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AI-enabled imaging

We typically fall into one of the following categories:
• Image acquisition – generate raw data using an imaging sensor
• Image reconstruction – transform the raw sensor data into an image for viewing
• Image “post-processing” – image filtering, segmentation, registration, …
• Image analysis – model construction, detection and classification
• Image interpretation – by clinicians
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• AI-enabled imaging - apply AI within and increasingly across each of these groups



In a perfect world, we have (near)perfect imaging

• In 2014, UK Biobank invited back 100,000 original volunteers 
for brain, heart and body imaging. 

• Scanned across dedicated centres across the UK
• Tight quality control and scan consistency
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In the real (clinical) world, not so much…

• Image quality is dependent on:
• underlying MR physics:

• ie trade-off between the signal-to-noise, spatio-temporal resolution, scan time,…
• patient physiology and movements:

• beating heart, cardiovascular disease patterns, (in)consistent breath-holds, 
movement in scanner

• Poor quality images:
• discarded, or annotations are negatively impacted, misleading 

diagnosis
• patient recall - affecting hospital workflow and timely diagnosis
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AI-enabled (cardiac) image quality control

• Image quality assessment:
• Establish whether patient needs to be rescanned
• Establish/curate training databases

• Image restoration:
• Avoid patients having to be rescanned
• Improve further downstream tasks (segmentation, classification…)

• Imaging acceleration (very briefly – but see our poster):
• Stop imaging when image quality is “good enough”
• Allow more time for dedicated scans
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Image quality assessment

Classify images into good/bad quality:
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Incorrect scan planning

• Planning based on 2-
chamber and SAX 
images

• Appropriate angle needs to 
be placed on SAX, 

• Need to exclude the aorta

• If done incorrectly, this 
results in:

• Off-axis images
• Presence of Left Ventricular 

Outflow Tract (LVOT) – “5 
chamber look”

• Difficulties in atrial analysis
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Incorrect scan planning
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Incorrect scan planning

• 123 Good Quality Images and 123 LVOT Images from UK 
Biobank, plus data augmentation
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Image restoration

10

Convolution + RELU
Max pooling

Transposed convolution
Softmax Skip layers



Image restoration of specific artefacts

• Requires some understanding of the underlying imaging 
physics and acquisition
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Image restoration of specific artefacts

ECG mistriggering
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Image restoration of specific artefacts

ECG mistriggering
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Physics-based data augmentation

• We can simulate these artefacts in good quality images from UKBB to mimic clinical reality:
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• This is a form of realistic data augmentation



Image restoration of specific artefacts

• For accelerated imaging, a reconstruction network can be 
trained on undersampled raw (k-space) data:
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Image restoration of specific artefacts

• We can transform this into an artefact correction network:
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Image restoration of specific artefacts
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Corrupt k-space line detection
Corrupt Image Difference ImageGround TruthReconstruction

Automap-GAN
PSNR 28.7

Oksuz et al. MedIA 2019

Proposed
PSNR 36.7



Can artefact removal help segmentation*?

* Bai et al., JCMR, 2018

* Peng et al., arXiv, 2017
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Improving further downstream tasks:

• We can perform end-to-end training:

20

3D INPUT
2D+time corrupted k-space

Reconstruction
Network

Data 
Consistency

3D OUTPUT
2D+time corrected image

Reconstruction 
Loss

Detection
Loss

Training Objective

Segmentation 
Loss

Segmentation
Network

3D OUTPUT
2D+time segmentation

Artefact Detection
Network

3D OUTPUT
2D+time displaced line detection

Oksuz et al. IEEE TMI 2020



Improving further downstream tasks

• Reconstruction and 
segmentation using:
• Deliberate ECG 

mistriggering during 
acquisition

• Good-quality acquisition 
of same volunteer without 
mistriggering

Oksuz et al. IEEE TMI 2020 21
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Towards quality-aware AI enabled imaging 

• Aim: to accelerate the scanning process while ensuring sufficient image quality
• Data: 270 subjects from UK biobank (200 healthy, 70 with cardiomyopathy)
• Perform retrospective radial undersampling, followed by:

• Quality check 1: assess reconstruction quality
• Quality check 2: assess segmentation quality
• Clinical function assessment via volume curve analysis

• Unified framework to reduce scanning time from 12sec to 4sec per slice within 
5% error

Machado et al. MICCAI 2021 STACOM workshop 22│



Towards quality-aware AI enabled imaging 
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More on Ines Machado’s poster!

Integrated
Framework

As k-space profiles are acquired, images are continually
reconstructed using the Deep Cascade of Convolutional Neural
Networks (DCCNN) [1,2].

A. Reconstruction B. Image and Segmentation QC C. Full-cycle segmentation
1) Resnet classification network
2) Image-segmentation pairs
3) DSC per class
4) Data: 30,000 samples
(100 subjects * 10 slices * 2 time
frames * 15 undersampling factors)

U-net based architecture for automatic segmentation of LV and RV
from all SAX slices and all frames throughout the cardiac cycle [3].
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Conclusions

• AI-enabled image quality control is unlocking the full 
potential of cardiac MRI – from accelerated, quality-controlled  
acquisition to interpretation 

• Can operate along the entire imaging pipeline, at time of 
scanning or end-to-end

• Can improve clinical workflow and downstream analysis
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Thank you – any questions?
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