CO-145 Mathematical Methods (Autumn 2016)

The course aims to make students confident in understanding and using basic mathematical concepts and techniques for later year courses in Computing. The course is co-taught by Mahdi Cheraghchi and Marc Deisenroth.

Syllabus

  • Sequences, Series and Power Series (~8 lectures)
  • Linear Algebra (~12 lectures)
    • Solving Linear Equation Systems
    • Groups
    • Matrices
    • Linear Mappings
    • Basis and Dimension
    • Kernel and Nullspace
    • Determinants
    • Eigenvalues, Eigenvectors, Eigenspaces
    • Diagonalization
    • Scalar Products
    • Affine Mappings
    • Projections
    • Rotations

Lectures

Mondays, 16:00 – 18:00 (LT 311)
Fridays, 11:00 – 13:00 (LT 308)

Coursework

This year, coursework will be submitted electronically in pdf format. The submission deadline is Friday, 10:00. We provide a LaTeX template for a full electronic submission (preferred), but you can also scan in your hand-written answers.

Coursework template (LaTeX)

Course Support Leader

Pedro Mediano

Small-Group Tutorials (MMTs)

Group Tutor Time Room
1 Marta Garnelo Thu, 15:00 219B
2 Chen Qin Thu, 16:00 219B
3 Kyriacos Nikiforou Thu, 16:00 219C
4 Ozan Oktay Thu, 17:00 219A
5 Antoine Toisoul We, 11:00 219A
6 Vahan Hovhannisyan We, 11:00 219B
7 Amir Alansary Thu, 17:00 219B
8 Christina Koutsoumpa Thu, 16:00 219A
9 Daniel Coelho de Castro Thu, 14:00 219A
10 Jo Schlemper Thu, 13:00 219A
11 Matthew Lee Thu, 16:00 554
12 Patrick Ah-Fat Thu, 14:00 219B
13 Pete Harrison We, 12:00 219B
14 Romain Barnoud Tue, 11:00 219A
15 Irina Spulber Thu, 15:00 219A
16 Andreea-Ingrid Funie We, 11:00 219C
17 Steven McDonagh We, 11:00 554
18 Shengjia Shao We, 12:00 219A

Tests:

  1. Diagnostic Exercise: October 6, 15:00 (LT 308)
  2. Christmas Test:  December 2, 16:00 (preliminary date)

Introduction Lecture

October 6, 14:00 – 16:00 (LT 308)

Course Material

  1. Lecture Notes
  2. Lecture Notes (font for easy reading)
  3. Summary of useful mathematical tools (pre-requisites, by J Bradley and D de Jager)
  4. Gilbert Strang: Introduction to Linear Algebra. Wellesley-Cambridge Press, 2003.
  5. Jörg Liesen and Volker Mehrmann: Linear Algebra. Springer, 2015.

Additional Resources

  1. Linear Algebra exercises (by R Beezer, University of Puget Sound)
  2. Linear Algebra exercises (by J Erdman, Portland State University)
  3. Linear Algebra notes and exercises (by D Cherney, T Denton,
    R Thomas and A Waldron, UC Davis)
  4. LaTeX tutorial 1
  5. LaTeX tutorial 2
  6. LaTeX Wiki
  7. Overleaf: Online LaTeX editor

Maths Methods in the Context of Follow-up Courses

mathematical_methods-1 mathematical_methods-2