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Formal verification
of real systems is happening!



@ @ @ /
Formal verification of real systems |2 | €
N~

» Increasingly many examples:




@ @ @ /
Formal verification of real systems |2 | €
N~

e selqd M
Security. Performance. Proof.

— verified OS kernel implementation

» Increasingly many examples:




Formal verification of real systems |DATA D

* seld M
Security. Performance. Proof.

- verified OS kernel implementation

e CompCert &ZW V

— verified compiler implementation

» Increasingly many examples:

3 Proof Engineering | Gerwin Klein



Formal verification of real systems |DATA D

* seld W
Security. Performance. Proof.

- verified OS kernel implementation

e CompCert &ZW V

IIIIIIIIIIIIIIIIIIIIIIIIIII

» Increasingly many examples:

— verified compiler implementation

Dafn

* Ironfleet and Ironclad
' — verified distributed system
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Security. Performance. Proof.

- verified OS kernel implementation

e CompCert &ZW V
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» Increasingly many examples:

— verified compiler implementation

Dafn

¢ |ronfleet and Ironclad
/

e CakeML CAKEML |

A Verified Implementation of ML
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Formal verification of real systems |DATA D
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Security. Performance. Proof.

- verified OS kernel implementation

e CompCert &ZW V

» Increasingly many examples:

IIIIIIIIIIIIIIIIIIIIIIIIIII

— verified compiler implementation

Dafn

¢ |ronfleet and Ironclad
/

% A \/nrifind lmmnlamaoantatinn ~f NI
- e Candle

— verified interactive HOL theorem prover
implementation
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Formal verification of real systems |DATA D

, Security. Performance. Proof.

- verified OS kernel implementation

e CompCert hw V
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» Increasingly many examples:

e seld

— verified compiler implementation

Dafn

¢ |ronfleet and Ironclad
/

POLARSSL

Straightforward, Secure Communication

TRUS D
@ le

— verified interactive HOL theorem prover
implementation

CAKEML |

A \/Iarifiond lmnlamaoantatinn ~f Nl

* PolarSSL
— verified SSL implementation

A\
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Formal verification of real systems |DATA D
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e CompCert hw V

» Increasingly many examples:

IIIIIIIIIIIIIIIIIIIIIIIIIII

— verified compiler implementation
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Formal verification of real systems |DATA D

, Security. Performance. Proof.

- verified OS kernel implementation

e CompCert &ZW V
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» Increasingly many examples:

e seld

— verified compiler implementation

Dafn

¢ |ronfleet and Ironclad
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e PolarSSL

— verif

-~ e CoCon HSB

— verified conference system

rifiond lmnlamaontatinn ~f NI

ve HOL theorem prover

¢ OpenSSL HMAC

— verified crypto implementation
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Formal verification of real systems |DATA D

, Security. Performance. Proof.

- verified OS kernel implementation

e CompCert &ZW V

IIIIIIIIIIIIIIIIIIIIIIIIIII

» Increasingly many examples:

e seld

— verified compiler implementation

e Ironfleet and Ironclad Dain

5

POLAR SSL ' CAKEML —

Straightforward, Secure Communication > v
\

e PolarSSL

— verif

- e CoCon HSB
I ® In
 FSCQ I III

— verified crash resistance file system OpenSSL HMAC
— verified crypto implementation
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But:
Still far from mainstream



Too Expensive

» Such projects are still big research results
e Often break new ground

e Multiple person years or person decades

e Real, binary-level results still rare

e Hard to maintain over long periods
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Too Expensive

» Such projects are still big research results
e Often break new ground

e Multiple person years or person decades

e Real, binary-level results still rare

e Hard to maintain over long periods

» Still too expensive

* But not that far off:
— cheaper than traditional high-assurance dev

— factor 2-3 over high-quality traditional embedded
systems dev
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What can be done?



Better, cheaper, faster.

» Just needs to be cheaper:

® economic pressure wins over time
* everything else follows
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Better, cheaper, faster.

