
PARINDA: An Interactive Physical Designer for
PostgreSQL

Cristina Maier Debabrata Dash Ioannis Alagiannis Anastasia Ailamaki Thomas Heinis

Ecole Polytechnique Fédérale de Lausanne, Switzerland

{cristina.maier,debabrata.dash,Ioannis.alagiannis,anastasia.ailamaki,thomas.heinis}@epfl.ch

ABSTRACT
One of the most challenging tasks for the database administrator is

to physically design the database to attain optimal performance

for a given workload. Physical design is hard because it requires

the selection of an optimal set of design features from a vast

search space. There have been many commercial tools available to

automatically suggest the physical design, for a given a set of

queries. These tools are, however, based on greedy heuristic

pruning, which reduces their usefulness. Furthermore, they are not

interactive, as the APIs to simulate the indexes and tables are

product specific and hidden from the database administrators.

Finally, all these tools are built specifically for commercial

systems and there is lack of automated physical designers for open

source DBMSs. In this demonstration we introduce –PARINDA -

an interactive physical designer for an open source DBMS. Given

a workload containing a set of queries, this tool allows the DBA

to efficiently simulate various physical design features and get

immediate feedback on their effectiveness. It also incorporates

recent advances in non-greedy physical design techniques to

provide close to optimal suggestions. Although it has been

prototyped for several different DBMSs, we demonstrate the

usefulness and efficiency of the tool while running on the open

source DBMS—PostgreSQL--using large real-world scientific

datasets and query workloads.

1. INTRODUCTION
Physical design of databases seeks to optimize the performance of

the database by adding design features, such as horizontal and

vertical partitions, indexes, or materialized views, in order to

speed up the queries in the workload. Without support from the

DBMS, the only way a database administrator (DBA) can decide

on the optimal physical design structures is to build them

manually, and then estimate the query execution time for

combinations of the design features. This task is both cumbersome

and expensive, as building design features, such as indexes takes a

considerable amount of time and planning. Therefore, automating

the physical design selection is crucial.

Researchers have proposed several automated physical design

techniques for commercial DBMSs [8][11][12]. They all scale

using greedy heuristics to prune away the search space. The

greedy pruning makes the tools feasible, but reduces their

usefulness by pruning away many useful candidates. They also do

not allow the DBA to experiment with the design features without

actually building them. Finally, there has been no such designer

tool for an open source DBMS. Even though the cost of the

DBMS is a major factor in deciding for an open source DBMS,

the lack of such automated tools makes the operation of an open

source DBMS more expensive than a commercial system.

In this demonstration, we introduce a new automated physical

design tool – PARINDA (PARtition and INDex Advisor) - for an

open source DBMS. Given a database and a set of queries, the

tool does not prune away the candidate space greedily. Hence, it

searches through all useful candidate features before suggesting

the optimal set of features. It allows the DBA to interactively

estimate the benefit of new physical design features by simulating

the design features efficiently. Finally, it automatically rewrites

the queries to get the full benefit of the suggested design features.

In this demonstration, we use PostgreSQL as the underlying

DBMS for PARINDA. We do so because compared to other open

source DBMS, PostgreSQL has a mature cost-based optimizer.

PARINDA first modifies the optimizer to enable what-if physical

design features. These features are not actually built on the disk.

They are simulated by creating statistics in the DBMS catalog.

Since the query optimizer primarily deals with statistics, it cannot

differentiate between the real design features and the what-if ones.

Therefore, these what-if structures allow the DBA to estimate the

benefit they would get if the structures were actually present in

the database. Simulating the structures makes the operations

orders of magnitude faster and allows the DBA to explore a larger

solution space interactively.

Even with the what-if design features, the search space is too large

for the DBA to manually find the optimal set of features. Solving

the automated physical design problem is computationally hard

[9] as well. We implement two practical state-of-the-art search

techniques to search for the optimal set of features, which use

efficient heuristics to search for close to optimal design features.

To search for the optimal set of partitions, we use the AutoPart

technique [7] and to find the optimal set of indexes we use the ILP

technique [10]. Using these techniques on analytical queries, we

achieve speedups ranging from 2x to 10x.

Demonstration Structure: This demonstration presents a new

tool which extends PostgreSQL by adding automatic physical

design features. Because scientific data sets are usually very big

and involve complex queries, we demonstrate the effectiveness of

the tool using a real-world SDSS [1] dataset and query workload.

We demonstrate three physical design scenarios. In the first

scenario, the DBA manually selects the combination of design

features and the tool determines the benefit of using the

combination. The second one finds the optimal partitions for a

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

EDBT 2010, March 22-26, 2010, Lausanne, Switzerland.

Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00.

701

given query workload. And the last one automatically finds the

optimal indexes for the workload.

