 

the set of suggested indexes. 

The input to the interactive partitioning/indexing component is 

given as the query workload and the original design. It produces a 

new design and also estimates the benefit of using the new design. 

We now describe in the detail the components in the architecture. 

We skip the interactive component, since its functionality 

involves only invoking the what-if features and measuring the 

benefits. 

3.1 The PostgreSQL Query Optimizer 
The PostgreSQL quey optimizer is the component responsible for 

generating the execution plan for a SQL query. The optimizer 

chooses the plan based on the statistics of the original tables and 

indexes. 

In the optimization process, the optimizer first analyzes the query 

and rewrites it if possible, then builds a structure for storing the 

statistical information for all the physical design features available 

for a table. Subsequently it makes decisions to use those design 

features based on the query structure and statistics. Before making 

the decisions, the optimizer allows the developer to override the 

information about physical design by using several function 

 

Figure 1 System Architecture for PARINDA 
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‗hooks‘1. The hooks can be replaced at runtime with functions that 

insert new stastistics information into the list of physical design 

features. This makes the optimizer believe that the newly inserted 

data regarding the what-if indexes and what-if tables are present 

in the database. Then, the optimizer selects the execution plans 

using the statistics from the what-if features.  

3.2 What-If Design Features 

As Figure 1 shows, the what-if features are divided into three 

main components, which we descibe next. 

What-If Index Component: This component is used for index 

simulation. The component expects the what-if index definitions 

along with the query on which the indexes are used as input. Then 

it computes the number of pages for the indexes using the 

following formula:  

( ( ( ) ( )))

(1)
c I

o size c align c R

Pages
B



  




 

Where o is the overhead of each row in the index including the 

rowid pointer back to the main table, c is a column in the index I, 

the function size finds the average size of the column c in the 

table, and the function align adds extra space to align the values in 

the disk. The alignment depends on the columns appearing before 

the current column in the index. R is the number of rows in the 

table, and B is the page size. In PostgreSQL 8.3, o is 24 and 

default value of B is 8192. We compute only the sizes of the leaf 

pages, and ignore the internal pages of the B-Tree index, since 

they affect the relative page sizes only on very small indexes. The 

optimizer computes histogram statistics about the columns from 

the statistics of the base table, therefore, we do not compute them. 

What-If Table Component: This component is used for partition 

simulations. Since PostgreSQL does not allow partitions in the 

table, we simulate the parititions by simulating new tables. These 

tables contain the primary keys of the original table, so that the 

full table can be reconstructed from the partitions. The statistics of 

the original table are used to compute the statistics for the new 

partitioned table. The number of pages is approximated by using a 

formula simular to Equation 1. Unlike the what-if indexes, which 

are completely constructed inside the optimizer, we build empty 

what-if tables so that the query parser recognizes the new tables 

and parses the SQL input. At the optimization time we insert the 

statistics about the new table, making the planner ‗believe‘ the 

table really exists with data on disk. 

What-If Join Component. This is used to control the join 

methods to be used in the execution plan of the query. This is 

needed for the INUM (Section 3.4) algorithm from the Automatic 

Index Suggestion component. INUM caches two plans for each 

scenario—one with nested-loop enabled and one with nested-loop 

disabled. We enable and disable the nested-loop join method 

using the flags offered by the optimizer. 

3.3 Automatic Partition Suggestion 

The automatic partition component uses the AutoPart technique 

proposed by Papadomanolakis et al. [7]. This technique partitions 

the tables in such a way that the workload exeution time improves 

optimally. First, the component determines the atomic fragments. 

Atomic fragments are the ‗thinnest‘ possible fragments of the 

                                                                 
1 http://www.postgresql.org/docs/8.1/interactive/index.html 

partitioned tables, and they are accessed atomically. This is the 

first version of the selected fragments. Then, the algorithm 

improves the initial selected fragments with composite fragments. 

In the fragments generation step a set of composite fragments are 

determined. The composite fragments are created by combining 

atomic fragments with fragments selected in a previous iteration 

or by combining atomic fragments with atomic fragments. An 

automatic query rewriter is used to rewrite the original workload 

for the composite fragments. In the fragment selection step the 

composite fragments are evaluated using the what-if structures. 