» Just needs to be cheaper:

® economic pressure wins over time
* everything else follows

» Proof Productivity:
* Tools
— more automation, deeper automation, built for scale
* Proof Engineering
— predictability, estimation, scale
®* Languages
— design for verification, increase verification productivity
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The rest of this talk

» Proof Engineering

» Proof Effort
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selL4: Isolation

Trustworthy Computing Base
®* message passing
* virtual memory
* interrupt handling

® access control

Applications
e fault isolation
e fault identification
* |P protection

e modularity

Trusted next to Untrusted

10 Proof Engineering | Gerwin Klein
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Functional Correctness

Proof l




Functional Correctness

definition
schedule :: unit s_monad where
schedule = do
threads < allActiveTCBs;
thread < select threads;
switch_to_thread thread
od
OR switch_to_idle_thread

What

Specification

Proof
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Functional Correctness

definition
schedule :: unit s_monad where
schedule = do
threads < allActiveTCBs;
thread < select threads;

What switch_to_thread thread
od

o . OR switch_to_idle_thread
Specification

void
P f schedule(void) ({
rOO switch ((word_t)ksSchedulerAction) {
case (word_ t)SchedulerAction ResumeCurrentThread:
break;

case (word_ t)SchedulerAction ChooseNewThread:

chooseThread();
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

HOW default: /* SwitchToThread */

switchToThread(ksSchedulerAction);
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;
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*conditions apply
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Proof




*conditions apply -

O

@) [ Expectation

S TR TR LR R

Proof

l Assumptions
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*conditions apply

Assume correct:

O] PRSI [N Sy A S od S, |
C sompliiortaincrpart. S opcom)
@) - assembly code (600 loc)
g - hardware (ARMvé6)

- cache and TLB management

- boot code (1,200 loc)
Proof I




Proof Architecture Now

rr— pvaisbiy
s ' Isabelle

Isabelle

] Isabelle

l Isabelle

l Isabelle/SMT/HOL4

Binary Code Semantics - Binary Code

WCET Analysis

13 Proof Engineering | Gerwin Klein




Proof Architecture Now

High-level properties: .

- functional correctness

_ integrity ' Isabelle

- authority confinement -

- non-interference

- termination

- user-level system initialisation - — Haskell Prototype

- verified component platform
- worst-case execution time
(by static analysis) — -
Roadmap: le/SMT/HOL4
- verified x64 version _ ’ ]
- virtualisation extensions p—,.

- mixed-criticality real-time

timing side-channel elimination

WCET Analysis
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Proof Architecture Now

High-level properties: .
=

- functional correctness

- integrity

- authority confinement

- non-interference
o Open Source

- termination

- user-level system initialisatic

http://selL4.systems
- verified component platforn https://github.com/selL4/
- worst-case execution time
(by static analysis)

Roadmap: " le/SMT/HOL4
- verified x64 version _ I
|
- virtualisation extensions

- mixed-criticality real-time

timing side-channel elimination

WCET Analysis
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As Real as it Gets

» Autonomous in




As Real as it Gets
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Scale

90000
Archive of Formal Proofs
67500
45000
22500
o Ll

5004-03-19  2006-03-31 ~ 2008-11-07  2010-05-28

size of AFP entries by submission date

16 Proof Engineering | Gerwin Klein




Scale

600000

450000

300000

150000

\\‘\“\\\“ \\ \ . ) ) .

size of AFP entries by submission date

with Four-Colour theorem, Odd-Order theorem, Verisoft, seL4
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Proof Introspection

» 500 files =

» 22,000 lemmas stated \ Ag\\\\‘ D\
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Proof Introspection

» 500 files
» 22,000 lemmas stated
» 95,000 lemmas proved

Raf's Observation

. . . 22 WA ‘ P \
The introspection of proof and theories is an essential part of 5%‘; AN
working on a large-scale verification development. r’\l \ -\'\ Sk
N»X

* Learning Isabelle? Easy.
* L earning microkernels? Not too bad.

* Finding your way in the 500kloc proof jungle? Hard!
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Proof Engineering



Software vs Proof Engineering

» Is Proof Engineering a thing?
* Google Scholar:
— “software engineering” 1,430,000 results




Software vs Proof Engineering

» Is Proof Engineering a thing?

* Google Scholar:

— “software engineering” 1,430,000 results
— “proof engineering” 564 results

1600000

1200000

800000

400000

Proo B

Softw. Eng.
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Software vs Proof Engineering

» Is Proof Engineering a thing?

