dyson Imperial College Robotics Lab London

The Future of Real-Time SLAM

ElasticFusion: real-time dense SLAM without a pose graph

Stefan Leutenegger (representing Tom Whelan) 18th December 2015 (ICCV Workshop)

State of the art in real-time dense SLAM

Plenty have limitations

- No (online) loop closure
- Only estimates trajectory
 - » Raw point cloud back projections
 - » Key frames
- Non-scalable
- Non-robust pose estimation

Some of these include;

• Henry et al., Endres et al., Meilland & Comport, Kerl et al., Keller et al., Chen et al, Nießner et al., Newcombe et al., Steinbruecker et al., Stueckler et al.

State of the art

Offline approaches

• Qian-Yi Zhou Amazing results with RGB-D, strictly offline (>1hr processing time)

State of the art

Online approaches

- Kintinuous arguably the state of the art
 - » Online loop closure
 - » Estimates full 3D surface and trajectory
 - » Scalable (100's of metres)
 - » Full RGB and Depth pose estimation
- However, still not the "perfect" system
 - » A number of limitations

State of the art

Kintinuous

• Surface aliasing

State of the art

Kintinuous

We want a SLAM system that...

Robustly estimates camera pose

• Geometry + photometry

Reliably estimates the surface

• Fused representation to remove noise

Scales well

• Room, house scale

Is completely closed loop (updating)

• Update revisited areas

Real-time

• Globally consistent map available at any point in time

Non-restrictive of motion

• Happy to deal with extremely loopy motion and many such loop closures

Introducing ElasticFusion

Robustly estimates camera pose

• Full RGB and Depth frame-to-model tracking

Reliably estimates the surface

• Point-based fusion is good quality and a nice representation

Scales well

• Room scale seems doable, at a minimum

Is completely closed loop (updating)

• No separation between front end and back end

Real-time

• Strictly

Non-restrictive of motion

• Since the front end and back end are one and the same, it is less restrictive given the full frame-to-model tracking

How it works

- 1. Reconstruct surfel-based map of environment
- 2. Split into active/inactive regions
- 3. Directly register multiple passes of the same surface together
- 4. Reflect this in the map with a non-rigid space deformation
- 5. Use fern encoded key frames for global loop closures

How it works: Tracking

Data terms

$$E_{rgb} = \sum_{\mathbf{u}\in\Omega} \left(I(\mathbf{u}, \mathcal{C}_t^l) - I\left(\boldsymbol{\pi}(\mathbf{K}\exp(\hat{\boldsymbol{\xi}})\mathbf{T}\mathbf{p}(\mathbf{u}, \mathcal{D}_t^l)), \hat{\mathcal{C}}_{t-1}^a\right) \right)^2$$
$$E_{icp} = \sum_k \left(\left(\mathbf{v}^k - \exp(\hat{\boldsymbol{\xi}})\mathbf{T}\mathbf{v}_t^k\right) \cdot \mathbf{n}^k \right)^2$$

How it works: Building a Deformation Graph

Mapping left to right

Time scale

Mapping right to left

Deformation graph

How it works: Time Stretched Visualisation

How it works: Loop Closure

$$\begin{split} E_{rot} &= \sum_{l} \left\| \mathcal{G}_{\mathbf{R}}^{l}^{\top} \mathcal{G}_{\mathbf{R}}^{l} - \mathbf{I} \right\|_{F}^{2} \text{ As-rigid-as-possible} \\ E_{reg} &= \sum_{l} \sum_{n \in \mathcal{N}(\mathcal{G}^{l})} \left\| \mathcal{G}_{\mathbf{R}}^{l} (\mathcal{G}_{\mathbf{g}}^{n} - \mathcal{G}_{\mathbf{g}}^{l}) + \mathcal{G}_{\mathbf{g}}^{l} + \mathcal{G}_{\mathbf{t}}^{l} - (\mathcal{G}_{\mathbf{g}}^{n} + \mathcal{G}_{\mathbf{t}}^{n}) \right\|_{2}^{2} \text{Smoothness regulariser} \\ E_{con} &= \sum_{p} \left\| \phi(\mathcal{Q}_{\mathbf{s}}^{p}) - \mathcal{Q}_{\mathbf{d}}^{p} \right\|_{2}^{2} \text{ New-to-old loop closure constraints} \\ E_{pin} &= \sum_{p} \left\| \phi(\mathcal{Q}_{\mathbf{d}}^{p}) - \mathcal{Q}_{\mathbf{d}}^{p} \right\|_{2}^{2} \text{ Old-to-old anchoring constraints} \\ E_{rel} &= \sum_{p} \left\| \phi(\mathcal{R}_{\mathbf{s}}^{p}) - \phi(\mathcal{R}_{\mathbf{d}}^{p}) \right\|_{2}^{2} \text{ Relative constraints (previous loop closures)} \end{split}$$

ElasticFusion

ElasticFusion – Extras

Quantitative Results

System	fr1/desk	fr2/xyz	fr3/office	fr3/nst
DVO SLAM	0.021m	0.018m	0.035m	0.018m
RGB-D SLAM	0.023m	0.008m	0.032m	0.017m
MRSMap	0.043m	0.020m	0.042m	2.018m
Kintinuous	0.037m	0.029m	0.030m	0.031m
Frame-to-model	0.022m	0.014m	0.025m	0.027m
ElasticFusion	0.020m	0.011m	0.017m	0.016m

TUM RGB-D Trajectory Error

System	kt0	kt1	kt2	kt3
DVO SLAM	0.032m	0.061m	0.119m	0.053m
RGB-D SLAM	0.044m	0.032m	0.031m	0.167m
MRSMap	0.061m	0.140m	0.098m	0.248m
Kintinuous	0.011m	0.008m	0.009m	0.150m
Frame-to-model	0.098m	0.007m	0.011m	0.107m
ElasticFusion	0.007m	0.007m	0.008m	0.028m

ICL-NUIM Surface Error

Quantitative Results

Main Advances

Real-time deformation

• Great for overcoming the drift problem in a dense map

Fully closed loop

• No frontend/backend division opens up many possibilities

Open source

<u>https://github.com/mp3guy/ElasticFusion</u>

Light Source Estimation

Reflectance-driven

• Detect speculars

Why?

- It's cool
- Convincing AR effects
- Can be used to improve tracking
- Aids in path planning (i.e. avoid bright areas)

Light Source Estimation

Reconstruct diffuse appearance

Bright raw observations are reflected rays

• Vote in voxel space (hough-like scheme)

Intersections of high votes and geometry are potentially light sources

• Geometry helps determine extent of light source, directionality and removes need for comprehensive reflected ray coverage

Light Source Estimation

