
Algorithms and Framework for Energy Efficient

Parallel Stream Compu ng on Many-Core

Architectures

Nicolas Melot

Linköping University

Dept. of Computer and Inf. Science

Linköping, Sweden

June 23, 2017



Introduc on Crown Scheduling Drake Conclusion

Outline

1 Introduc on

2 Crown Scheduling

3 Drake

4 Conclusion

Nicolas Melot Streaming over Manycores June 23, 2017 1 / 19



Introduc on Crown Scheduling Drake Conclusion

High performance compu ng

Constant struggle for performance

: Hollerith census machine

Census every 10 years.

8 years in 1880.

1 year in 1890.

Picture: “HollerithMachine.CHM” by Adam

Schuster

Flickr: Proto IBM. Licensed under CC BY 2.0 via

Wikimedia Commons
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Introduc on Crown Scheduling Drake Conclusion

High performance compu ng

Constant struggle for performance: Big data.

Social medias

Internet of things

Applica ons:

Scien fic compu ng

Marke ng

Intelligence

(GCHQ)

Picture: “View inside detector at the CMS

cavern LHC CERN” by Tighef

Own work. Licensed under CC BY-SA 3.0 via

Wikimedia Commons

http://commons.wikimedia.org/wiki/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg#/media/File:

View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg
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Introduc on Crown Scheduling Drake Conclusion

Accelerate computa on

How to improve performance?

Miniaturize

End of Moore’s law?

Increase frequency

Too high energy consump on

Parallel programming

Be er energy consump on

Very challenging

Instruc on-Level parallelism

Wall

Scalability issues for consistent

shared memory

Von-Neumann bo leneck

P

f
 

S
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Introduc on Crown Scheduling Drake Conclusion

Streaming computa on

Streaming

So ware pipelining

Tasks execute in parallel in

steady-state

Sta c scheduling

Moldable tasks

Steady state

Throughput constraint

Op mize energy

Streaming Task Collec on

Independent tasks

Balance workload

No communica on cost

Figure: Streaming taskgraph.

Figure: Pipelined execu on of

streaming taskgraph.
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Figure: Streaming taskgraph.

Figure: Steady state of the streaming

pipeline.
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Streaming computa on

Streaming

So ware pipelining

Tasks execute in parallel in

steady-state

Sta c scheduling

Moldable tasks

Steady state

Throughput constraint

Op mize energy

Streaming Task Collec on

Independent tasks

Balance workload

No communica on cost

Figure: Streaming taskgraph.

Figure: Independent tasks in the

steady state.
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Introduc on Crown Scheduling Drake Conclusion

Pla orm model

Pla orm

p uniform processors

Discrete frequency set F

Applied to individual cores

Voltage by auto-co-scaling

Can change dynamically any me

Power model

Dynamic power func on of frequency

Analy c func on or measurements

No restric on

Replaceable

Energy linear in me, power and number of processors running
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Introduc on Crown Scheduling Drake Conclusion

Task model

Moldable task j

Fixed work τj
Alloca on: run on wj ≥ 1 cores

MaximumWj: wj ≤ Wj

Arbitrary efficiency func on

0 < ej(q) ≤ 1 for 1 ≤ q ≤ Wj

No convexity, monotony

or con nuity constraint

Time propor onal to work, parallel

degree and frequency

e

W

1

p
0 1  

Figure: Arbitrary efficiency

func on.

ttj

q = wj

Figure: Moldable task.
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Introduc on Crown Scheduling Drake Conclusion

Problem formula on

3 sta c problems

Resource alloca on

Find wj ≤ min(p,Wj) for each task j

Define execu on me of tasks j

Task mapping to cores

Assign tasks to a subset of cores 1..p

Discrete frequency scaling

Assign tasks a frequency level in F

Respect a makespan constraintM

Repeated execu on of a task sequence

Non data-ready tasks are delayed to the

next round

All steps influence each other
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Introduc on Crown Scheduling Drake Conclusion

Crown scheduling

Restrict alloca on and mapping to O(p) processor subsets (groups)

P1 P2 P3 P4 P5 P6 P7 P8

G4 G5 G6 G7

G3G2

G1

G15G14G13G12G11G10G9G8

G2

G4

P1

G8

P2

G9

G5

P3

G10

P4

G11

G3

G6

P5

G12

P6

G13

G7

P7

G14

P8

G15

G1

Tasks must be allocated as many cores as the size of a group

Reduce possible mapping targets from 2p − 1 groups to 2p− 1
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Introduc on Crown Scheduling Drake Conclusion

Crown scheduling

Compu ng a crown schedule

Separated or integrated phases

Crown
configuration

Crown
allocation

Crown

mapping

Crown

scaling
Dynamic
Crown rescaling

Integrated  Crown  Scheduling

ILP formula ons for each step and for integrated scheduler

by (Kessler et al. [2013])

Phase separa on prevents compromises

Phase integrated constrained by the crown structure

Slow and limited in input problem size
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Introduc on Crown Scheduling Drake Conclusion

Crown scheduling

Phase-

separated
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Introduc on Crown Scheduling Drake Conclusion

Crown Extensions

Adapt to realis c processors

p 6= 2i

Constraints: frequency islands

Crown Configura on

Crown Consolida on

Account for idle energy

Switch unused cores off

Provable approxima on

L1

L2

L1

L2

L1
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L1
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P5 P6P3 P4

G5G4

P1 P2
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Introduc on Crown Scheduling Drake Conclusion

Voltage Islands topology influence

tight average loose
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Example: Mergesort

Developed by JohN Von Neumann in 1945 (Knuth [1998])

External algorithm

Limits use of slow memories

Stream program: tree structure

Leaves: presort (non-streamed)

other: merge (streamed)

Root task: biggest workload

2nd level tasks: half workload of root task
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Drake

Stream programming framework

On-chip pipelining

Moldable tasks

Frequency scaling

Scheduling experiments

(Melot et al. [2015])

Drake: derived from Schedeval (Janzén [2014])

Separate roles in an applica on

Stream topology

Tasks’ source code

Target pla orm-specifics
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