* Google Scholar:

— “software engineering” 1,430,000 results
— “proof engineering” 564 results

1600000

1200000

Includes 800000

"The Fireproof Building” and

“Influence of water permeation and analysis
of treatment for the Longmen Grottoes"

400000

Proo B

Softw. Eng.
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Proof Engineering is The Same

» Same kind of artefacts:
e |lemmas are functions, modules are modules

e code gets big too
e version control, regressions,
refactoring and IDEs apply

1600000

1200000

800000

400000

Proo B

Softw. Eng.
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Proof Engineering is The Same

» Same kind of artefacts:
e |lemmas are functions, modules are modules

e code gets big too
e version control, regressions,
refactoring and IDEs apply

1600000

1200000

» Same kind of problems
® managing a large proof base over time
e deliver a proof on time within budget
e dependencies, interfaces, abstraction, etc

800000

400000

Proo B

Softw. Eng.
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Proof Engineering is Different

» But: New Properties and Problems

e Results are checkable
e You know when you are done!
e No testing
e 95% proof: no such thing

1600000

. . 1200000
e More dead ends and iteration

e 2nd order artefact
e Performance less critical
e (Quality less critical
® Proof Irrelevance

800000

. 400000
e More semantic context
e Much more scope for automation

Proo B

Softw. Eng.
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Proof Development

» Proof development

— decomposition of proofs over people,

— custom proof calculus,

— automating mechanical tasks, custom tactics

— proof craft 1=
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Proof Development D

» Proof development
— decomposition of proofs over peoy

— custom proof calculus, Tim’s Statement
— automating mechanical tasks, cust

_ proof craft Automating “donkey work” allows attention

and effort to be focussed where most needed -
but it must be done judiciously.
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» Proof development

— decomposition of proofs over peoy
— custom proof calculus, Tim’s Statement
— automating mechanical tasks, cust

_ proof craft Automating “donkey work” allows attention

and effort to be focussed where most needed -
but it must be done judiciously.

» Challenges
— non-local change,
— speculative change,
— distributed development
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Proof Development D

23

» Proof development

decomposition of proofs over peoy
custom proof calculus,
automating mechanical tasks, cust
proof craft

» Challenges

non-local change,

— speculative change,
— distributed development

Proof Engineering | Gerwin Klein

Tim’s Statement

Automating “donkey work” allows attention
and effort to be focussed where most needed -
but it must be done judiciously.

Matthias’ Conjecture

Over the years, | must have waited weeks for
Isabelle. Productivity hinges on a short edit-
check cycle; for that, | am even willing to
(temporarily) sacrifice soundness.




Problems of Scale

» Proof maintenance

— changes, updates, new proofs, new features
— automated regression, keep code in sync

— refactoring

— simplification

» Original proof: 2005-2009
» Maintenance: 2009-2016 and counting
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Problems of Scale

» Proof maintenance

changes, updates, new proofs, new features
automated regression, keep code in sync
refactoring

simplification

» Original proof: 2005-2009
» Maintenance: 2009-2016 and counting

Dan’s Conclusion

Verification is fast, maintenance is forever.
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Proof Engineering Tools s
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» User Interface CToTo— T

~ |theory Example Filter: o)

e could proof IDEs be more n

theory Example

BORPIS (D

inductive path forR :: "a = 'a =

f I h IDE ? v inductive path for R :: "'a = 'a = bool" where eorem example:
powerful than code S’ dustle path for § > g

| step: "R x y = path Ry z = path R x z"

e more semantic information  lencoren exempte:

fixes x z :: 'a assumes "path R x z" shows "P x 2"

e proof completion and suggestion? | zing asans
case (base x) o
show "P x x"
next
case (step x y 2)
note 'R x y° and ‘path Ry z°
moreover note ‘P y z° |

ultimately show "P x z" -

qed

end
B ¥ OQutput Prover Session Raw Output T D) <>
5,1(35/405) (isabelle,sidekick,UTF-8-Isabelle)" 1 + o UGEIFI120Mb 3:38 PM
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Proof Engineering Tools

» User Interface
e could proof IDEs be more
powerful than code IDEs?
® more semantic information
e proof completion and suggestion?

» Refactoring

¢ |ess constrained,

new kinds of refactoring possible, e.g.
— move to best position in library
— generalise lemma
— recognise proof patterns

25 Proof Engineering | Gerwin Klein

000 Example.thy

(o Example.thy (~/)

theory Example
imports Base
begin

inductive path for R :: "'a = 'a = bool" where
base: "path R x x"
| step: "R x y = path Ry z = path R x z"

theorem example:
fixes x z :: 'a assumes "path R x z" shows "P x z"
using assms
proof induct
case (base x)
show "P x x" _
next
case (step x y 2)
note 'R x y° and ‘path Ry z°
moreover note P y z°

ultimately show "P x z" _

qed

end

B ¥ OQutput Prover Session Raw Output

5,1(35/405) (isabell

MPOPRPPIS ¢« B

————

e,sidekick,UTF-8-Isabelle)" i o UGEIFI120Mb 3:38 PM



Proof Patterns

» Large-scale Libraries
e architecture:

— layers, modules, components,
abstractions, genericity

e proof interfaces
e proof patterns
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Proof Patterns

» Large-scale Libraries
e architecture:

— layers, modules, components,
abstractions, genericity

e proof interfaces
e proof patterns

» Technical Debt
e what does a clean, maintainable proof look like?
e which techniques will make future change easier?
e readability important? is documentation?

