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Figure 1: Acquired reflectance and transmission maps and surface geometry (a – f) of a liquor bottle, enabling realistic 3D rendering (g)
under the Pisa lighting environment.

Abstract
We present a practical method for acquisition of shape and plausible appearance of reflective and translucent objects for
realistic rendering and relighting applications. Such objects are extremely challenging to scan with existing capture setups,
and have previously required complex lightstage hardware emitting continuous illumination. We instead employ a practical
capture setup consisting of a set of desktop LCD screens to illuminate such objects with piece-wise continuous illumination
for acquisition. We employ phase-shifted sinusoidal illumination for novel estimation of high quality photometric normals and
transmission vector along with diffuse-specular separated reflectance/transmission maps for realistic relighting. We further
employ neural in-painting to fill gaps in our measurements caused by gaps in screen illumination, and a novel NeuS-based
neural rendering that combines these shape and reflectance maps acquired from multiple viewpoints for high-quality 3D
surface geometry reconstruction along with plausible realistic rendering of complex light transport in such objects.

CCS Concepts
• Computing methodologies → Computational photography; Reflectance modeling; 3D imaging;

1. Introduction

Appearance and shape capture of everyday objects has received a
lot of attention in computer graphics and vision for reconstruction
and realistic rendering applications. Most efforts here have been
dedicated for acquisition of opaque objects, with different acqui-
sition setups designed for objects exhibiting diffuse or glossy re-
flectance, vs. those exhibiting sharp specular reflectance. Some ef-
forts have also been dedicated to acquisition of transparent glass
objects which are also quite common and visually interesting. How-
ever, there is very little prior work on acquisition of a special class

of objects that are both reflective and translucent, e.g., a trans-
parent/translucent bottle/container containing a translucent liquid
along with opaque reflective sections such as label or bottle cap
(see Figure. 1). Such objects are very hard to capture due to the
requirements of acquiring both surface shape and reflection as well
as transmission/refraction of light through parts of the object. Often
such objects exhibit dominantly specular surface reflection (glass
or plastic material) with very little diffuse surface texture, making
even the acquisition of surface shape challenging.

In this work, we present a practical method and capture setup to

submitted to Eurographics Symposium on Rendering (2023)

https://orcid.org/0000-0001-7786-469X
https://orcid.org/0000-0002-0630-1344
https://orcid.org/0000-0003-1015-1091


2 A. Lin, Y. Lin & A. Ghosh / Practical Acquisition of Shape and Plausible Appearance of Reflective and Translucent Objects

acquire the surface shape and plausible appearance of such reflec-
tive and translucent objects for realistic rendering applications. Our
capture setup consists of a set of five desktop LCD monitors that
are arranged to sequentially illuminate the object with frontal and
back illumination respectively in order to separately acquire surface
shape and reflectance, as well as transmission/refraction of light
through the object. The setup also exploits multiview imaging using
a set of cameras placed between the the LCD monitors to acquire
view-dependent reflectance and transmission of the object. Direct
capture with our setup has some limitations due to gaps in illumi-
nation which we overcome using neural in-painting of the acquired
maps. Finally, the estimated surface shape and view-dependent ap-
pearance maps are employed in a novel NeuS-based neural render-
ing procedure to create plausibly realistic renderings of the object
from novel viewpoints and under novel lighting environments. Note
that our approach strives for plausible rather than accurate model-
ing of object appearance. This is because we employ a relatively
simple rendering model, driven by our estimated view-dependent
appearance maps, which results in a first order approximation of the
actual light transport through the object volume. Despite this plau-
sible appearance approximation, our method achieves very com-
pelling rendering results for a visually interesting class of everyday
objects that have been extremely hard to digitize until now.

Our main contribution can be summarized as:

• A practical setup comprising commodity screens for scanning
target reflective and translucent objects without dedicated illu-
mination hardware.

• A novel photometric method to estimate photometric normals
and transmission vectors using phase-shifted sinusoidal illumi-
nation.

• A weighted loss function that performs neural inpainting for
piece-wise continuous measurements and helps with high quality
3D geometry reconstruction of our target objects.

• Plausibly realistic rendering results for our target class of ob-
jects from novel viewpoints under novel lighting without explicit
modeling of internal geometry and medium.

