# dyson Imperial College Robotics Lab London

#### The Future of Real-Time SLAM

# Where we are now

**Stefan Leutenegger** 

18th December 2015 (ICCV Workshop)

#### **Probabilistic SLAM Formulation**

#### Given

Measurements  $\mathbf{Z}$  are samples from a **distribution**  $p(\mathbf{z}|\mathbf{x})$  given the variables  $\mathbf{X}$  (robot states plus usually the map).

#### **Find**

- Values for variables x that best explain all the measurements (maximum likelihood, ML).
- Values for  ${\bf x}$  that best explain all the measurements and a prior  $p({\bf x})$  (maximum a posteriori, MAP).

#### What our research consists of:

- Decide for a state and map representation x.
- Model the likelihood function  $p(\mathbf{z}|\mathbf{x})$  and prior  $p(\mathbf{x})$  (e.g. regulariser).
- Choose approximations to solve the ML/MAP problem, e.g. marginalisation (filtering), or iterative minimisation.
- Find some way to bootstrap, associate data, and initialise.

## **Typical Sensors – Exteroceptive**

| Sensor          | Measurement                         |         |
|-----------------|-------------------------------------|---------|
| Laser Scanner   | 3D points                           |         |
| Camera          | (Colour) image (RGB-D: with depth!) | MINISTA |
| Magnetometer    | 3D magnetic field                   | ING ING |
| Pressure sensor | Air pressure (altitude / airspeed)  |         |

## **Typical Sensors – Proprioceptive**

| Sensor                          | Measurement                                                  |                  |
|---------------------------------|--------------------------------------------------------------|------------------|
| GPS                             | pseudo-ranges (position)                                     | visible sat = 12 |
| Encoders                        | Joint / wheel angles                                         |                  |
| Inertial Measurement Unit (IMU) | Rotation rates and accelerations (with caution: orientation) | 3.55 BT C        |

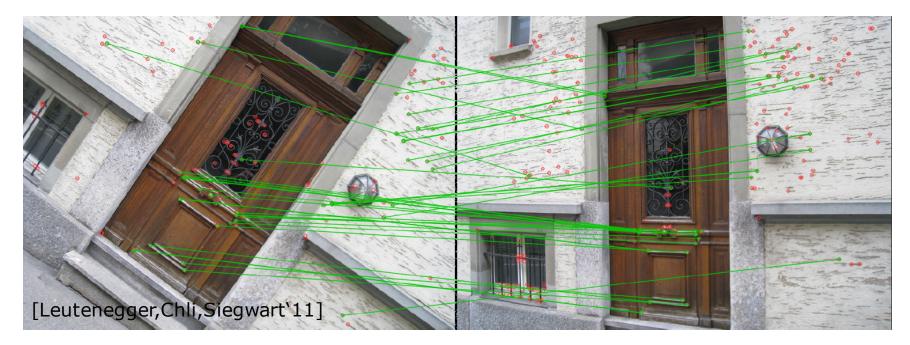
### **Why Visual-Inertial**

- Spatial relative pose constraints
- Information on structure





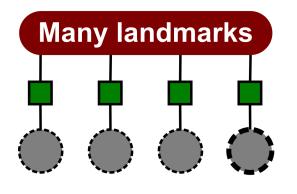
Strong shortterm temporal pose constraints

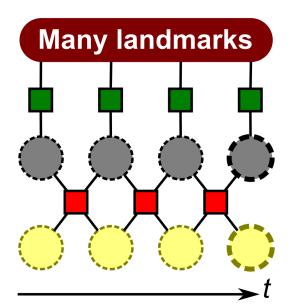


#### **IMU Kinematics with Sensor Error Models**

$$egin{aligned} & \dot{\mathbf{r}}_S = _W \mathbf{v} \;, \ & \dot{\mathbf{q}}_{WS} = rac{1}{2} \left[ egin{array}{ccc} _S ilde{oldsymbol{\omega}} & + \mathbf{w}_\mathrm{g} - \mathbf{b}_\mathrm{g} \\ 0 \end{array} 
ight]^\oplus \mathbf{q}_{WS} \;, \ & \dot{\mathbf{v}} = \mathbf{C}_{WS} \; (_S ilde{\mathbf{a}} \; + \mathbf{w}_\mathrm{a} - \mathbf{b}_\mathrm{a}) + _W \mathbf{g}, \ & \dot{\mathbf{b}}_\mathrm{g} = \mathbf{w}_{b_\mathrm{g}}, \ & \dot{\mathbf{b}}_\mathrm{a} = -rac{1}{ au} \mathbf{b}_\mathrm{a} + \mathbf{w}_{b_\mathrm{a}}. \end{aligned}$$
 IMU biases