Organization: The rest of the paper is organized as follows:

Section 2 discusses related work. We describe the overall system

architecture and the interaction of various components in Section

3. Section 4 discusses the demonstration scenarios in detail and

we conclude in Section 5.

2. RELATED WORK
Researchers have proposed many techniques for automated

physical design for the last three decades. Due to space restriction,

we list only the recent commercial automated physical design

tools, such as Data Tuning Advisor (DTA) for SQL Server [8],

Design Advisor for DB2 [11], and SQL Access Advisor for

Oracle [12]. All these tools use what-if design features, which

were first proposed by Finkelstein et al. [2]. Design Advisor also

provides a set of candidate design features, given a set of queries.

SQL Access Advisor also contains a SQL tuning technique, which

changes the SQL to make it perform better on the database. All

these commercial tools are based on greedy heuristics, and do not

allow the DBA to directly simulate the design features.

The automated physical designers for open source DBMSs are

relatively new compared the commercial ones. Recently Thiem et

al. proposed an automated physical designer for the Ingres DBMS

[5]. Their focus is more on integration of performance monitoring

and tuning, instead of pure physical design. Also, their tool does

not suggest partitions. Monterio et al. implement and design an

index suggestion tool for PostgreSQL [3]. They, however, do not

compute the size of the indexes accurately, and assume it to be

zero. This severely affects the accuracy of the optimizer using

their what-if indexes. Kao et al. propose changing the optimizer to

store the optimizer access path decisions in a data structure and

suggest the frequently requested access path [4]. This, however,

requires drastic changes to the optimizer, and cannot suggest

indexes which are not applicable to the existing access paths.

COLT [13] also suggests indexes on PostgreSQL, but limits itself

to only single column indexes whereas PARINDA can suggest

multicolumn indexes.

3. SYSTEM ARCHITECTURE
This section describes the system architecture at a very high level

and then discusses the important components of the system in

more detail.

Figure 1 shows the architecture of the PARINDA tool. We modify

the PostgreSQL query optimizer to add the what-if components.

The what-if components are used to simulate physical partitions,

indexes, and presence or lack of join methods. There are three

components using the what-if components: the automatic indexing

component, the automatic partitioning component and the

interactive partitioning/indexing component.

The automatic partitioning component takes as input the query

workload, the original physical design, and several DBA defined

constraints such as the maximum space taken by replicated

columns in the partitions. The output is composed of the new

partitions which optimally improve the workload execution time,

and the new rewritten queries reflecting the new partitions.

The automatic index component has as input the query workload,

the physical design and a size constraints. The output represents

the set of suggested indexes.

The input to the interactive partitioning/indexing component is

given as the query workload and the original design. It produces a

new design and also estimates the benefit of using the new design.

We now describe in the detail the components in the architecture.

We skip the interactive component, since its functionality

involves only invoking the what-if features and measuring the

benefits.

3.1 The PostgreSQL Query Optimizer
The PostgreSQL quey optimizer is the component responsible for

generating the execution plan for a SQL query. The optimizer

chooses the plan based on the statistics of the original tables and

indexes.

In the optimization process, the optimizer first analyzes the query

and rewrites it if possible, then builds a structure for storing the

statistical information for all the physical design features available

for a table. Subsequently it makes decisions to use those design

features based on the query structure and statistics. Before making

the decisions, the optimizer allows the developer to override the

information about physical design by using several function

Figure 1 System Architecture for PARINDA

W
h

at
-I

f
Ta

b
le

W
h

at
-I

f

In
d

ex

W
h

at
-I

f
Jo

in

Automatic
Indexing

Component

Interactive
Partitioning/Indexing

Component

Automatic
Partitioning
Component

C
o

n
st

ra
in

ts

O
ri

gi
n

al

D
es

ig
n

W
o

rk
lo

ad

Constraints

Suggested
Partitions

Rewritten
Workload

Suggested
Indexes

Workload
Speedup

Workload

Partitions,
Indexes

O
p

ti
m

iz
er

702

‗hooks‘1. The hooks can be replaced at runtime with functions that

insert new stastistics information into the list of physical design

features. This makes the optimizer believe that the newly inserted

data regarding the what-if indexes and what-if tables are present

in the database. Then, the optimizer selects the execution plans

using the statistics from the what-if features.

3.2 What-If Design Features

As Figure 1 shows, the what-if features are divided into three

main components, which we descibe next.

