Al-enabled cardiac functional quantification

Andy King Biomedical Engineering Dept. King's College London

Motivation: cardiac MR workflow

Magnetic resonance (MR)

Segmentation of left ventricle blood pool and myocardium (& right ventricle?)

Motivation

Automate calculation of ejection fraction Enable calculation of other morphological/functional metrics

AI-based quality-controlled automated quantification of cardiac function

CLINICAL REPORT	
Ejection fraction	
Strain	
Peak filling rate	
Peak ejection rate	
EF1	
•••	

Domain shift

• Performance of machine learning models depends on training and testing data being from the same *domain* ...

- In the case of cardiac MR, domains can be:
 - Scanner type (manufacturer, field strength) and scanning protocol
 - Pathology
 - Annotation protocol, skill level etc.
 - Patient demographics (disease, age, ...)
 - ...
- Our AI tool was initially developed and evaluated on the UK Biobank database, i.e. all Siemens 1.5T ...

Domain shift in cardiac MR segmentation

Domain Name	Scanner	Pathology Group	No. Subjects
A1	Siemens Aera 1.5 T	Healthy	74
A2	Siemens Aera 1.5 T	DCM, CMP	37
A3	Siemens Aera 1.5 T	НСМ	15
B1	Philips Ingenia 1.5 T	Healthy	42
B2	Philips Ingenia 1.5 T	DCM, CMP	14
В3	Philips Ingenia 1.5 T	НСМ	9
C1	Philips Achieva 3 T	Healthy	64
C2	Philips Achieva 3 T	DCM, CMP	36
С3	Philips Achieva 3 T	НСМ	8

Domain Name	Included Domains				
1M	A1 + B1 + C1				
2M	A2 + C2				
AM	A1 + A2				
СМ	C1 + C2				

DCM: dilated cardiomyopathy

CMP: hypertensive cardiomyopathy

HCM: hypertrophic cardiomyopathy

Domain shift in cardiac MR segmentation

Test Domain Train Domain	A1	B1	C1	A2	C2	B2	A3	ВЗ	СЗ
A1	0.866	0.859	0.873	0.901	0.872-	-0.890	0.866	0.843	0.869
B1	0.852	0.889	0.870	0.877	0.861	0.912	0.858	0.889	0.907
C1	0.822	0.875	0.903	0.893	0.910	0.889	0.828	0.865	0.920
A2	0.881	0.874	0.884	0.903	0.888	0.888	0.867	0.861	0.898
C2	0.677	0.764	0.900	0.688	0.909	0.794	0.656	0.731	0.922
1M	0.879	0.890	0.900	0.902	0.907	0.914	0.882	0.876	0.919
2M	0.870	0.879	0.896	0.896	0.907	0.906	0.856	0.871	0.918
AM	0.872	0.870	0.863	0.894	0.875	0.871	0.871	0.862	0.866
CM	0.745	0.835	0.899	0.784	0.904	0.849	0.695	0.760	0.922

A=Siemens 1.5T B=Philips 1.5T C=Philips 3T

1=Healthy 2=DCM/CMP 3=HCM

$$DSC = \frac{2|X \cap Y|}{|X| + |Y|}$$

Cross-domain performance is not symmetric.

Ugurlu et al. (2021) "The Impact of Domain Shift on Left and Right Ventricle Segmentation in Short Axis Cardiac MR Images." MICCAI STACOM

Domain shift in cardiac MR segmentation

- Intra-scanner performance better than cross-scanner performance for both LV and RV and for both ES and ED frames.
- But not enough evidence to say performance is different for intrapathology vs cross-pathology groups

	LV ED	LV ES	RV ED	RV ES
Intra-scanner	$0.944 \ (0.025)$	0.887 (0.072)	$0.888 \; (0.057)$	0.838 (0.102)
Cross-scanner	0.937 (0.030)	0.873 (0.105)	0.790 (0.214)	$0.726 \ (0.253)$
In vs cross-scanner p-val	0.0003	0.0285	0.0000	0.0000
_	S			0.784 (0.181)
Cross-pathology	0.940 (0.029)	$0.877 \ (0.098)$	0.815 (0.208)	$0.751 \ (0.244)$
In vs cross-path. p-val	0.2716	0.4126	0.0959	0.4778