### **Vision-Only vs. Visual-Inertial in Nonlinear Optimisation**





- Pose
- Speed / IMU bias'
- Many keypoint measurements
- **IMU** measurements

$$J(\mathbf{x}) := \sum_{i=1}^{I} \sum_{k=1}^{K} \sum_{j \in \mathcal{J}(i,k)} \mathbf{e}_{\mathrm{r}}^{i,j,k}^T \mathbf{W}_{\mathrm{r}}^{i,j,k} \mathbf{e}_{\mathrm{r}}^{i,j,k} + \sum_{k=1}^{K-1} \mathbf{e}_{\mathrm{s}}^{k}^T \mathbf{W}_{\mathrm{s}}^k \mathbf{e}_{\mathrm{s}}^k.$$

Cost

Reprojection errors:

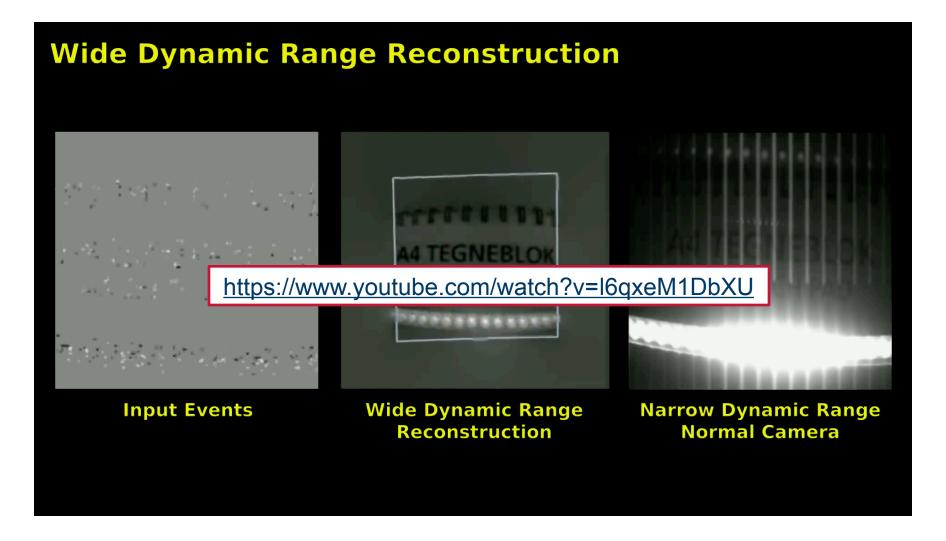
Diff. between detected 2D keypoints and projected 3D landmarks

IMU terms: Using the IMU kinematics model

## **Keyframe VIO Results Overview**

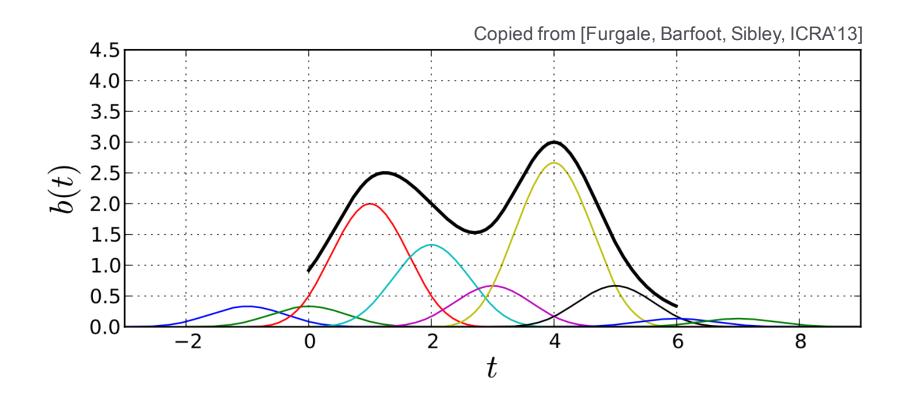


#### **New Sensors: Event Cameras**

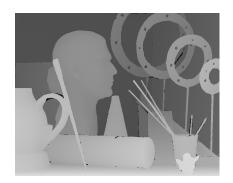


### State Representations: Discrete vs. Continuous-Time

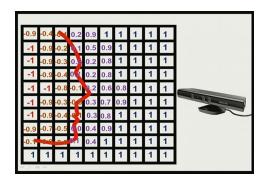
Suggestion to replace traditional discrete time trajectory with continuous-time [Furgale, Barfoot, Sibley, ICRA'13] using a basis functions



