
Research Institute in
Automated Program
Analysis and Veri7cation

Annual Report 2014

2 Research Institute in Automated Program Analysis and Veri8cation

Advisory board

Mike Gordon Professor of Computer Assisted Reasoning, University of Cambridge, UK

Mike St John-Green Independent Cyber Security Consultant, UK

Joshua Guttman The MITRE Corporation, USA

Daniel Kroening Professor of Computer Science, University of Oxford, UK

Xavier Leroy INRIA, France

Brad Martin USA Government, USA

Greg Morrisett Professor of Computer Science, Harvard University, USA

Peter O’Hearn Facebook, UK

Fred Schneider Professor of Computer Science, Cornell University, USA

T
H
E

U
N I V E R

S

I
T
Y

O
F

E
D
I N B

U

R
G
H

Participating universities

 www.veri8cationinstitute.org 3

Foreword

The Research Institute in Automated Program Analysis and VeriOcation is

the UK’s second Academic Research Institute in cyber security. It has been

running for almost a year and comprises of six projects based at the University

of Edinburgh, Imperial College London, University of Kent, The University of

Manchester, Queen Mary University of London and University College London.

The common theme is to advance UK research in automated program analysis

and veriOcation, in particular with its application to cyber security. We

will improve the security of our soWware systems by providing greater

understanding, proving correctness and identifying potential weaknesses of

our soWware.

In this relatively short period, our six projects have made excellent progress

as evidenced by our invited keynotes and our publications in high-impact

conferences and journals. We have already had substantial interaction with

government (primarily GCHQ), professional bodies such as the Royal Society,

our international advisory board, industry and universities via our website

(www.veriOcationinstitute.org), face-to-face meetings, reports, presentations

and workshops. One of our highlights was co-organising the third workshop

on Formal Methods and Tools for Security at MicrosoW Research Cambridge

(www.fmats.org), which brought together leading experts for two days of

stimulating talks and discussions.

We hope that you will Ond this annual report of interest.

Professor Philippa Gardner

Director

4 Research Institute in Automated Program Analysis and Veri8cation

Application stores are set to become the dominant model for

soWware distribution. AWer only four years, they had become

incredibly successful: in 2012, Apple’s App Store and Google’s

play store each topped 25 billion app downloads. App stores

not only o^er apps and media content, they also have near total

control on phones and tablets that connect to them. Hundreds

of millions of people place their trust in app store and device

security every day. Unfortunately, this trust is sometimes

misplaced and is starting to be eroded.

App stores of the future, and the devices they control, must

be better defended and resilient under attack. Users and data

owners need justiOable conOdence that apps will behave well

and will not cause damage, whether by accident through bugs,

or by intention through malicious design. Security should be ever

present but unobtrusive, not impacting performance or causing

crashes, not forever downloading patches, not demanding

complex decisions, and not in the hands of just one party.

Our research will examine a number of improvements to app

stores and mobile device operating systems which will take us

closer to future generation, secure app stores.

For example, we will design algorithms that will automatically

analyse apps to ensure they are safe. At the moment, this

has to be done manually by malware analysts in expensive,

time-consuming and sometimes unreliable ways. Another

improvement is to add ‘digital evidence’ to apps. Digital

evidence can guarantee that an app is safe and it can be

checked automatically, even on a phone. Evidence establishes

that the code is safe, whereas the current state-of-the-art in

industry is code signing, which at best only says where the code

has come from. Finally, we want to Ond natural, user-friendly

security policies: rather than the user examining a long list of

complicated permissions as currently happens in Android, we

want to have a set of sensible policies for di^erent types of app.

Under the bonnet the controls will actually be more precise than

at present: with our solution, a game, for example, would not be

allowed to access anywhere on the Internet, just the few places

that it really needs to go; a text-messaging app might only be

allowed to send messages to contacts from a users address

book, not unknown numbers that might be premium-rate.

Aims to improve resilience of application stores by producing
methods to automatically analyse and sign apps for safety properties.

App Guarden: Resilient
Application Stores

T
H
E

U
N I V E R

S

I
T
Y

O
F

E
D
I N B

U
R
G
H

Industrial partners: Google New York, RIM, McAfee, Kotican, Metaforic

Academic partners: LMU Munich, UCM Madrid, Birmingham University, Glasgow Caledonian

Principal Investigator Co-Investigators

David Aspinall Andrew Gordon Don Sannella Ian Stark Charles Sutton Björn Franke

 www.veri8cationinstitute.org 5

Key milestones achieved

 Proof of concept of digital evidence with a reachability

checking tool and simple app policy language.

