3.09 Numerical Methods 1
Programming exercise

15 March 2012

Instructions to candidates

Answering questions

Each question consists of instructions for a piece of Python code which you are to write.
In each case, the question will specify both the algorithm to be employed and the interface
you are to write. Marks will be awarded for all of the following:

1. Correct implementation of the algorithm.

2. Correct implementation of the specified interface.

3. Quality of commenting. The comments should be such that another NM1 student
would understand the code without difficulty.

4. Logical structure of code: the sequence of statements in the code must make logical
sense.

Time limit

You may work on the problems until 1200 if you wish, however the programming exercise
should take much less time than this.

Submitting your answer

You must submit your answer by uploading a .tar or .zip archive to ESESIS. This archive
must contain the file containing your answers. I suggest you create a new folder in your
home directory for this exercise. From your home directory, you can then use a command
like:

tar cfvz answers.tgz dir_name

This creates the archive answers.tgz for you to upload. Of course you should use the
name of your directory, not dir_name. To double check the archive before you upload it,

type:
tar tfvz answers.tgz

This will list all the files in your archive for you to check.

Allowed materials

This is an open book exercise. You may use the course text, lecture notes, your own notes
and any other written material which you choose.

Network access

You may use the web to, for example, access Python documentation. However, you
may not use any communication protocol including, but not limited to, email, any chat
program, posting on internet fora, or social network sites. In essence you may use the web
as a reference but you may not use it to communicate with anyone during the exercise.

You must ensure that any communication programmes are shut down for the duration of
the exercise.

Violation of this rule is cheating and may constitute an examination offence under college
rules with very serious consequences.

The Jacobi method is an iterative algorithm for solving matrix systems:
Ax="b (1)

where A is diagonally dominant. A matrix is diagonally dominant if the diagonal entry on
each row is larger in magnitude than the sum of all the other entries on that row. That

is, for any :
|Aial > YAl (2)
i#j
The Jacobi method operates by splitting the matrix A into a matrix D consisting of the
diagonal of A and matrix R consisting of the rest of A. That is:

D, — A;; where ’L =j: 3)
’ 0 where 7 #

Ry, — 0 where z =]: (4)
A;; wherei # j

The Jacobi method makes use of D!, the inverse of D. The inverse of a diagonal matrix
is very easy to calculate, it is simply given by taking the reciprocal of each of the diagonal
entries:

— 1
D070 0 0 1 m 0 0
. 1 :
S T B 5)
: : 0 : T 0
0 0 Dun 0 0 5

As an iterative method, the Jacobi method starts from an initial guess for x and calculates
a series of improved values of x. We will use an initial guess of the zero vector 0.

As the Jacobi method defines an iteration, it is also necessary to calculate when the
iteration should terminate. For this, we will use the residual:

r=b—Ax (6)

When we start, with x = 0, the residual will be equal to b (since A0 = 0). We will stop
the iteration when the residual has shrunk by a factor of € where € is a small positive
parameter supplied by the user.

The algorithm for the Jacobi method is given by:
x<«—0
To < V b-b
repeat
x — D! (b —-Rx)
r<—b-—Ax
until 4/r - r/ry < e or maximum iterations exceeded.

Copy the module /numerical-methods-1/random_jacobi.py to your working direc-
tory. It contains the routines random_dominant, random_nondominant, random_diag
and random_vec, which you may find useful in testing your answers to the following as
you go along.

1. Create a module jacobi containing a function diagonally_dominant(A) which
returns True if the array A is square and diagonally dominant, and False otherwise.

(20 marks)

2. Add a function split_matrix(A) to jacobi which returns a pair of arrays D, R
where D contains is a the diagonal part of A and R is the remaining part, as given
by equations 3 and 4, above.

(20 marks)

3. Add a function inverse_diag(D) to jacobi which returns the inverse of the diag-
onal matrix D.

(20 marks)

4. Add a function solve(A, b, epsilon=1.e-6, N=100) to jacobi which returns the
solution to the matrix system Ax = b computed using the Jacobi method. epsilon
should be used as the convergence criterion. Your routine should raise ValueError
if A is not diagonally dominant, and ArithmeticError if the maximum number
of iterations N is exceeded. You may find it useful to call the functions from the
previous questions in composing your answer.

(40 marks)