2. Related Work

Reflectance capture for opaque objects have been well researched
in computer graphics. Various capture setups with controlled il-
lumination have been proposed for measuring the shape and
reflectance of an opaque object [MHP*07; GFT*11; KXH*19;
KGX*23]. Most lightstage setups utilize discrete lighting to ap-
proximate the illumination. While this works well for rough,
opaque surfaces, these setups cannot properly illuminate reflec-
tive and translucent objects. Because of the complexity involved,
continuous illumination is difficult to produce and setups that pro-
vide continuous illumination are usually limited in size and fo-
cus on purely reflective objects [LPGD09; TFG*13; KXH*19].
More recently, the monitor-based illumination setup proposed by
[LLK*22] provides a convenient way to illuminate a subject with
piece-wise continuous illumination, a property that we exploit in
this work.

Capturing the appearance of reflective and translucent objects
is challenging because of the complex light transport involved in

these objects. A BRDF model is insufficient to model the ap-
pearance of these objects, and a scattering model would require
knowledge of the inner geometry as well as the optical proper-
ties of the participating media. While several methods have been
proposed to measure the scattering properties of participating me-
dia [NGD*06; GZB*13; IRN*22; YX16], simultaneously acquir-
ing the optical properties as well as the geometry of common reflec-
tive and translucent object remains challenging. Relighting these
objects have been previously done in the context of environment
matting methods that, similar to our setup, employ a screen illumi-
nation for back-lighting [ZWCS99; PD03; CZH*00]. Image-based
relighting of such objects under environmental illumination has
been done using a very specialised dual lighstage setup [HED05],
as well as by using neural networks for modelling the scene’s
light transport [RDL*15]. However, these methods are restricted
to single-view, and do not provide any 3D geometry information.

A number of other works have focused on 3D geometry re-
construction without appearance modelling. While geometry re-
construction can be done under passive uncontrolled illumina-
tion [GHLB15; LYC20], incorporating active illumination meth-
ods enables higher-quality capture of meso-structures [FCM*08]
and overall geometry [KRG17; LWL*20; MLS*14; WZQ*18].
These active illumination methods involve dedicated illumination
and capture setup design that either measures light reflection or
transmission/refraction. Most related to our work, [MPZ*02] com-
bined environment matting methods with sparse frontal lighting,
and utilized multiview capture to reconstruct the 3D geometry and
reflectance for reflective and refractive objects. Their method, how-
ever, requires a complicated lighting setup and only provides a
rough geometry, as well as sparse specular reflectance measure-
ments.

More recently, with the advances of inverse volume rendering,
multiple methods have demonstrated high quality novel-view syn-
thesis using just a few input images. Several methods has been
proposed to either model specular reflection [VHM*21], refrac-
tive light transport [BMR*22], or reconstructing the 4D light field
[SESM22]. These methods demonstrated that inverse volume ren-
dering is capable of state-of-the-art novel-view image synthesis.
However, relighting reflective and translucent objects remains a
challenging problem. Most current works that attempt to recon-
struct translucent objects with inverse rendering restrict their model
to subsurface scattering [CLZ*20; DLW*22]. Our method differs
from these work in that we combine active illumination and inverse
volume rendering to achieve high quality 3D rendering with plau-
sible relighting for reflective and translucent objects.

3. Method

3.1. Overview

Our capture setup utilises five desktop LCD monitors for illuminat-
ing the object, of which four are used for frontal lighting to acquire
outer shape and reflectance. The fifth monitor is used for backlight-
ing to obtain transmission maps. Figure 2 illustrates the capture
setup. Six DSLR cameras are evenly placed between the center ver-
tical gap of the frontal monitors (see Figure 6). Placing the cameras
in the center gap allows us to obtain good transmission measure-
ments of the object with the back lighting monitor. This placement
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(a) Capture Setup (b) Front illum. (c) Back illum.

Figure 2: Our capture setup (a) provides piece-wise continuous
illumination, allowing practical measurements of mirror-like spec-
ular properties of a reflective and translucent object – a liquor bot-
tle. (b), (c) show the object lit with frontal and back illumination
separately.