 Malware classiOer trained with McAfee data (accuracy 95%,

TPR 96%, FPR 5%), together with compact explanations of

abnormal behaviours for each category of app.

 Experimental study using the EviCheck tool, checking a set

of anti-malware probes (non-reachability policies) on 300

popular apps from the Google play store and 300 malware

samples provided by McAfee.

 Using machine learning methods: deOning malware by its

suspicious behaviours against normal behaviours of its

comparison groups.

 Invented an approach for the automatic inference of

lightweight policies for EviCheck.

 Work on a method to produce Compact Explanations of Why

Malware is Bad, which uses machine-learning driven malware

characterisation by di^erence in behaviour against normal

behaviours in comparison groups.

Other activities

 Started on related side-project App Security Knowledgebase

which is building a research platform for hosting large

numbers of Android applications and the results of running

analysis tools on them.

 A connected PhD project started to work on a language

for expressing device-level policies using SecPAL; paper

presented at Doctoral Symposium in ESSOS 2014.

 Stimulating visits from David Barrera (Carleton) and Lorenzo

Cavallaro (Royal Holloway), supported by GCHQ Small Grant.

Barrera is sharing his repository of approx 50k Android

apps and Cavallaro plans to collaborate in future, with

dynamic analysis techniques of his CopperDroid platform

complementing static analysis techniques from App Guarden.

 Visit from Ulfar Erlingsson, Head of Security Research at

Google. We learned about Google’s approach to handling

malware.

 Attended and gave talks at FMATS3 (Cambridge), NIMBUS

workshop (Royal Holloway), CryptoForma (York, UK).

 Short visit from Eric Bodden, Head of Secure SoWware

Engineering Group at EC SPRIDE, Darmstadt, Germany. Held

discussions on App Guarden project and their FlowDroid tool.

 Research Masters thesis completed by visiting MSc student,

who built the backend for the App Security Knowledgebase

and seeded analysis of an initial set of apps and tools.

6 Research Institute in Automated Program Analysis and Veri8cation

The web is evolving at enormous speed from a collection of

mainly static web pages to the current huge dynamic ecosystem

where the boundary between web pages and soWware

application has become indistinct (e.g. Google Maps). This

e^ect is so pronounced that industry is beginning to view the

web as an operating system: e.g. Google’s Chrome OS and

Firefox OS. This quick transformation has come at a price. We

are stuck with dynamic languages developed for the early

web. These languages are unsuited to the development of

sophisticated web applications, resulting in modern applications

being either overly conservative or needlessly unreliable and

insecure. The web will only be trustworthy if the programs

that are used to access it are robust, reliable and secure.

JavaScript is the most widely used language for the web. All

programs written for the browser are either written directly

in JavaScript or in other languages (e.g. Google’s Dart) which

compile to JavaScript. JavaScript is currently the assembly

language of client-side web programming. It is the only

language supported natively by all major web browsers, and

this fundamental role seems unlikely to change. JavaScript

was initially created for small web-programming tasks, which

beneOted from the flexibility of the language and tight browser

integration. Nowadays, the modern demands placed on JavaScript

are vast. Although flexibility and browser integration are still key

advantages, the inherent dynamic nature of the language leads

to buggy programs that cannot be trusted. JavaScript o^ers little

support for modularity, has no reliable IDE support, and has large

numbers of tricky corner cases masquerading as simple, intuitive

programs. Using it to write secure programs is extremely dijcult.

VeriOcation has much to o^er JavaScript: a simple description

of program behaviour; the safe composition of programs; a

clear understanding of conceptual module boundaries; and

the ability to verify security contracts. E.g. we should be able

to assert that a particular web application will maintain the

structure of a web page and will not leak secret data, or that

a browser extension will only perform permitted Ole system

operations. There has been some work on formally analysing

JavaScript programs that has been helpful for discovering bugs

and for describing speciOc safety problems. However, none

provide general-purpose veriOcation analyses, most do not

work with the full language and, of those that prove soundness,

all do so with respect to their abstract models rather than the

ECMA semantics or an actual concrete implementation.

Our project will provide a general-purpose veriOcation tool

for proving correctness, safety and security properties of

JavaScript programs, based on our operational semantics and

CertiOed VeriOcation of Client-Side
Web Programs

Industrial partners: Mozilla Foundation, Google California

Academic partners: INRIA Rennes, KU Leuven

Aims to provide a mechanised speciOcation of the JavaScript
standard on which to develop theories and tools for proving
correctness, safety and security properties of JavaScript programs.