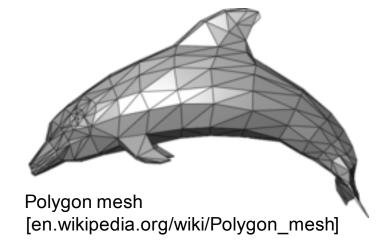
### **Map Representations**

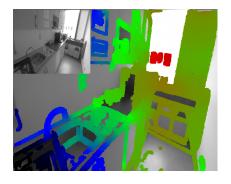


Depth maps [vision.middlebury.edu]



Truncated Signed Distance Function [pointclouds.org]





Semi-dense depth maps [vision.in.tum.de]

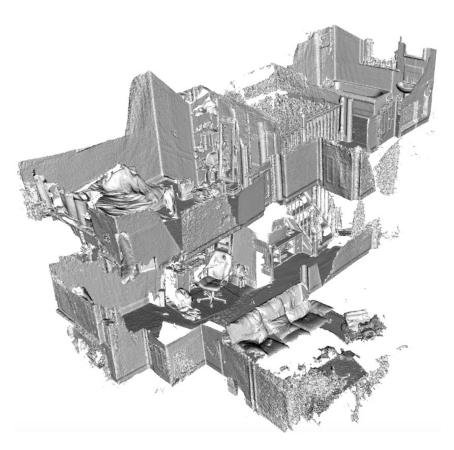


Point clouds (here: sparse) [grail.cs.washington.edu]



Surfel maps [wp.doc.ic.ac.uk/thefutureofslam]

## **Scalability: Keeping Map AND Trajectory Consistent**



#### **Kintinuous**

[T. Whelan, M. Kaess, M.F. Fallon, H. Johannsson, J. J. Leonard and J.B. McDonald. RSS Workshop on RGB-D 2012]





#### **ElasticFusion**

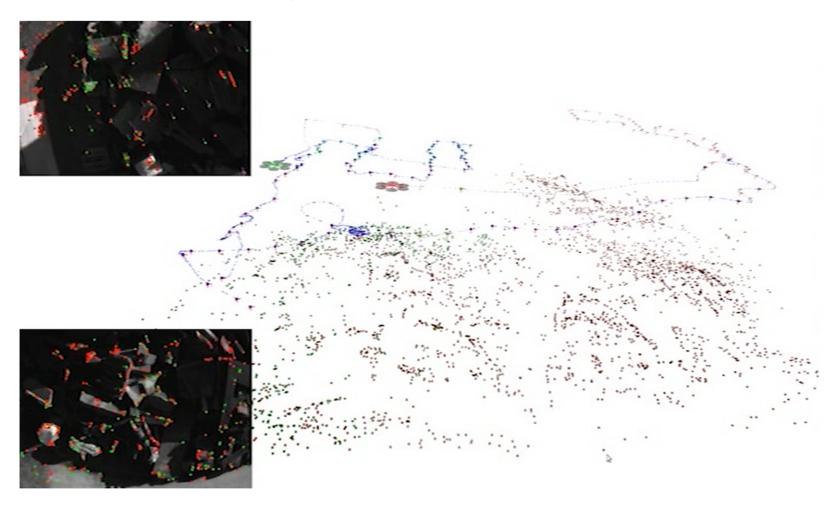
[T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker and A. J. Davison, RSS'15]

#### **Scalability: Life-Long Mapping**



[Winston Churchill and Paul Newman, IJRR'13]

#### **Scalability: Multi-Agent SLAM**



[Christian Forster, Simon Lynen, Laurent Kneip, Davide Scaramuzza, IROS'13]

## **Dealing with Dynamic Scene Content**







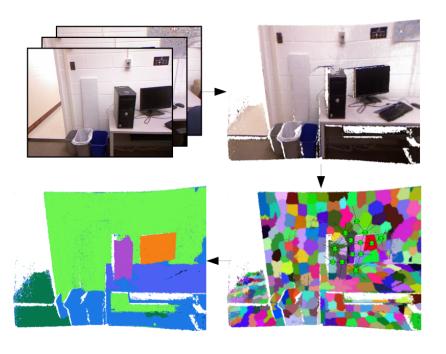






[Richard A. Newcombe, Dieter Fox, Steven M. Seitz, CVPR 2015]

#### **Better Semantics With Maps and Better Maps With Semantics**



[O Kaehler and I D Reid, ICCV'13]



[R. Karimi, C. Häne, M. Pollefeys, CVPR'15]