Figure 3: We use five sinusoidal patterns plus two binary patterns
to estimate the diffuse albedo, specular albedo, and specular nor-
mal (or the transmission vector for back illumination). This figure
shows the patterns we use to illuminate either the front hemisphere
or the back hemisphere. Each hemisphere is illuminated sequen-
tially to separately observe the reflective and transmissive proper-
ties.

also allows us to observe the reflection and transmission separately
with minimal crosstalk by illuminating the object with only frontal
lighting or backlighting. Extending the diffuse-specular separation
method of [LPGD09], we illuminate the object being scanned us-
ing five sinusoidal and two binary patterns as shown in Figure 3,
and further process the captured images to obtain view-dependent
reflectance maps. We repeat this process twice, once with frontal
illumination only to capture the reflective components and once
with back lighting to capture the transmissive components, obtain-
ing diffuse albedo, specular albedo, and specular normal maps for
the reflective component, and transmission albedo and transmission
vector for the back lighting. The object being scanned is rotated five
times about its vertical axis and the above scanning process is re-
peated per orientation.

The view-dependent appearance maps acquired from multiple
viewpoint are thereafter employed to jointly train the recently
proposed neural signed distance function (NeuS) representation
[WLL*21]. This allows us to obtain a smooth neural interpola-
tion of our acquired view-dependent appearance maps for a novel

viewpoint and perform view-dependent realistic relighting of the
scanned object. Inevitably, our acquired specular reflection maps
exhibit discontinuity due to gaps in the illumination, limiting the
quality of the rendering results. To tackle this problem, we propose
a novel loss function for training the NeuS with imperfect reflec-
tion normals, and a neural solution to predict an improved specular
reflection albedo given the issues with the measured data. Figure 4
illustrates the complete 3D neural reflectance learning pipeline.

3.2. Background

We employ sinusoidal illumination using our capture setup
for diffuse-specular separation as proposed by Lamond et al.
[LPGD09]. Both reflection and transmission diffuse and specular
maps of an object are obtained using the same method, with the
only difference being whether the object is front lit or back lit.

Given a sinusoidal illumination pattern:

I(⃗ω) = sin( f φ+ψ)+1, (1)

where the intensity of the illumination depends on the direction of
the irradiance: ω⃗ = (φ,θ), the reflected radiance for a given surface
point is a function of the frequency f and the illumination phase
shift ψ:

E( f ,ψ) = ρ+ cos(ψ)S( f )+ sin(ψ)C( f ), (2)

ρ,C and S are spatially varying constants that determine the re-
flected radiance function for each pixel. Since the diffuse response
to a sinusoidal illumination decreases to approximately zero when
the frequency is high [RH01], we have:

ρs ≈
√

S2 +C2,

ρd ≈ ρ−ρs,
(3)

where ρd and ρs are the diffuse and specular albedo respectively.
Under a fixed frequency f , the reflected radiance for a sinusoidal
illumination pattern is a function of the phase shift with three pa-
rameters (ρ,C,S). Thus, we measure the reflected radiance under
three sinusoidal illumination patterns with different phases ψi, i ∈
{0,1,2} to estimate the parameters (ρ,C,S) by solving a linear sys-
tem. While Lamond et al suggested to use f > 10 for their method,
using such high frequencies would not provide enough information
for estimating the specular normal and transmission vector. Instead,
we noticed that using f = 3 is sufficient for diffuse and specular
separation [RH01], and allows us to estimate the specular normal
and transmission vector with only two additional binary patterns.

3.3. Estimating Specular Normal and Transmission Vector

While Lamond et al. [LPGD09] used the parameters (ρ,C,S) to
separate the diffuse and specular response, the relation between C
and S is not utilized. Here, we exploit the fact that the ratio between
C and S encodes the phase of the reflected radiance function, and
use this to estimate the specular normal and transmission vectors.
We can calculate the illumination phase shift that corresponds to
the maximum reflected radiance ψmax by rewriting equation 2 as
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Figure 4: Overview of the 3D Appearance Pipeline. Once the reflectance maps are acquired (a), we train a NeuS for each reflectance map
to acquire a view dependent 3D representation. To fix the discontinuity in the measured specular maps, we propose a weighted loss function
while training the specular normal and transmission vector. The geometry acquired from the specular normal is then used as input (with the
diffuse map) to train a specular network to predict view dependent specular albedo. Implmentation details are described in section 3.5

follows:

E( f ,ψ) = ρ( f )+A( f )cos(ψ−ψmax( f )),

A( f ) =
√

C( f )2 +S( f )2,

ψmax( f ) = arctan(C/S).