Principal Investigator Co-Investigator

Philippa Gardner Sergio MaTeis

 www.veri8cationinstitute.org 7

program logic. We aim to enable and to provoke a profound

change in how people approach veriOcation research and

design programs for the web. We advocate the development

of certifying veriOcation tools, supported by Coq (a mechanical

proof assistant for checking and discovering formal proofs)

and with a strong empirical link to industrial languages. These

veriOcation tools will provide an essential foundation to underpin

the design of specialised development tools for the engineers

that build the web thereby bringing veriOcation to mainstream

web development. There has been much success in developing

automatic veriOcation tools for C language programs based on

separation logic. We will build on this experience to develop an

automatic veriOcation tool for JavaScript. However, our approach

is di^erent. Our tool will use unsound heuristics to automatically

generate proofs and then certify that the proofs are correct by

checking them in Coq. This way we obtain the maximum trust in

the program speciOcations generated by our veriOcation tool.

Our ambitious goal is to ensure that the soWware we use to

communicate with our banks is at least as reliable as the soWware

as our banks use to communicate with each other.

Objectives

1. JSCert, a formal mechanised speciOcation (in Coq) of the

English standard speciOcation, ECMAScript 5 validated by

JSRef;

2. JSRef, a JavaScript reference interpreter, automatically

generated from JSCert and hence Coq- certiOed, which will be

tested to industrial standards;

3. JSVerify, a certifying general-purpose veriOcation tool for

JavaScript, whose automatically generated proofs are checked

using JSCert;

 4. a plugin architecture for separation-logic veriOcation tools such

as JSVerify and Verifast to enable e.g. DOM, CSS, JQuery and

Node.js library plugins;

5. the certiOed compilation of secure web languages such as

secure JavaScript subsets and Miller’s Secure ECMAScript (SES)

into JSCert and JSVerify respectively, to prove that they are

indeed secure;

6. usable tools based on JSVerify, targeted at speciOc needs

of the JavaScript developer community: e.g. understanding

which JavaScript code touches which elements of a page,

security analysis of browser extensions, and automatically

generating fail-early test cases to assist in the investigation

of complex bugs.

Key milestones achieved

 JSCert, a mechanised speciOcation of JavaScript, written in the

Coq proof assistant, which closely follows the ECMAScript 5

English standard: see http://jscert.org

 JSRef, a reference interpreter for the core JavaScript language

(chapters 1–14 of the ECMA standard) in OCaml, which has been

tested with the Test 262 test suite. We are now working with an

intern (Conrad Watt) on the standard libraries (chapter 15 of the

ECMA standard).

 A simple analysis using the OCaml ‘bisect’ tool, of how much of

the ECMA standard is actually tested by the Test 262 test suite.

 A mechanically checked proof (in Coq) which connects the

behaviour of JSRef with the speciOcation JSCert. This means that

tests of JSRef validate the JSCert interpretation of ECMAScript 5,

and that the JSCert closeness to the standard lends conOdence

in the behaviour of JSRef.

 Extension of our JavaScript program logic (POPL 2012) to deal

with higher-order functions.

Initial work on program logic for Secure ECMAScript (SES).

 Invited talks and department seminars on JSCert at JSTools’13

(ECOOP), PiP’14 (POPL), Mozilla (2013) and Google California

(2013), University of Kent, University College London, University

of York, University of Verona, FMATS3 and Dagstuhl.

 Participated in sotu.js in San Jose. This was a one-day event,

plus informal networking with leaders from industry and

academia in the JavaScript space.

 Participated in Dagstuhl 14271 meeting on Scripting Languages

and Frameworks: Analysis and VeriEcation (June 30–July 4).

This was a one-week invited residential workshop for experts on

scripting languages (such as JavaScript).

 Hosting ENS Cachan internship, working on Reduction-closed

invariance proof for JSCert and GCHQ sponsored intern (Conrad

Watt) on extending the coverage of JSRef.

Papers

– A Trusted Mechanised JavaScript SpeciEcation, M. Bodin,

A. Charguéraud, D. Filaretti, P. Gardner, S. Ma^eis,

D. Naudziuniene, A. Schmitt, and G. Smith, POPL 2014.

In preparation:

– Higher order JavaScript

– Journal paper on program logic

– Journal paper on JSCert and JSRef

– SES

Other activities

 Partners in INRIA are working on using JSCert as a base for an

information flow analysis for secure JavaScript.

