Imperial College London

Dense 3D reconstruction and modelling of faces: addressing the real-world challenges

Anastasios (Tassos) Roussos

Postdoctoral Research Associate, Intelligent Behaviour Understanding Group (iBUG)

Joint work with:

Patrick Snape, James Booth, Yannis Panagakis, Stefanos Zafeiriou, Allan Ponniah, David Dunaway Ravi Garg, Lourdes Agapito

> DoC RA Symposium, Imperial College London 14 June 2016

1 Introduction

- 2 Dense 3D Reconstruction from Monocular Sequences
- 3 Video Registration with Face-specific Priors
- 4 3D Face Reconstruction In-the-wild
- 5 Dense 3D Facial Modelling

6 Conclusions

Dense 3D Reconstruction & Modelling of Faces

- Model & reconstruct the detailed 3D shape & dynamics of human faces
- Numerous applications:
 - facial expression recognition
 - face recognition
 - human-computer interaction
 - augmented reality
 - performance capture
 - craniofacial surgery

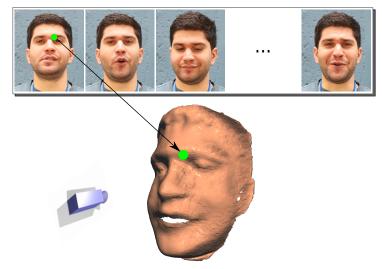
Application Example

(Thies et al., Face2Face: Real-time Face Capture and Reenactment of RGB Videos, CVPR'16).

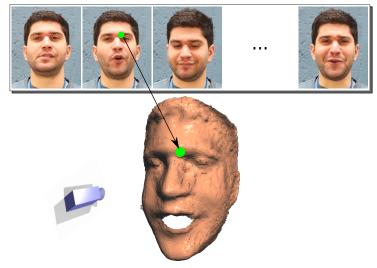
- 3D face reconstruction:
 - reliable only under restrictive acquisition conditions

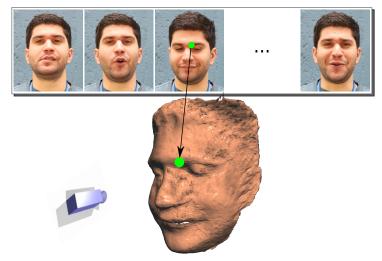
- 3D face modelling:
 - representing only specific demographic groups

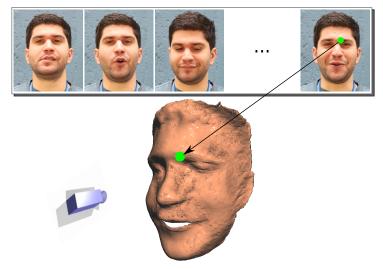
- 3 Video Registration with Face-specific Priors
- 4 3D Face Reconstruction In-the-wild
- 5 Dense 3D Facial Modelling

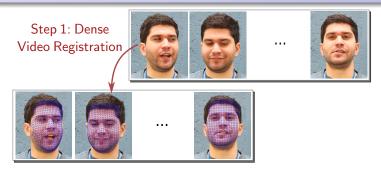


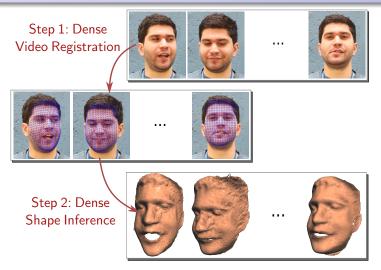
Input: **monocular** face sequence.



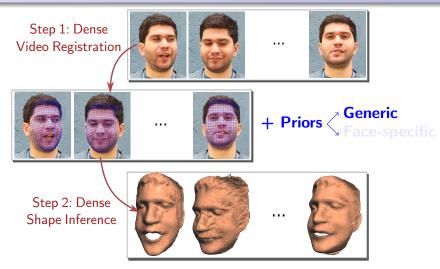

Input: **monocular** face sequence.

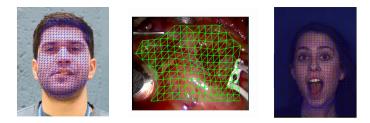

Input: **monocular** face sequence.


Input: **monocular** face sequence.

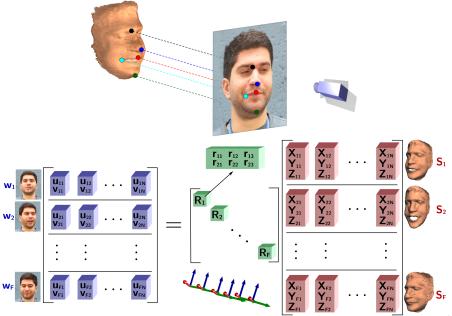



Input: **monocular** face sequence.