(4)

The observed radiance reaches its maximum when the phase
shift of the illumination is ψmax( f ). Now consider a reflective,
mirror-like surface with a reflection angle φr, the specular response
depends mostly on the illumination from the reflection angle φr.
Thus the maximum specular reflection is observed when the illu-
mination at direction φr is maximal, referring back to equation 1,
we have

1+ sin( f φr +ψmax) = max
φ

(I(⃗ω)) = 2, (5)

then the reflection angle can be represented as:

φr =
π/2−ψmax

f
+

2nπ

f
, n ∈ {0, ..., f −1}. (6)

For a set of sinusoidal patterns with frequency f , we obtain f
possible candidates for φr. Since we chose f = 3, and only illumi-
nates half of the sphere during capture, there are only two possible
candidates for φr. φr can be uniquely identified by acquiring two
additional measurements under a horizontal binary pattern and its
complement as shown in Figure 3. In the pure reflection case, φr
corresponds to the reflection vector, whereas when only transmis-
sion is observed, it is equivalent to the transmission vector.

Now that we know how to estimate the maximum specular re-
sponse angle along the direction of phase-shift, we can repeat the
process along the longitudinal and latitudinal directions respec-
tively, which gives us a pair of angles (θr,φr) that represents the
maximum specular response vector in the polar coordinate. Since

we use the same frequency for sinusoidal patterns along the longitu-
dinal and latitudinal directions, we can assume they share the same
diffuse component. The resulting linear system will have five un-
knowns: {ρd ,Sθ,Cθ,Sφ,Cφ}, which requires five observations un-
der different sinusoidal patterns (e.g., three phase-shifts along θr,
and and two phase-shift along φr) to solve for the unknowns.

For a reflective and translucent object, both reflection and trans-
mission are usually present under a full sphere of illumination. To
separately measure reflection and transmission, we observe the re-
flective behavior by illuminating only the front hemisphere with the
sinusoidal and binary patterns, then repeat the same procedure with
only the back hemisphere illuminated. With the back illumination,
we can obtain the transmission vector as well as the transmission
equivalent of diffuse and specular albedo. In our experiments the
observed transmission diffuse albedo is always almost zero, thus in
the following sections we only refer to the transmission specular
albedo as the transmission albedo.

Figure 5 shows the captured reflectance maps for both reflection
and transmission. While these properties do not fully capture the
scattering properties, they provide an efficient way to render the
translucent behavior of an object without having knowledge of the
participating medium and the entire geometry.

3.4. Resolving Issues with Limited Coverage

While the LCD screens provide a convenient way for generating
continuous sinusoidal illumination, the gaps between screens and
the limited latitudinal coverage introduces specular gaps in the
measurements, as seen in Figure 5

To resolve this issue, we use multiview capture to measure the
specular reflections from different viewpoints. Specifically, to re-
solve the limited latitudonal coverage, we place six cameras in a
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Figure 5: Captured Reflectance Maps. We observed that the trans-
mit diffuse albedo is always almost zero, even with objects that are
highly scattering. The transmit diffuse albedo will not be shown in
the following discussion.

(a) Illustration of vertical cam-
era placements (b) Viewpoint 1 (c) Viewpoint 2

Figure 6: Multiple cameras placed vertically provides wider range
for valid specular measurements

vertical line, extending the measurable specular reflections (Fig-
ure 6). To resolve the issues due to the gaps between screens, we
slightly rotate the object horizontally 5 times during each capture.
As a result, for each object we would measure the reflectance maps
from 30 different viewpoints.

3.5. Novel View Synthesis

After acquiring the view-dependent reflection and transmission
maps, synthesising novel view maps can be achieved by train-
ing multiple NeuS [WLL*21] independently for each reflectance
maps across different views. However, as we have gaps between
the frontal monitors, the specular response from the object exhibits
discontinuity in reflection, resulting in noticeable imperfections in
the acquired specular albedo and normals. To tackle this problem,
we make two assumptions:

1. Low specular albedo measurement is caused by the gaps and
limited coverage of the illumination.

2. For each surface point, there are one or more good specular ob-
servations, i.e. the surface reflects the screen illumination to at
least one of the camera views.