26 Proof Engineering | Gerwin Klein




Proof Effort



Predictions

Can we predict for proofs:
* how large will it be?
* how long will it take?

e how much will it cost?
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Predictions

Can we predict for proofs:
* how large will it be?

* how long will it take?

Of course not.

Many hard problems look deceptively easy.
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Predictions

Can we predict for proofs:
* how large will it be?

* how long will it take?

Of course not.

Many hard problems look deceptively easy.

But maybe for program verification?

At least statistically, some of the time?
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Predictions

Can we predict for proofs:
* how large will it be?

* how long will it take?

Of cours«
Many hai
We have large proofs.
Let’s crunch some data!
But ma
At least .
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Some Hope

Code Size is correlated with Spec Size

x
x  x¥
x %

0 500 1000 1500 2000
Abstract Specification (Lines)
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Code Size is correlated with Spec Size

Spec Size is correlated with Proof Size

Alnvs
Idealised Statement Size vs. Proof Size

3000 -

2500 - x

2000 - <

15000 20000 25000 30000

Proof Size

1500 -

C (Lines)
x

10000
]

1000 -

5000

500 - #

0
|

0 500 1000 1500 2000 ‘ ‘ ‘ ‘ ‘ ‘ ‘

. . N 0 200 400 600 800 1000 1200
Abstact Speetion(ines) Idealised Statement Size
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Some Hope

Code Size is correlated with Spec Size

Spec Size is correlated with Proof Size

Proof Size is correlated with Effort

40.00

3000 -

30.00

2500 - .

2000 - <

20.00

15000 20000 25000 30000

C (Lines)
—
[¥,]
=]
[=]
I
Proof Size
Total effort (person weeks)

10.004 A

1000 -

10000
]

5000

500 - #

T T T T T T
0 5000 10000 15000 20000 25000

Delta size for all changes (lines of proof)

0
|

0 500 1000 1500 2000 ‘ ' ‘ ' ' ‘ ‘

. . N 0 200 400 600 800 1000 1200
Abstact Speetion(ines) Idealised Statement Size
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Some Hope

Code Size is correlated with Spec Size

There may be hope for a prediction model.
Spec

Probably applies to verification of non-modular code.

Prc Unlikely to work for other kinds of proofs, but likely
to transfer to other interactive provers.

=) E
2000 + Py ° g ‘é
%\ ?" -.U_) ] g .
5 1500 g &
5 - S . 10.01 "
1000 - g .
o0 ®
g b
500 A ix# . 3 i
x 0
x
D T T T 1 o
0 500 1000 1500 2000

T T T T T T
0 200 400 600 800 1000 1200

Abstiact Spggiisgtion(iges) Idealised Statement Size
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The Future



The Future: Integration

» No method fits all

» Use sel4 isolation!
* don’t verify all components
* mix verification approaches

Hardware
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The Future: Integration

Unverified CakeML Guardol
Linux extracted Network
Server Application Filter
Y,

» No method fits all

CakeML

. . native Legacy App
» Use sel4 isolation! Application

* don’t verify all components
* mix verification approaches

Ivory Synthesised
Driver Driver

Cogent
File System

Hardware
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The Future: Integration

Unverified CakeML Guardol
Linux extracted Network
Server Application Filter
Y,

» No method fits all

CakeML

native

» Use sel4 isolation! Application
* don’t verify all components

* mix verification approaches
i Ivory

Will need formal interfaces

Hardware

Legacy App

y

Cogent
File System
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Summary

e Verification of real systems is happening
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Summary

e Verification of real systems is happening

e It's still too expensive

® There is hope

e Ongoing work on
e Proof Engineering
e Languages for verification productivity

¢ Increased Automation
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Summary

e Verification of real systems is happening

e It's still too expensive

® There is hope

e Ongoing work on
e Proof Engineering
e Languages for verification productivity

¢ Increased Automation

* Integration will be key
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