 We are partners on a newly funded INRIA’s project that uses,

extends and complements JSCert.

 Sergio Ma^eis supervised BEng projects by Charlie Hothersall-

Thomas (prize-winning): BrowserAudit: A web application that

tests the security of browser implementations (released at:

www.browseraudit.com) and by Tomos Jenkins: The browser

security barometer (pre-release: www.vdetect.uk).

 Thomas Wood, 1st year PhD student of Philippa Gardner, is

working on automatically generating high quality tests from

mechanised formal speciOcations. For example, to supplement

the Test262 suite, which tests whether the JavaScript engines

used in web browsers actually conform to the ECMA standard.

 Sergio Ma^eis selected as Co-Chair of Security Track at ACM

Symposium On Applied Computing 2015.

8 Research Institute in Automated Program Analysis and Veri8cation

Binaries are routinely inspected by the intelligence community,

military organisations and security engineers in their search for

vulnerabilities. Binaries are oWen huge and therefore veriOcation

and program analysis techniques should be scalable. This

project will pioneer compositional analyses for binary code. This

will result in analyses that are both modular and scalable. The

scientiOc challenge in compositional reasoning is how to separate

intricate interactions, avoid expensive operations such as

quantiOer elimination, and derive procedure summaries that are

compact. The project team will develop foundational techniques

for the compositional analysis of binaries, testing their viability

with a running case study: the data sanitisation problem.

ConOdential data is sanitised when its memory is zeroed before

it is deallocated, preventing an attacker retrieving the sensitive

information. Data sanitisation is scientiOcally fascinating because

of the need to track how secrets are passed from one procedure

to another and, in addition, how secrets are embedded into

compound data-structures. The problem is exacerbated by up-

casting and down-casting, and the need to track the size of a data

object to ensure, for example, that all the elements of a bu^er are

properly zeroed.

Key milestones achieved

 Developed framework for security analysis of binaries based on

self-composition.

 Developed Intermediate Representation (IR) for translating X86

binaries to C code.

Implemented translator from binaries to CBMC via IR.

 Tested the implementation on sanitized and non-sanitized

binaries.

 – CBMC winning 2014 TACAS veriOcation competition.

Improvements to translation of X86 binaries to C code.

Translation of ARM binaries to intermediate representation.

Developed IC3 approach for security analysis.

 Review of open-source applications for potential information

leaks due to lack of sanitisation.

Success in GCHQ small grant applications.

CBMC based analysis of Heartbleed bug.

 Developed new generic infrastructure for control-flow recovery

and instruction decoding.

 Developed new approach for bottom-up (compositional) type

recovery.

Further reOnement of IC3 based method for security analysis.

VeriOcation of openSSL for security leaks.

Compositional Security Analysis
for Binaries

Principal Investigators Co-Investigator

Pasquale Malacaria Andy King Byron Cook Michael Tautschnig

Aims to develop a framework and tools for scalable security
analysis for binaries.

 www.veri8cationinstitute.org 9

Papers

– Ed Robbins, Andy King and Jacob M. Howe. (2013) Theory

Propagation and Rational-Trees. Principles and Practice of

Declarative Programming. ACM Press, pp. 193–204.

– Klaus Dräger, Vojtech Forejt, Marta Kwiatkowska, David

Parker and Mateusz Ujma. Permissive Controller Synthesis for

Probabilistic Systems. TACAS 2014.

– Quoc-Sang Phan and Pasquale Malacaria. Abstract Model

Counting: a novel approach for QuantiEcation of Information

Leaks, in Proceedings ACM ASIACCS 2014 Kyoto.

– Robbins, Ed and Howe, Jacob M and King, Andy. (2014)

Theory Propagation and ReiEcation, Science of Computer

Programming, to appear.

– Quoc-Sang Phan, Pasquale Malacaria, Corina Pasareanu

and Marcelo D’Amorim. Quantifying Information Leaks using

Reliability Analysis, in Proc Spin 2014.

Other activities

On-going development of CBMC and IR.

On-going development of IC3 based algorithmic approach.

 Set up of GCHQ supported infrastructure for large-scale

benchmarking.