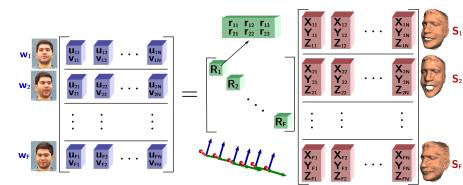



Our pipeline using Generic Priors

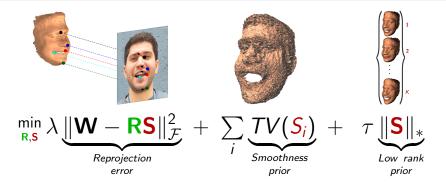
(Garg, Roussos, Agapito, A variational approach to video registration with subspace constraints, IJCV'13) (Garg, Roussos, Agapito, A variational formulation for dense non rigid structure from motion, CVPR'13)


Multi-frame Subspace Flow (MFSF)

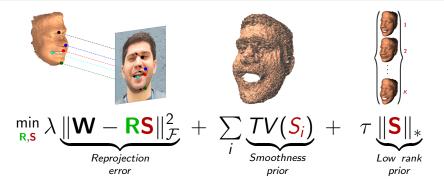
• Robust Subspace Constraints for Video Registration


• The code is now publicly available at: https://bitbucket.org/troussos/mfsf

Orthographic Projection Model

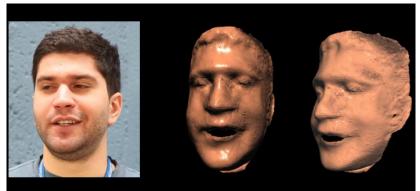


Orthographic Projection Model


W = RS

Variational Formulation

Variational Formulation

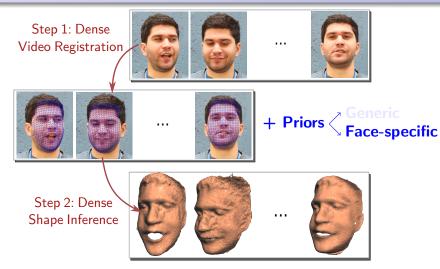


Our Algorithm

- Initialize R and S using rigid factorisation.
- Minimize energy via alternation:
 - Step 1: Rotation estimation.
 - Step 2: Shape estimation.

 $\bullet~$ Efficient and highly parallelizable <code>algorithm \rightarrow GPU-friendly</code>

Result on a Real Sequence


Input Sequence

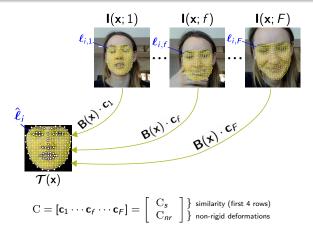
Reconstructed Surface Camera Viewpoint Reconstructed surface Side View

But what about In-the-wild Videos?

Our pipeline using Face-specific Priors

(Snape, Roussos, Panagakis, Zafeiriou, "Face Flow", ICCV'15)

Introduction

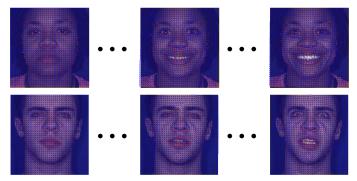

2 Dense 3D Reconstruction from Monocular Sequences

3 Video Registration with Face-specific Priors

- 4 3D Face Reconstruction In-the-wild
- 5 Dense 3D Facial Modelling

6 Conclusions

Face Flow Energy Formulation



Minimise w.r.t. C:

$$\sum_{f=1}^{F} \int_{M} \|\mathcal{T}(\mathbf{x}) - \mathbf{I}(\mathbf{B}(\mathbf{x}) \cdot \mathbf{c}_{f}; f)\|^{2} d\mathbf{x} + \beta \underbrace{\sum_{f=1}^{F} \sum_{i=1}^{L} \|\mathbf{B}(\hat{\ell}_{i}) \cdot \mathbf{c}_{f} - \ell_{i,f}\|^{2}}_{landmarks term}, \text{ s.t. } \underbrace{\operatorname{rank}(\mathbf{C}_{nr}) \leq \lambda}_{temporal \ coherency}$$

Learning the Deformation Basis

• Data-driven MFSF on BU4D videos, using landmarks constraint:

• Computed face deformation basis B(x):

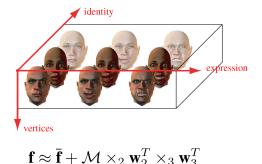
Results of Face Flow

• Real sequence:

• Benchmark sequences:

	Original		Illum.		Ilum.+Occ.	
	RMSE	AE95	RMSE	AE95	RMSE	AE95
Face Flow Low-Rank	2.95	5.52	3.56	6.63	4.48	8.47
Face Flow Full-Rank	3.24	6.01	3.76	7.02	5.83	11.50
MFSF	1.73	3.20	6.33	13.68	8.25	17.30
LDOF	1.56	2.79	4.84	9.98	6.54	11.44
EPICFlow	1.66	3.25	4.02	9.61	5.15	11.61
SIFTFlow	2.65	5.15	4.89	11.81	11.82	23.05

- LDOF: Large Displacement Optical Flow (Brox and Malik, T-PAMI 2011)
- EPICFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow (Revaud et al., CVPR 2015)
- SIFTFlow: Sift flow (Liu et al, T-PAMI 2011)


Introduction

- 2 Dense 3D Reconstruction from Monocular Sequences
- 3 Video Registration with Face-specific Priors
- 4 3D Face Reconstruction In-the-wild
- 5 Dense 3D Facial Modelling

6 Conclusions

3D Face Reconstruction In-the-wild

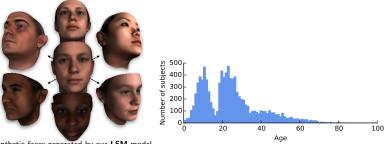
• Bilinear face model:

(Vlasic, Brand, Pfister, Popovic, "Face transfer with multilinear models", SIGGRAPH'06) (Bolkart, Wuhrer, "A Groupwise Multilinear Correspondence Optimization for 3D Faces", ICCV'15)

Results (Ongoing Work)

Input, cropped

Side viewpoint

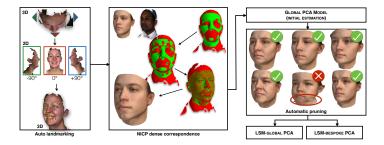


Introduction

- 2 Dense 3D Reconstruction from Monocular Sequences
- 3 Video Registration with Face-specific Priors
- 4 3D Face Reconstruction In-the-wild
- 5 Dense 3D Facial Modelling

6 Conclusions

Large-Scale Facial Modelling (LSFM)

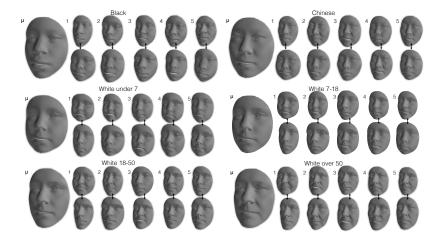


Synthetic faces generated by our LSM model

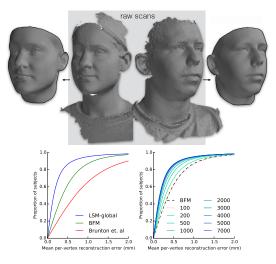
- High-resolution 3D statistical model
- Automatically built from of ${\sim}10,000$ 3D scans
- Largest-scale Morphable Model ever constructed
- Model publicly available

(Booth, Roussos, Zafeiriou, Ponniah, Dunaway, "A 3D Morphable Model learnt from 10,000 faces", CVPR'16)

Automatic Pipeline for Constructing our LSFM models



- Fully automatic
- State-of-the-art image localisation on synthetic views
- Natively 3D approach to dense mesh correspondence
- Building global model but also models tailored by age/gender/ethnicity


Global LSFM Model

Bespoke LSFM Models

Evaluation of Model Fitting on 3D Scans

- BFM: Basel Face Model (Paysan et al. AVSS'09)
- Brunton et al.: PCA model of (Brunton et al., CVIU'14)
- 100-7000: Proposed LSM, built with varying size of training set (100-7000 faces)

1 Introduction

- 2 Dense 3D Reconstruction from Monocular Sequences
- 3 Video Registration with Face-specific Priors
- 4 3D Face Reconstruction In-the-wild
- 5 Dense 3D Facial Modelling

Conclusions

- **Robust** algorithms for detailed 3D reconstruction from in-the-wild face videos
 - dense variational methods
 - robust penalisers and low-rank matrix priors
 - efficient optimisation approaches
 - appropriate shape priors
 - state-of-the-art facial landmark localisation

Conclusions

- **Robust** algorithms for detailed 3D reconstruction from in-the-wild face videos
 - dense variational methods
 - robust penalisers and low-rank matrix priors
 - efficient optimisation approaches
 - appropriate shape priors
 - state-of-the-art facial landmark localisation

• Dense 3D face modelling with unprecedented quality

- large-scale datasets are extremely valuable
- fully-automated construction pipeline
- far more diverse than existing models