What-If Index Component: This component is used for index

simulation. The component expects the what-if index definitions

along with the query on which the indexes are used as input. Then

it computes the number of pages for the indexes using the

following formula:

((() ()))

(1)
c I

o size c align c R

Pages
B

Where o is the overhead of each row in the index including the

rowid pointer back to the main table, c is a column in the index I,

the function size finds the average size of the column c in the

table, and the function align adds extra space to align the values in

the disk. The alignment depends on the columns appearing before

the current column in the index. R is the number of rows in the

table, and B is the page size. In PostgreSQL 8.3, o is 24 and

default value of B is 8192. We compute only the sizes of the leaf

pages, and ignore the internal pages of the B-Tree index, since

they affect the relative page sizes only on very small indexes. The

optimizer computes histogram statistics about the columns from

the statistics of the base table, therefore, we do not compute them.

What-If Table Component: This component is used for partition

simulations. Since PostgreSQL does not allow partitions in the

table, we simulate the parititions by simulating new tables. These

tables contain the primary keys of the original table, so that the

full table can be reconstructed from the partitions. The statistics of

the original table are used to compute the statistics for the new

partitioned table. The number of pages is approximated by using a

formula simular to Equation 1. Unlike the what-if indexes, which

are completely constructed inside the optimizer, we build empty

what-if tables so that the query parser recognizes the new tables

and parses the SQL input. At the optimization time we insert the

statistics about the new table, making the planner ‗believe‘ the

table really exists with data on disk.

What-If Join Component. This is used to control the join

methods to be used in the execution plan of the query. This is

needed for the INUM (Section 3.4) algorithm from the Automatic

Index Suggestion component. INUM caches two plans for each

scenario—one with nested-loop enabled and one with nested-loop

disabled. We enable and disable the nested-loop join method

using the flags offered by the optimizer.

3.3 Automatic Partition Suggestion

The automatic partition component uses the AutoPart technique

proposed by Papadomanolakis et al. [7]. This technique partitions

the tables in such a way that the workload exeution time improves

optimally. First, the component determines the atomic fragments.

Atomic fragments are the ‗thinnest‘ possible fragments of the

1 http://www.postgresql.org/docs/8.1/interactive/index.html

partitioned tables, and they are accessed atomically. This is the

first version of the selected fragments. Then, the algorithm

improves the initial selected fragments with composite fragments.

In the fragments generation step a set of composite fragments are

determined. The composite fragments are created by combining

atomic fragments with fragments selected in a previous iteration

or by combining atomic fragments with atomic fragments. An

automatic query rewriter is used to rewrite the original workload

for the composite fragments. In the fragment selection step the

composite fragments are evaluated using the what-if structures.

The replication constraints are considered. The fragments which

give the highest improvement for the workload are chosen. Then,

the algorithm iterates through the fragments generation and

fragments selection steps. Each time, the fragments chosen in the

previous step are expanded. The algorithm stops when no more

improvement is found. The optimal table partitions are suggested

to the user.

3.4 Automatic Index Sugestion

The automatic index suggestion component uses the ILP

technique proposed by Papadomanolakis et al. [10]. In this

technique the index selection problem is mapped to an integer-

linear optimization program, and solved using standard

combinatorial solvers. First, the component determines a large set

of candidate indexes by analyzing the workload. It then computes

the benefit of using a subset of those indexes for different queries.

Since this process requires millions of query cost estimations, ILP

uses a cache-based cost model (INUM [6]) to speed up the cost

estimation process. Using INUM, ILP estimates the costs of

millions of physical designs in the order of minutes instead of

days. Once the benefits are computed, it constructs an integer-

linear program (ILP). The ILP contains the accuracy constraints

for the indexes, such that only the one access path is selected for

each table in a query, and other user-supplied constraints, such as

constraints on the total size of the design features, and their update

costs. The program is then solved by a standard off-the-self

combinatorial optimization solver and the optimal set of indexes

are suggested to the user. Typically ILP outperforms the greedy

algorithms on workloads containing a large number of queries.

This efficiency is a direct result of INUM‘s cache-based cost

model.

4. DEMONSTRATION
This section describes the demo set up and the scenarios. We use

a 5% sample of the SDSS DR42 dataset with about 150GB of data

in it. For the query workload we use a set of 30 prototypical

queries. The database runs on PostgreSQL 8.3 running on a

Windows platform. This demonstration presents three possible

scenarios.

Interactive Partition/Index Selection Scenario. This scenario

estimates the benefit of a new physical design feature. In Figure 2

we present the GUI of this scenario. The user inputs the query

workload file and the original physical design. Then, she creates

several what-if table partitions and several what-if indexes on the

original physical design. The workload is evaluated for the new

physical design. The average workload benefit and the individual

queries benefits are displayed. The user can save the rewritten

queries for the new table partitions. She also has the option to

2 http://www.sdss.org/dr4/

703

http://www.postgresql.org/docs/8.1/interactive/index.html
http://www.sdss.org/dr4/

compare the execution plan of the what-if design with the

execution plan of the same materialized physical design.