10 Research Institute in Automated Program Analysis and Veri8cation

This project aims to develop automatic program veriOcation

methods that help security engineers to understand soWware

that they have not written themselves, and enforce security

policies for such soWware. A further aim is to provide security

engineers with policy enforcement primitives they can use to

write soWware that robustly preserves the user’s privacy. The

engineer will be able to make sophisticated queries about

resource requirements and temporal behaviour of code, such

as about memory safety, privileges, or information flow. Our

methods will even support synthesis of behavioural properties

for the engineer: rather than make a closed-world assumption,

where the complete program and physical computing device are

known, our tools will discover logical descriptions of execution

environments (preconditions, protocols, invariants, etc.) that

pinpoint the assumptions necessary for code safety or those

that trigger violations. Such tools would aid engineers by, for

example, advising where to concentrate e^ort when looking

for critical security breaches. They would also suggest where to

place e^ort in hardening an application. Finally, by using strong

analysis techniques based on veriOcation, guarantees of security

properties could be obtained, as well as flaws discovered.

Towards realising this vision we have assembled a team whose

experience ranges from program veriOcation research on logics

and algorithms to systems security research involving new

operating system primitives and soWware structuring principles

that achieve robust security goals.

Program VeriOcation Techniques for
Understanding Security Properties
of SoWware

Principal Investigator Co-Investigators

Brad Karp Mark Handley Byron Cook Juan Navarro Perez

Aims to develop automatic program veriOcation methods (drawing
on static and dynamic techniques) that help security engineers to
understand soWware that they have not written themselves.

Industrial partners: Google USA, MicrosoZ (Trustworthy Computing Group, UK), MicrosoZ Research (Cambridge, UK)

 www.veri8cationinstitute.org 11

Key milestones achieved

 Designed the G8 system for enforcing security policies on

JavaScript applications built for Node.js. G8’s policies work by

enforcing information flow control. Example security policies

include prevention of leakage of sensitive data from applications

and prevention of remote script injection by adversaries. G8

works for real-world ‘legacy’ Node.js applications.

 Produced working initial interpreted prototype of G8 system in

Google’s V8 JavaScript engine for Node.js; presented design and

implementation at RI2 meeting and FMATS3.

 Demonstrated G8 detecting and blocking exploit of a remote

command injection vulnerability in the widely used EtherPad

collaborative document editor application.

 Extended G8 to allow the merging of policy labels, essential for

concurrent enforcement of multiple policies.

 IdentiOed directory traversal vulnerability in a Node.js

application; implemented policy in G8 to prevent exploit of this

class of vulnerability.

 Designed a performance-enhanced approach to implementing

G8 based on source-to-source JavaScript compilation with

the Closure compiler, to leverage the V8 engine’s just-in-time

compiler.

 Designed COWL (ConOnement with Web Origin Labels), a

label-based mandatory access control system for web browsers

(work in collaboration with Google, Mozilla, and Stanford).

COWL provides strong conOnement of untrusted JavaScript

in web applications. As a result, it provides strong protection

against leaks of sensitive information from web applications

and enables the creation of ‘mashup’ web applications that are

today impossible to implement securely.

 Built full prototype implementations of COWL for the Firefox and

Chromium web browsers. Experiments show that COWL o^ers

strong privacy at very low cost: the overhead introduced by

COWL is imperceptible by browser users.

Papers

– Yang, E., Stefan, D., Mitchell, J., Mazières, D., Marchenko,

P., and Karp, B., Toward Principled Browser Security, in the

Proceedings of the Fourteenth Workshop on Hot Topics in

Operating Systems (HotOS 2013).

– Stefan, D., Yang, E., Marchenko, P., Russo, A., Herman, D., Karp,

B., and Mazières, D., Protecting Users by ConEning JavaScript

with COWL, to appear in the Proceedings of the 11th USENIX

Symposium on Operating Systems Design and Implementation

(OSDI 2014).

Other activities

 Productive collaboration visits by Stefan and Yang of Stanford

University to University College London (UCL) while working on

COWL.

 Productive collaboration visit by Karp of UCL to Stanford

University while working on COWL.

 Ongoing work on developing ejcient sandboxing techniques

for server applications based on SoWware-Based Fault Isolation

(SFI). This strand of work incorporates program analysis as

an optimisation to apply opportunistically (in this case, to

eliminate SFI guard instructions when analysis succeeds and

suggests they are unnecessary).

 Ongoing work on implementing the performance-enhanced G8

design based on source-to-source compilation in the Closure

JavaScript compiler.