With such assumptions, we can directly relate the acquired spec-
ular normal quality to its acquired specular albedo, and there are
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(b) Learnt neural
specular normal

(c) Measured
specular albedo

(d) Learnt neural
specular albedo

Figure 7: Our neural volumetric NeuS-based specular normals (b)
learns to fill in the gaps in measurement (a) by taking information
from other viewpoints. The reconstructed mesh is then used with the
diffuse albedo to guide an MLP that predicts an in-painted specular
albedo map (d) from the original measurements (c).

one or more reasonably accurate normal acquired for a surface
point across the 30 views we acquire of the object’s frontal surface.
Therefore, we employ NeuS to perform neural in-painting of the
gaps in the specular measurement. For this purpose, we first train
a NeuS for the specular normal minimizing the weighted objective
function:

Lnormal =
N

∑
i=0

( ˆ⃗n− n⃗)2 ·ρs, (7)

where ˆ⃗n is the estimated specular normal from NeuS, n⃗ is the ac-
quired normal, and ρs is the acquired specular albedo.

Figure 7(a, b) demonstrates comparisons between the acquired
specular normal and the hole-filled specular normal by training a
NeuS [WLL*21] with our weighted loss function. Our refined spec-
ular normal maps are globally consistent and smooth, unlike the di-
rectly measured specular normal maps which have noise caused by
the piece-wise continuous illumination. As a result, the 3D geome-
try extracted from the trained NeuS for the normal is of high quality
and accuracy, and is much better to the geometry obtained from di-
rectly training NeuS with images captured under a fixed lighting
(see Figure 9).

A similar process could be applied to refine the specular albedo.
However, as NeuS implicitly optimises for surfaces, highly view-
dependent specular albedo maps tend to introduce unpleasant sur-
face variations to compensate for the view dependency. Instead,
we borrow the mesh extracted from the NeuS trained using nor-
mal maps, and we directly predict the specular albedo using a
trained MLP with the fixed mesh. We assume the specular albedo
is strongly correlated to the diffuse albedo, and define the training
loss as:

Lspecular =
N

∑
i=0

( f (ρd ,c, (⃗v · n⃗))−ρs)
2 ·ρs, (8)

where ρs is the acquired specular albedo, c is the world positional
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coordinate of the surface point. To model the view-dependent Fres-
nel effect, we provide the function f with the dot product of the
view vector v⃗ and the surface normal n⃗. We train an MLP to ex-
plicitly learn the function f , and estimate the specular albedo for
a surface point c viewed at direction v⃗, given the diffuse albedo
ρd . Here, the diffuse albedo itself is obtained from a separate NeuS
trained using the acquired multi-view diffuse albedo maps for novel
view synthesis. Figure 7(c, d) shows a comparison between the ac-
quired specular albedo which exhibits gaps in the reflection and the
neural prediction of the specular albedo which performs smooth
in-painting of the gaps.

Our acquired transmission vector and albedo maps inherently en-
code complicated transmission and scattering events. As we only
target relighting plausibility rather than absolute physical accuracy
of light transport, we propose to train separate NeuS for both the
transmission vector and transmission albedo for novel view synthe-
sis of these acquired parameters without any additional refinement
step. While the transmit vector is highly view-dependent, it varies
smoothly across viewpoints and we find that a neural representation
such as NeuS is capable of learning to interpolate the transmission
vector for novel-view rendering.

3.6. Implementation Details

For our neural fields we follow the implementation of [WLL*21].
We additionally restrict the output to have length 1 for specular
normal and transmission vector. We input the view vector without
positional encoding for training the specular normal and diffuse
albedo nets. For transmission albedo and transmission vector, the
view vector is encoded with six frequencies following [WLL*21]’s
implementation. The spatial position is encoded with nine frequen-
cies when training the specular normal as this gives fine geometry
details without introducing high-frequency artefacts. The rest of the
reflectance maps are trained by encoding the spatial position with
twelve frequencies. Our specular albedo network forms a four-layer
MLP, and the world position is encoded with six frequencies. All
reflectance maps are trained for 300k iterations, using an Adam op-
timizer with a learning rate of 10−5.

4. Relighting with Acquired Maps

To relight an object under a given target lighting environment map,
we employ a very simple normal-based rendering model. We ren-
der both the reflective and transmissive components using their re-
spective diffuse (reflection only) and specular albedo and respec-
tive normals. We do not estimate the specular roughness for the
reflective or transmissive components and hence this parameter is
emperically chosen. In practice, we perform Gaussian blur on the
environment map, then use the surface normal or the transmission
vector to directly index the blurred envrionment map to simulate
specular roughness as proposed in [KVHS00]. Since the specular
roughness is usually different between the label and the reflective
and translucent segments, we employ the diffuse intensity to seg-
ment the label, and apply a different level of gaussian blur on the
environment for the label and reflective and translucent segments.

