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The Security of Machine Learning

Machine Learning systems can be compromised:

A Proliferation and sophistication of attacks and threats.

A Machine learning systems are one of the weakest parts in the
security chain.

A Attackers can also use machine learning as a weapon.

Adversarial Machine Learning:
A Security of machine learning algorithms.
A Understanding the weaknesses of the algorithms. ‘ )

A Proposing more resilient techniques.




Threats
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Evasion Attacks:

A Attacks at test time.

A The attacker aims to find the blind spots an
weaknesses of the ML system to evade it.

PoisoningAttacks:

.@. A Compromise data collection.

Wl A The attacker subverts the learning process.

DANGER A Degradg_s the performanc_:e of the system.
PoisoN | A Can facilitate future evasion.




Evasion Attacks
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Figure 1. An autonomous vehicle uses a camera to identify and recognize roadside signs. Once a sign has been identified, its image is fed to a
neural network for classification in one of the predefined sign classes. Here, the neural network identifies the sign as a stop sign.
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Figure 2. To humans, adversarial samples are indistinguishable from original samples. (a) An ordinary
image of a stop sign. (b) An image crafted by an adversary.
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Poisoning Attacks T
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Optimal Poisoning Attacks

General formulation of the problem:

A The attacker aims to optimize some objective function (evaluated on a validation dataset) by introduci
malicious examples in the training dataset used by the defender.

A The defender aims to learn the parameters of the model that optimise some objective function

evaluated on the (poisoned) training dataset. o o
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D, € argmax A (w”, D)
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s.t. w' € argmin Cy(w, Dy, UD,)




Optimal Poisoning Attacks for Classification

A BiggioS (i PoisofmingdAttacks against Support Vector Machinés

. C . ICML 2012.
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A Poisoning points are learned followinggaadient ascenstrategy: Vi, Cal(w*) = (—W) Vw Cyal(W™)
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A ApplyingkarushKuhnTuckerconditions Vy, Cep (W, xp) = 0 trenidnplicit function theorem
2 —1
vxpcval — _(vxpvwctr)(vwctr) Vwcx-fal

A Limited to arestricted family of classifiers
A Poor scalabilitywith the number of parameters of the model.



Optimal Poisoning Attacks for Classification

More efficient solution: by
1) 52y Q0 Ay @S NdvnjuydtelpidieOisstead: dza S KEEP
A More Stable.
A Allows avoiding the computation of the Hessian. Cﬁ';M
2) Divide and Conquer
A Instead of computing Vs, Cua = —(Va, VaCi)(V2,Cir) ™ Vi Cra SIMPLIFY

A Compute: V2 ¢, v = VyCal
prcval — _vxp VwCir v
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Poisoning with Bagkradient Optimization

A J.Domkeb Geheric Methods for Optimizatid®ased Modellinggé ! L{ ¢! ¢{ HAMH P
A D. Maclaurin, D.KDuvenaud w @t ® GradrehtbasedHyperparameteOptimization through Reversible Learning L/ a |

Algorithm 1 Gradient Descent Algorithm 2 Back-gradient Descent
Input: initial weights w), learning rate «, Dk,, loss func- Input: wr, o, L(w.X,y), Dy, Dyal
tion £(w, X, ) initialize dx, < 0, dw < VCya1 (W)
I: fort =0,...,7— 1do I: fort =1, ..., 1 do
2: = VaCi(wy ; ; |
" i:f e “;:f (i”;)gf 2: dxp + dxp — a dwV Vi Co (Wi, Xp)
3: + - 3 dw < dw — a dwVy Vi Cip (Wi, Xp)
4: end for
4: gt—1 = thct-r(wt: Xp)
5
6:

Output: trained parameters wr

Wi | =Wt + Qg
end for

Output: Vi Cyal < dXp




Greedy Attack Strategy

A Learn one poisoning point at a time.
A Performance comparable to coordinated
attack strategies.