Generalising to different scanner domains

Train using 8000+ CMR scans from UK Biobank and 2 NHS hospitals

UKBB: Siemens

NHS: Philips and Siemens

M&Ms: Canon, GE, Philips, Siemens

ACDC: Siemens

J. Mariscal-Harana, et al. (2021) "Large-scale, Multi-vendor, Multi-protocol, Quality-controlled Analysis of Clinical Cine CMR Using Artificial Intelligence." European Heart Journal - Cardiovascular Imaging

Generalising to different scanner domains

DICE SCORES								
Database	UKBB	NF	IS	ACDC	M&Ms Unseen ve			n vendors
Vendor	Siemens	Siemens	Philips	Siemens	Siemens	Philips	GE	Canon
	(n=488)	(n=152)	(n=179)	(n=100)	(n=96)	(n=125)	(n=50)	(n=50)
Left ventricle	0.94	0.95	0.95	0.93	0.90	0.91	0.88	0.91
	(0.04)	(0.09)	(0.06)	(0.06)	(0.07)	(0.06)	(0.09)	(0.06)
Myocardium	0.89	0.83	0.85	0.87	0.82	0.87	0.83	0.84
	(0.03)	(0.12)	(0.08)	(0.03)	(0.04)	(0.04)	(0.06)	(0.04)
Right ventricle	0.90	0.86	0.90	0.88	0.85	0.88	0.86	0.87
	(0.06)	(0.17)	(0.15)	(0.07)	(0.09)	(0.06)	(0.06)	(0.08)

J. Mariscal-Harana, et al. (2021) "Large-scale, Multi-vendor, Multi-protocol, Quality-controlled Analysis of Clinical Cine CMR Using Artificial Intelligence." *European Heart Journal - Cardiovascular Imaging*

Generalising to different scanner domains

CLINICAL MEASURES								
	LVEDV [mL]	LVESV [mL]	LVEF [%]	LVM [g]	RVEDV [mL]	RVESV [mL]	RVEF [%]	
Manual	155.7 (52.6)	71.2 (48.0)	56.6 (12.5)	105.7 (40.6)	152.5 (44.7)	71.0 (33.3)	54.4 (10.9)	
Proposed	158.4 (53.5)	75.0 (48.9)	54.8 (12.1)	106.2 (37.9)	154.5 (44.2)	73.1 (32.0)	53.4 (10.7)	
Absolute bias	2.6	3.8	-1.8	0.4	2.0	2.1	-0.9	
Interobserver (mean ± SD)*	6.6 ± 4.1	6.0 ± 4.1	-	5.8 ± 4.3	8.7 ± 5.9	11.3 ± 6.7	-	

Given a large multi-vendor training set, CNN-based segmentation can generalise to external validation sets and perform at the level of human observers

J. Mariscal-Harana, et al. (2021) "Large-scale, Multi-vendor, Multi-protocol, Quality-controlled Analysis of Clinical Cine CMR Using Artificial Intelligence." *European Heart Journal - Cardiovascular Imaging*

^{*}Bai, W. et al. (2018) "Automated cardiovascular magnetic resonance image analysis with fully convolutional networks." *J Cardiovasc Magn Reson*

Segmentation topology

CNN-based CMR segmentations are highly accurate but ...

- Sometimes they produce nonsensical results that a cardiologist would never produce
- I.e. they are *topologically* incorrect ...

Encoding topology into CNNs

- How can we tell a CNN what the expected topology of a structure is, e.g.
 - LV blood pool is a single component with no holes
 - Myocardium is a single component with a hole
 - Etc.
- Answer: persistent homology

$$\mathcal{L}_{k}(\beta_{k}^{*}) = \sum_{\ell=1}^{\beta_{k}^{*}} (1 - |b_{k,\ell} - d_{k,\ell}|^{2}) + \sum_{\ell=\beta_{k}^{*}+1}^{\infty} |b_{k,\ell} - d_{k,\ell}|^{2}$$

$$\mathcal{L}_{\text{topo}} = \sum_{k} \mathcal{L}_{k}(\beta_{k}^{*})$$

 β_k^* = Betti numbers (no. topological features of dimension k) $b_{k,l}$ = birth value of l^{th} longest bar of dimension k $d_{k,l}$ = death value of l^{th} longest bar of dimension k