This way the accuracy of the physical design simulation is

verified. This scenario allows the DBA to manually test small set

of candidates to use certain domain knowledge, or to slightly

modify the automatic suggestions.

 Automatic Partition Suggestion Scenario. This scenario

suggests the table partitions which improve the workload queries‘

execution time optimally. In Figure 3 we present the scenario

GUI. The user inputs a workload file, an original physical design

and a size constraint. Note that the user does not provide the

partition information on this screen. The output consists of the

suggested table partitions (using techniques described in Section

3.3), the average workload benefit, and the individual query

benefit. For each query, the lists of the suggested partitions used

are displayed. The user has the option to physically create on disk

the suggested partitions and to save on disk the rewritten

workload queries for the new partitions.

Automatic Index Suggestion Scenario. In this scenario a set of

indexes which improve the workload queries‘ execution time

optimally is suggested. The GUI of this scenario is very similar to

the GUI in the Figure 3, except that it suggests indexes instead of

partitions. The inputs are the workload file, a size constraint, the

original physical design, and total extra space that the generated

indexes can occupy on the disk. The component displays the

suggested set of indexes (using techniques described in Section

3.4), the average workload benefit, and the individual query

benefit. For each query the list of the used suggested indexes is

mentioned. The user has the option to physically create the

suggested set of indexes on disk.

5. CONCLUSION
This demonstration introduces a new physical design tool for an

open source DBMS. First, the tool implements what-if design

features on the DBMS by simulating the statistics of those

features and allowing the DBA to check the effectiveness of the

design features in an efficient manner. Then it integrates the

automatic partitioning mechanism of AutoPart tool to suggest the

partitions for a given query set. It also rewrites the input queries to

match with the suggested partitions. Finally, it suggests indexes

by building an integer-linear program and solves it using a

standard off-the-shelf combinatorial solver. We demonstrate the

effectiveness of the tool on three different scenarios matching the

three functionalities of the tool on a real-world scientific dataset

and query workload.

Acknowledgments: This work was partially supported by Sloan

research fellowship, NSF grants CCR-0205544, IIS-0133686, and

IIS-0713409, an ESF EurYI award, and SNF funds.

6. REFERENCES
[1] http://www.sdss.org

[2] S. Finkelstein,M. Schkolnick,P. Tiberio: Physical database

design for relational databases. ACM ToDS. 1988

[3] Monteiro, J. M., Lifschitz, S. and Brayner, A.: An Architec-

ture for Automated Index Tuning. In SBBD, 2006.

[4] Kao, K. and Liao, I. 2009. An index selection method with-

out repeated optimizer estimations. Inf. Sci 2009

[5] Thiem, A. and Sattler, K. An Integrated Approach of Per-

formance Monitoring for Autonomous Tuning. ICDE 2009.

[6] Stratos Papadomanolakis, Debabrata Dash, Anastasia Aila-

maki, ―Efficient Use of the Query Optimizer for Automated

Physical Design‖, VLDB 2007.

[7] Stratos Papadomanolakis, Anastassia Ailamaki, ―AutoPart:

Automating Schema Design for Large Scientific Databases

Using Data Partitioning‖, SSDBM 2004

[8] Nicolas Bruno and Surajit Chaudhuri. Automatic physical

database tuning: a relaxation-based approach. SIGMOD

2005.

[9] Surajit Chaudhuri, Mayur Datar, and Vivek Narasayya. Index

selection for databases: A hardness study and a principled

heuristic solution. IEEE TKDE, 2004.

[10] Stratos Papadomanolakis and Anastassia Ailamaki. An In-

teger Linear Programming Approach to Database Design.

SMDB‘07.

[11] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy M. Lohman,

Adam J. Storm, Christian Garcia-Arellano and Scott Fadden.

DB2 Design Advisor: Integrated Automatic Physical Data-

base Design. VLDB‘04.

[12] Performance Tuning using the SQLAccess Advisor.

http://www.oracle.com/technology/products/bi/db/10g/pdf/tw

p_general_perf_tuning_using_sqlaccess_advisor_10gr1_120

3.pdf

[13] Schnaitter, K., Abiteboul, S., Milo, T., Polyzotis, N.: COLT:

continuous on-line tuning. In Proceedings of ACM SIGMOD

Conference 2006.

Figure 2 Automatic partition suggestion interface Figure 3 Interactive index and partition selection

704

http://www.oracle.com/technology/products/bi/db/10g/pdf/twp_general_perf_tuning_using_sqlaccess_advisor_10gr1_1203.pdf
http://www.oracle.com/technology/products/bi/db/10g/pdf/twp_general_perf_tuning_using_sqlaccess_advisor_10gr1_1203.pdf
http://www.oracle.com/technology/products/bi/db/10g/pdf/twp_general_perf_tuning_using_sqlaccess_advisor_10gr1_1203.pdf