The replication constraints are considered. The fragments which 

give the highest improvement for the workload are chosen. Then, 

the algorithm iterates through the fragments generation and 

fragments selection steps. Each time, the fragments chosen in the 

previous step are expanded. The algorithm stops when no more 

improvement is found. The optimal table partitions are suggested 

to the user. 

3.4 Automatic Index Sugestion 

The automatic index suggestion component uses the ILP 

technique proposed by Papadomanolakis et al. [10]. In this 

technique the index selection problem is mapped to an integer-

linear optimization program, and solved using standard 

combinatorial solvers. First, the component determines a large set 

of candidate indexes by analyzing the workload. It then computes 

the benefit of using a subset of those indexes for different queries. 

Since this process requires millions of query cost estimations, ILP 

uses a cache-based cost model (INUM [6]) to speed up the cost 

estimation process. Using INUM, ILP estimates the costs of 

millions of physical designs in the order of minutes instead of 

days. Once the benefits are computed, it constructs an integer-

linear program (ILP). The ILP contains the accuracy constraints 

for the indexes, such that only the one access path is selected for 

each table in a query, and other user-supplied constraints, such as 

constraints on the total size of the design features, and their update 

costs. The program is then solved by a standard off-the-self 

combinatorial optimization solver and the optimal set of indexes 

are suggested to the user. Typically ILP outperforms the greedy 

algorithms on workloads containing a large number of queries. 

This efficiency is a direct result of INUM‘s cache-based cost 

model. 

4. DEMONSTRATION 
This section describes the demo set up and the scenarios. We use 

a 5% sample of the SDSS DR42 dataset with about 150GB of data 

in it. For the query workload we use a set of 30 prototypical 

queries. The database runs on PostgreSQL 8.3 running on a 

Windows platform. This demonstration presents three possible 

scenarios.  

Interactive Partition/Index Selection Scenario. This scenario 

estimates the benefit of a new physical design feature. In Figure 2 

we present the GUI of this scenario. The user inputs the query 

workload file and the original physical design. Then, she creates 

several what-if table partitions and several what-if indexes on the 

original physical design. The workload is evaluated for the new 

physical design. The average workload benefit and the individual 

queries benefits are displayed. The user can save the rewritten 

queries for the new table partitions. She also has the option to 

                                                                 
2 http://www.sdss.org/dr4/ 
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compare the execution plan of the what-if design with the 

execution plan of the same materialized physical design. 

This way the accuracy of the physical design simulation is 

verified. This scenario allows the DBA to manually test small set 

of candidates to use certain domain knowledge, or to slightly 

modify the automatic suggestions. 

 Automatic Partition Suggestion Scenario. This scenario 

suggests the table partitions which improve the workload queries‘ 

execution time optimally. In Figure 3 we present the scenario 

GUI. The user inputs a workload file, an original physical design 

and a size constraint. Note that the user does not provide the 

partition information on this screen. The output consists of the 

suggested table partitions (using techniques described in Section 

3.3), the average workload benefit, and the individual query 

benefit. For each query, the lists of the suggested partitions used 

are displayed. The user has the option to physically create on disk 

the suggested partitions and to save on disk the rewritten 

workload queries for the new partitions. 

Automatic Index Suggestion Scenario. In this scenario a set of 

indexes which improve the workload queries‘ execution time 

optimally is suggested. The GUI of this scenario is very similar to 

the GUI in the Figure 3, except that it suggests indexes instead of 

partitions. The inputs are the workload file, a size constraint, the 

original physical design, and total extra space that the generated 

indexes can occupy on the disk. The component displays the 

suggested set of indexes (using techniques described in Section 

3.4), the average workload benefit, and the individual query 

benefit. For each query the list of the used suggested indexes is 

mentioned. The user has the option to physically create the 

suggested set of indexes on disk. 

5. CONCLUSION 
This demonstration introduces a new physical design tool for an 

open source DBMS. First, the tool implements what-if design 

features on the DBMS by simulating the statistics of those 

features and allowing the DBA to check the effectiveness of the 

design features in an efficient manner. Then it integrates the 

automatic partitioning mechanism of AutoPart tool to suggest the 

partitions for a given query set. It also rewrites the input queries to 

match with the suggested partitions. Finally, it suggests indexes 

by building an integer-linear program and solves it using a 

standard off-the-shelf combinatorial solver. We demonstrate the 

effectiveness of the tool on three different scenarios matching the 

three functionalities of the tool on a real-world scientific dataset 

and query workload. 
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