Encoding topology into CNNs using persistent homology

 Encoding expected persistence barcodes into a CNN loss function effectively removes nonsensical errors

J. Clough, et al. (2020) "A Topological Loss Function for Deep-Learning based Image Segmentation using Persistent Homology." *IEEE Trans PAMI*

Investigation of sex and race bias in cardiac MR segmentation

- Why?
 - There are known gender/race differences in cardiac structure and function
 - In other applications of AI, training data imbalance has been shown to introduce bias into AI models

Gender Shades: Intersectional Accuracy Disparities in
Commercial Gender Classification*

Joyab@mit.edu
MIT Media Lab 75 Amherst St. Cambridge, MA 02139

Timnit Gebru
Microsoft Research 641 Avenue of the Americas, New York, NY 10011

- Question: is there any bias in our cardiac MR segmentation models?
- UK Biobank database:

E. Puyol-Antón, et al (2021) "Fairness in Cardiac MR Image Analysis: An Investigation of Bias Due to Data Imbalance in Deep Learning Based Segmentation", MICCAI.

Investigation of sex and race bias in cardiac MR segmentation

E. Puyol-Antón, et al (2021) "Fairness in Cardiac MR Image Analysis: An Investigation of Bias Due to Data Imbalance in Deep Learning Based Segmentation", Proceedings MICCAI.

Fair Al for race bias mitigation

Stratified batch sampling:

Fair AI - Performance by race

No significant racial bias

Summary

- Quality-controlled AI tool for cardiac functional quantification is robust to unseen scanners/domains
 - Trained using >8000 mixed-vendor CMR scans, internal and external validation sets
- Wide range of morphological & diastolic/systolic functional biomarkers estimated to within human observer variability

Techniques for enforcing correct topology of results

Identification of racial bias and techniques for debiasing

Impact & clinical translation

Software licensing agreement with Perspectum:

• AI-CMR^{QC} web app currently in use at 3 partner hospitals:

Left ventricle					
LVEDV (mL)	242				
LVESV (mL)	90				
LVSV (mL)	152				
LVEF (%)	63				
LV mass (g)	163				
LV peak ejection rate (mL/s)	477				
LV peak atrial fillinf rate (mL/s)	190				
LV atrial contribution (mL)	24				
LV cirumferential strain (%)	-29.6				
LV radial stran (%)	39.3				
LV londitudinal strain (%)	-22.6				
MAPSE (%)	15.3				
Wall thickness (mm)	11.2				
Left atrium					
Max LA volume (mL)	47				
LA SV (mL)	42				
LAEF (%)	53				
LA reservoir (%)	45.2				
LA pump (%)	16.3				
LA conduit (%)	25.7				
T1 mapping					
T1 septum (ms)	961				
T1 free wall (ms)	932				

Right ventricle	
RVEDV (mL)	245
RVESV (mL)	82
RVSV (mL)	164
RVEF (%)	67
RV peak ejection rate (mL/s)	466
RV peak atrial fillinf rate (mL/s)	403
RV atrial contribution (mL)	38
RV cirumferential strain (%)	-37.3
RV radial stran (%)	33.5
RV longitudinal strain (%)	-28.5
TAPSE (%)	12.4

Right atrium				
Max RA volume (mL)	85			
RA SV (mL)	33			
RAEF (%)	46			
RA reservoir (%)	36.1			
RA pump (%)	12.9			
RA conduit (%)	20.4			
2D Aortic Flow				
Max flow (mL/s)	343			
Time to max flow (ms)	137			

Thanks ...

Acquisition & reconstruction

Analysis & interpretation

Clinical use

Claudia Rene Prieto **Botnar**

Gastao Lima de Cruz

Julia Schnabel

Ilkay Oksuz

James Devran

Ines Clough Ugurlu Machado Puyol

Anton

Jorge Mariscal Harana

Bram Reza Ruijsink Razavi

Imperial College London

Kerstin Hammernik

Daniel Rueckert

Wenjia Bai