 Ancillary news from our other systems research: paper (with

Salameh, Zhushi, Handley, Jamieson, and Karp, all of UCL),

HACK: Hierarchical ACKnowledgments for EZcient Wireless

Medium Utilization, received the Best Paper Award at USENIX

ATC 2014.

 Brad Karp selected as Program Co-Chair of ACM SIGCOMM 2015

conference, to be held in London in August 2015.

12 Research Institute in Automated Program Analysis and Veri8cation

This project focuses on advancing reasoning-based veriOcation

and security analysis of soWware and web services. In our

everyday life we rely on security of soWware and web services e.g.

when using digital banking or social networks and therefore the

problem we are addressing is both challenging and important.

This problem is highly non-trivial and one of the major challenges

comes from the enormous complexity and growing size of the

soWware used in security-critical applications. Typically such

soWware contains from hundreds of thousands to millions lines of

code written by di^erent developers using di^erent platforms and

requirements. How we can ensure that these complex soWware

systems are functioning correctly and do not have security

vulnerabilities? Our approach is to develop fully automatic

methods and tools for veriOcation and security analysis based on

rigorous mathematical foundations. These methods are based

on formalisation of the veriOcation problem in formal logic and

applying automated theorem proving to prove that the security

properties are satisOed, or otherwise Ond security vulnerabilities

if such a proof fails. Over 50 years of research in automated

theorem proving resulted in deep theoretical results and powerful

tools based on these results. Our group is world-leading in this

area, our theorem proving systems (Vampire and iProver) have

been winning almost all major divisions in the world cup in

Orst-order theorem proving (CASC) over the last years. However,

program veriOcation and security analysis requires further

considerable advances in both theorem proving and formalisation

which we address in this project.

The project consists of three major parts:

A. Automatic generation of program properties using symbol

elimination and interpolation.

B. Application of theorem provers in veriOcation of real-life large-

scale web services.

C. Ejcient reasoning with quantiOers and theories with

applications in verifying program properties.

Part A: continues the line of research in algorithms for an

automatic generation of program properties we started in 2009.

Generation of such properties is very important for analysing very

large programs, including checking their security-related features.

Part B: aims to design a practical low-cost methodology for

veriOcation or access policies for large-scale web services,

demonstration of viability of this methodology by verifying a real-

life web service, and supporting this methodology by tools based

on theorem provers and model Onders.

Part C: is rooted in our understanding that ejcient reasoning

with both quantiOers and theories is crucial for applications of

theorem provers in veriOcation and program analysis and will be

central in automated reasoning research for the next decade or

REVES: REasoning in VEriOcation and
Security

Aims to enhance Orst-order theorem provers to use them in
program analysis (Vampire) and to develop methods for verifying
access policies in web services using such provers.

Principal Investigator Co-Investigator

Andrei Voronkov Konstantin Korovin

Academic partners: TU Vienna, Chalmers University of Technology

 www.veri8cationinstitute.org 13

even longer. It aims at the design and implementation of ejcient

algorithms for automated reasoning when both quantiOers and

theories are used.

Key milestones achieved

 With our colleagues, we have developed a method for ejcient

Orst-order theorem proving about collections (arrays, sets,

maps). The method was implemented in our theorem prover,

Vampire.

 We undertook major updates in Vampire, removing about 25%

of the existing code. The updates will make the system more

easily maintainable. Most of the code removed was related to

splitting features, which makes new developments very hard,

yet are not necessary since our new AVATAR architecture makes

old ways of splitting essentially unnecessary.

 Together with collaborators from MicrosoW, Carnegie Mellon

SoWware Engineering Institute and Tel Aviv University we have

been developing new methods for EPR-based interpolation.

The results are mainly theoretical; developing a more practical

algorithm for interpolation is future work.

Initial work on integrating bit-vector reasoning into iProver.

 Sort support in iProver to facilitate bounded model checking

with bit-vectors.

Improved Onite model Onding capabilities for iProver.

 We created a Github repository for distributed development

of Vampire with our colleagues from TU Vienna and Chalmers

University.

Work started on changing the Vampire SAT and SMT solvers.

 EPR-based k-induction for model checking was developed and

integrated into iProver.

 Preliminary work on developing EPR-based methods for the

deadlock detection.

 The Vampire workshop on Orst-order theorem proving and

Vampire organised at VSL 2014 (Vienna Summer of Logic),

attended by 19 people.

 Preliminary work on options for AVATAR, including the use of

third-party SAT solvers, presented at the Vampire Workshop.