Note that transmissive normals acquired by our capture pro-
cess are somewhat affected by the near-field nature of the back-

lighting from the back monitor. However, we employ them as-
is to index into environment maps during rendering of the back-
lighting. This is again an approximation since environment maps
assume directional lighting. However, as has been shown in the
work of [KRFB06], humans have a poor perception of any inac-
curacies in transmission/refraction through convex transparent ob-
jects. Hence, we rely on our approximation of backlighting using
the transmissive normal to still produce very compelling rendering
results.

5. Results

Our method produces high quality 3D shape of the outer surface
along with highly plausible appearance maps of common reflective
and translucent objects for realistic rendering. Examples of these
can be seen in Figure. 8. In this section we perform qualitative and
quantitative validations of our 3D geometry, as well as comparison
of rendering results with actual photographs. We also make com-
parisons between our 3D novel-view renderings and other state-of-
the-art methods.

Comparison of Geometry Reconstruction

Figure 9 shows the geometry reconstruction results using our ac-
quired specular normal compared to reconstruction using uniform
lighting. To further evaluate the effectiveness of our method of
using specular normal and weighted loss function, we also com-
pare the geometry obtained from the diffuse and specular albedo
obtained by Lamond et al’s method [LPGD09]. All reconstruc-
tions are obtained by training a NeuS [WLL*21] and extracting
a mesh from the SDF. Our specular normal provides enough view-
independent textures on the reflective outer surface, yielding re-
construction result with more details and higher quality. Note that
without the specular normal, textureless surfaces with highly view-
dependent specular/transmission highlights cannot be correctly re-
constructed, even when using the separated diffuse and specular
albedo.

Relighting Based on Plausible Reflectance Maps

In Figure 10 we compare the rendered results with real pho-
tographed images. Since we do not measure the roughness of the
objects, as mentioned previously, we empirically set that parameter
for rendering with pre-filtered environment mapping [KVHS00].
We show the rendering results with image-space rendering using
the directly acquired view-dependent appearance maps (the left
most column of each illumination setting in Figure 10), as well
as novel-view 3D rendering with neural NeuS-based interpolation
of the aquired view-dependent appearance maps (the second to the
right column of each illumination setting in Figure 10). The 3D
neural appearance maps are trained with 30 views and in this case
without the view used for validation in Figure 10. Thus, the ren-
dered result represents how well the 3D interpolation of appear-
ance maps matches the actual appearance for a novel view of such a
object. Table 1 shows the quantitative results on the peak signal-to-
noise ratio (PSNR), structural similarity (SSIM), and learned image
patch similarity (LPIPS). Although our plausible appearance maps
do not provide pixel-accurate renderings, we note that the rendered
results match the photograph quite well for the same viewpoint.
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Diffuse albedo Specular albedo Specular normal Transmit albedo Transmit vector Geometry Rendering
(pisa)

Rendering
(eucalyptus)

Figure 8: Results of acquired shape and appearance maps of reflective and translucent objects and 3D rendering in novel lighting environ-
ments.
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(b) Empty
green bottle

(c) Coke
bottle

(d) Rice
syrup bottle

(e) Orange
juice bottle

Figure 9: Geometry reconstruction with our method is significantly
better than NeuS geometry under uniform lighting (first row), with
diffuse albedo (second row), and with specular albedo (third row).
Only our method with the specular normal plus weighted loss pro-
vides consistent geometry reconstruction without showing artifacts
from the specular/transmission highlights.

And while the error increases for a missing novel viewpoint, the
results are highly believable and produce convincing reflection and
transmission properties.

Comparison with Novel View Synthesis Methods

In Figure 11 we provide comparisons of our novel view 3D render-
ings with the novel view synthesis results using NeRF [MST*21]
and the recently proposed eikonal fiels for refractive novel-view
synthesis [BMR*22]. For the comparison, these two works are
trained under sinusoidal illumination emitted by the desktop mon-
itors in our setup, then compared with our method’s result ren-
dered under the same sinusoidal environment map. Note that for
objects with strong absorption photographed under low frequency
background, the method of [BMR*22] cannot effectively learn the
eikonal field, thus failing to reach an optimal solution for novel
view synthesis. Table 2 show the quantitative comparison metrics.