Vampire was integrated with the SAT solvers MiniSat (Chalmers

University) and Lingeling (Johannes Kepler University).

 The Orst implementation of a concurrent architecture for

superposition theorem provers. Several proof attempts can be

run concurrently.

 Participation in the annual World Cup in theorem proving

(CASC). Vampire is the champion in the main division (FOF).

iProver is the champion in two divisions (SatisOability and EPR).

All together Manchester systems won three out of six titles.

 Preliminary work on Orst-class Boolean type in Orst-order

theorem provers presented at the Vampire workshop.

 Konstantin Korovin gave a joint invited talk at the LaSh’14 and

QUANTIFY’14 international workshops on instantiation-based

reasoning at the Vienna Summer of Logic (VSL 2014).

 Andrei Voronkov gave a keynote talk at ASE 2014 (Automated

SoWware Engineering).

 Restructuring of iProver code and reworking main data-

structures.

Extending preprocessing and simpliOcation modules in iProver.

Preliminary work on monadic decomposition for Skolemisation.

 Flexible combination of bounded model checking and

k-induction in iProver.

 Integration of non-equivalence constraints into iProver for

complete k-induction.

Papers

– Accepted to ATVA 2014: A. Gupta, L. Kovacs, B. Kragl and A.

Voronkov, Extensional Crisis and Proving Identity.

– N. Bjørner, A. GurOnkel, K. Korovin and O. Lahav, Instantiations,

Zippers and EPR Interpolation at Logic for Programming ArtiOcial

Intelligence and Reasoning (LPAR’13).

– K. Korovin and M. Veanes, Skolemization Modulo Theories.

ICMS 2014.

– A paper on EPR-based k-induction is in preparation.

– Paper presented at CAV 2014: A. Voronkov, AVATAR: a New

Architecture for First-Order Theorem Provers (Andrei Voronkov).

It is based on previous results but clearly targets new areas

central to REVES, mainly reasoning with both quantiOers and

theories.

– Abstract published at ASE 2014: Andrei Voronkov. Keynote talk:

EasyChair.

14 Research Institute in Automated Program Analysis and Veri8cation

The flood of malware samples is predicted to grow into a deluge

in 2012, making the problem of maintaining a database of

malware signatures ever more dijcult. For each new sample, it

is important to determine the threat that it poses. In response

to this, dynamic malware analysis tools have been designed

that execute the sample in a sandbox, monitoring the actions of

a sample. If these actions are similar to those of malware that

has been already indexed in the database, then one might draw

conclusions regarding provenance and severity of the threat

posed. If the sample does not match against known malware,

then it can be subject to manual scrutiny, using a dissembler such

as IDA Pro.

This Linnaean approach to malware analysis is both natural

and convenient: it is natural to group malware into families that

share common attributes; and it is provides a convenient way

of assessing threat. Yet the whole methodology is predicated

on the accuracy with which samples are characterised by their

signatures. If a sample is assigned a signature that does not

express its behaviour, then samples that are behaviourally

distinct can be erroneously grouped together. Conversely,

samples which behave the same, but appear di^erent, can be

accidentally placed in di^erent groups. The main problem with

dynamic malware analysis tools is that they execute the binary

for a limited time, typically considering just one path through the

binary. This limits the actions that can be observed, rendering

the signature inaccurate for programs that reveal their true

behaviour later. In addition, the dynamic approach can miss

infrequent actions or logic bombs. The dynamic approach is

also susceptible to timing attacks that detect a tracer to turn o^

some action. Above all, the signatures are based solely and only

on those actions that are encountered during the trace. More

static approaches have been applied too, at one extreme using

the call graph of the binary itself for classiOcation, and at the

other deploying model checking techniques to search the paths

through call graph for signature behaviours that characterise

known malware families. Yet graph matching techniques are

sensitive to control-flow obfuscation and model checking requires

the signature behaviours to be known up-front and distilled into a

temporal formula or an automata.

A middle ground is o^ered by abstract interpretation since

it provides a way to systematically consider all paths, while

monitoring a program for actions that inform the construction

of the signature. Abstract interpretation provides a way to break

the dichotomy between the purely dynamic and the purely static

approach to malware analysis into a graduated continuum.

Formally, purely static approach (a.k.a. a static analysis) can be

derived from the purely dynamic approach (a.k.a. a tracer) by

compositing a sequence of abstractions. The challenge is to Ond

the hybrid that provides sujcient path coverage to undercover

logic bombs yet is sujciently robust to be used by practitioners in

SeMaMatch: Semantic Malware
Matching

Aims to derive robust semantic signatures for malware
classiOcation based on a static and dynamic analysis.

Principal Investigators Co-Investigator

David ClarkAndy King Earl Barr

Industrial partner: McAfee Labs

 www.veri8cationinstitute.org 15

the security sector. The proposed project will discover this sweet

point by following two complementary lines of inquiry. Concrete

traces will be abstracted to cover more paths and mWEbore

actions (at UCL). Static analyses, which cover all paths, will be

reOned to avoid paths and actions that do not actually occur

(at Kent University). Thus UCL will add missing information to

signatures (converging on the ideal signature from below) whilst

Kent University will remove excess information from signatures

(converging on the ideal signature from above). By reflecting on

the relative merits of these approaches, we will draw conclusions

on how to construct robust signatures for malware classiOcation

and thereby advance the whole Oeld.

Key milestones achieved

 Experimented with Normalised Compressed Distance (NCD) for

malware matching.

 Experimented with tools for static malware matching based on

tree automata.

 IdentiOed problematic experimental results in NCD-based

malware matching.

 Investigated graph-edit distance as a metric for malware

matching.

 IdentiOed 7z as optimal compressor for NCD mostly due to large

compression window.

 Experimented on 600 benign/malware executable binaries

using 7z. Mann Whitney Wilcoxon test showed excellent, ordinal

separation between the populations using compressibility as

a metric. NCD showed almost perfect separation except for two

benign programs classed as malware. Interestingly, these were

program installers.

 Researched creating ‘proOles’ for executable binaries – static

analysis that identiOes high entropy and low entropy regions in

the code.

 Developed new incremental algorithm for testing satisOability of

octagons.

Developed new algorithm for concretising wrapped octagons.

 Developed techniques for combining status register flags with

octagons.

Benchmarked new algorithms and quantiOed speedup.

 Collected more than 13K Windows executable malware samples

from online resources.

 Repeated NCD and compressibility ratio experiments on a

larger scale (6000 Oles). The experiments show that NCD

with k-medoid clustering can achieve F-scores of over 0.95.

Compressibility ratios, which are cheap to produce (O(n) vs

O(n^2) for NCD) achieves F-scores of around 0.85.

 Developed a classiOer for malware/benign binary executables

on disk using decision forests. Using weak classiOers based

only on pairwise NCD we achieved 98% accuracy.

 Experimented with metamorphic engines and NCD. Repeated

applications of the engine produced asymptotic upper bounds

for some engines. Compressibility rates established clear

viability degradation for all programs with repeated engine

applications.

 Developed and experimented with a simple algorithm to remove

high entropy regions from Oles and then calculate NCD. High

entropy regions are expected to be compressed or encrypted

and, therefore, removing these regions might highlight

similarities in uncompressed/unencrypted regions of the Ole.

Surprisingly, the results showed that NCD precision/recall is not

a^ected by removing compressed/encrypted regions. However,

processing time for NCD was reduced by more than 65%.

Papers and reports

– Aziem Chawdhary, Ed Robbins and Andy King, Simple and

EZcient Algorithms for Octagons, To appear in APLAS’14,

LNCS, Springer-Verlag.

– Ranjeet Singh and Andy King, Partial Evaluation for Java

Malware Detection, To appear in LOPSTR’14, LNCS, Springer-

Verlag.

– William Jones, On Optimizations for the Volegnant-Jonker

Algorithm for the speciEc task of Graph Edit Distance

computation, Technical Report, September, 2014.

– Nadia Alshawan, Earl Barr, David Clark and George Danezis.

Detecting Malware with Information Complexity and Decision

Forests. Technical Report, September 2014.

– Nadia Alshawan, David Clark, Ibrahim Hadjediwa, Source Code

Metamorphism and Information Complexity, Technical Report,

September 2014.

– Kapileshwar Symasundar, Reverse Engineering Malware with

IDA Pro, September 2014.

Other activities

 Participated in Dagstuhl Seminar 14241 Challenges in Analysing

Executables: Scalability, Self-Modifying Code and Synergy, June

9–13 2014.

 UCL second year intern, Kapileshwar Symasundar, funded by

GCHQ. Spent the summer reverse engineering malware.

 GCHQ funded a PhD studentship at UCL on Onding trigger

conditions for malware behaviours using the Conditional

Entropy Method.

Course on Malware added to Information Security MSc at UCL.