And while our rendering result achieves numerically comparable
performance when compared to NeRF, qualitatively it is a better
match to the comparison photograph with sharper reconstruction
of high-frequency details while not being limited to rendering un-
der a fixed lighting condition.

Limitations

While our method works well on common reflective and translucent
object such as beverage bottles, our reflectance estimation suffers
from inter-reflections within the object. Inter-reflection is not dom-
inant in translucent objects, but is much more dominant in purely
transparent objects. For transparent objects or bottles with opaque
internal objects (e.g., a straw), our method acquires noisy specular
normal affected by the internal object, as well as imperfect diffuse
and specular separation. These objects objects are much better han-
dled by the method of [BMR*22] and cannot be captured with our
method.

For translucent objects with observable inter-reflections, the
inter-reflections may interfere with the diffuse-specular separation,
causing artefacts in the diffuse albedo map (Figure 13a). While we
can use a method similar to how we treat the specular albedo to
learn an MLP that removes the artefacts, we found it loses high-
frequency details in the resulting diffuse albedo map, as seen in
Figure 13b. Our learned specular albedo retains the details since
it is conditioned on the diffuse albedo as input to the MLP. We
found the rendered result using the improved diffuse albedo with
eliminated inter-reflections (Figure 13d) do not show visual im-
provement over the rendered result with the original diffuse albedo.
Hence, we decide to employ the original diffuse albedo to retain the
high-frequency details.

6. Conclusion

In this work, we proposed a practical method that acquires high
quality 3D shape (outer surface) and plausible appearance of com-
mon reflective and translucent objects. Our measurements employ
a set of desktop monitors and just seven lighting conditions for ac-
quisition including novel usage of sinusoidal illumination patterns
for estimation of specular (reflective and transmissive) normals. We
further showed that a multiview inverse volume rendering approach
improves any artifacts in the appearance maps caused by gaps in the
monitor illumination and provides a neural representation for 3D
rendering and relighting. Qualitative studies show that our method
creates high-quality and believable rendering results under different
lighting environments. For the target class of objects, the method
also holds up against recent fully volumetric methods for novel
view synthesis. However, the method has limitations and cannot
handle completely transparent objects where inter-reflections and
internal objects can cause errors in the estimated appearance maps
and a fully volumetric solution may be preferable in this case. The
relighting achieved is also plausible rather than accurate and we
incur some approximation errors due to the employed rendering
model as well as near-field effects of illumination.
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Figure 10: Rendering validation with actual photographs. The image-space renderings are created by directly using the captured reflectance
images (as shown in Figure 5). For image-space rendering, we validate how our captured reflectance maps allow us to create a realistic
rendering for that specific view. For novel-view 3D rendering, we test how well the learned 3D reflectance maps interpolate to an unseen
novel viewpoint.

Table 1: Quantitative comparison of image-space view-dependent rendering and 3D rendering for a novel view to actual photograph. The
reflectance maps used for neural 3D rendering are trained using 30 different views (without training on maps acquired from the validation
viewpoint). Note that the reference image is lit with surrounding LCD screens, thus exhibiting near-field effects that aren’t directly accounted
for in the employed rendering model.

Render Type Liquor Bottle Empty Green Bottle
Pisa High Freq. Pisa High Freq.

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Image-based 23.876 0.835 0.110 19.519 0.751 0.169 22.870 0.896 0.081 23.416 0.881 0.085
3D Novel-view 17.573 0.752 0.170 17.265 0.657 0.226 19.916 0.834 0.124 16.644 0.788 0.151

Table 2: Quantitative comparison of our novel-view rendering with
NeRF and [BMR*22]. Our rendered image achieves comparable
numerical performance with NeRF trained under low frequency si-
nusoidal illumination while having additional relighting capability
under different lighting conditions. Note that [BMR*22]’s method
is intended to work under highly varying background, and is more
suitable for novel-view synthesis for complex scenes rather than
reconstructing a single object under more controlled uniform illu-
mination, as our work targets.

Render Type Liquor Bottle Empty Green Bottle

PSNR SSIM LPIPS PSNR SSIM LPIPS

NeRF 21.925 0.936 0.077 22.618 0.943 0.059
Bemana et al. 20.231 0.918 0.102 21.139 0.928 0.082

Ours 21.465 0.922 0.069 22.545 0.937 0.060
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