
Performance Evaluation and Optimisation for
Dense 3D Scene Understanding using

SLAMBench

Yi Kong1

yk1211@imperial.ac.uk

Imperial College London

16th June 2015

1Supervisor: Dr. Luigi Nardi, Prof. Paul Kelly; Second marker: Dr. Tony Field

mailto:yk1211@imperial.ac.uk

Abstract

One of the biggest drivers for future multi-core computing will be computer vis-
ion. A key issue is optimisation for power, as well as performance. In particular,
equipping robots, sensors and wearable devices with 3D scene understanding will
become a platform for a huge range of applications. To help study this, a dense
3D vision benchmark called SLAMBench was developed that enables studying
algorithmic and implementation choices and measure the impact not only on per-
formance/power, but also end-to-end quality of results. SLAMBench is based on
an implementation of the KinectFusion algorithm.
The goal of this project is to explore different implementations of the KinectFu-
sion kernels and investigate where and how to introduce optimisations of various
kinds (SIMD vectorisation, memory alignment, structure of arrays vs array of
structs, loop transformations, etc.) for a modern embedded multi-processor sys-
tem, explore the hardware design space to further increase performance while
reducing energy drain as well as die area. We achieved 21% improvement in
throughput through guided optimisation and 40% in energy-area product through
alternative processor designs.

Contents

Contents i

List of Tables iv

List of Figures v

1 Introduction 1
1.1 Motivations . 2
1.2 Objectives . 2
1.3 Contributions . 3

2 Background 4
2.1 KinectFusion . 4
2.2 Roofline Model . 6
2.3 gem5 Simulator System . 8
2.4 Energy-Performance-Area Tradeoffs in Processor Architecture . . 9
2.5 McPAT Processor Modelling Framework 10

3 Related Work 16
3.1 Systematic Analysis for Computer Vision Kernels 16
3.2 Applying the Roofline Model on Hardware 17
3.3 Sources of Error in Full-System Simulation 17

4 Kernel Analysis 19
4.1 Benchmarking Environment . 19
4.2 SLAMBench Kernels Analysis 22

4.2.1 Dynamic Instruction Distribution 24
4.2.2 Cache . 26
4.2.3 Branches . 26
4.2.4 Instruction Level Parallelism 27

4.3 Roofline Model . 28

i

4.4 Summary . 29

5 Assessment of Optimisations 30
5.1 Opportunities for Optimisation 30
5.2 Implementing Optimisations . 31

5.2.1 ILP . 31
5.2.2 SIMD . 31
5.2.3 Floating Point Balancing 32

5.3 Evaluation . 33

6 Hardware Design-space Exploration 35
6.1 Methodology . 35
6.2 Baseline System . 37
6.3 Exploration . 37

6.3.1 Micro-architecture . 37
6.3.2 Cache . 38
6.3.3 Memory Controller . 39

6.4 Summary . 41

7 Conclusions and Future Work 42
7.1 Summary . 42
7.2 Future Work . 43

Bibliography 45

A gem5 System Configuration 49
A.1 Modification to Source Code . 49

A.1.1 L2 Cache Prefetch . 49
A.1.2 L1 I/DTLB Size . 49
A.1.3 Fetch Buffer Size . 50
A.1.4 2GB LPDDR3 . 50
A.1.5 Syscall Workaround . 50

A.2 Command-line to Start Simulation 51

B Kernel Timing Trend 52
B.1 depth2vertexKernel . 52
B.2 halfSampleRobustImageKernel 54
B.3 mm2metersKernel . 55
B.4 reduceKernel . 55
B.5 renderDepthKernel . 56
B.6 renderTrackKernel . 56
B.7 trackKernel . 57

ii

B.8 updatePoseKernel . 58
B.9 vertex2normalKernel . 59

C Sequential and OpenMP parallel runtime of untuned kernels 61

D gem5 Statistics Reports 64
D.1 renderVolumeKernel . 64
D.2 raycastKernel . 65
D.3 integrateKernel . 66

iii

List of Tables

2.1 Micro-architectural Design Space Parameters 9

4.1 Chromebook System Configuration 20
4.2 Chromebook and gem5 configuration 20
4.3 Floating Point Balance . 25
4.4 Cache Miss Rate . 26
4.5 Branch Prediction Rate . 27
4.6 Instructions Per Cycle . 28
4.7 Kernels Roofline Parameters . 28

6.1 Reducing Design Space Parameters 36

C.1 Sequential Execution Time on Samsung Chromebook. 62
C.2 Parallel Execution Time on Samsung Chromebook. 63

iv

List of Figures

2.1 Example Output from KinectFusion 5
2.2 KinectFusion components workflow. 6
2.3 Example Roofline Model . 7
2.4 Example Roofline Model with Ceilings 12
2.5 General ways to optimise in the Roofline Model 13
2.6 gem5 Speed vs. Accuracy Spectrum 14
2.7 Energy-performance trade-off Pareto curve 14
2.8 Block Diagram of the McPAT Framework 15

4.1 Roofline Plot for gem5 Simulation 21
4.2 Execution Time of Selection of Kernels on Cortex-A15. 22
4.3 Per Frame Timing of Selected Kernels 23
4.4 Dynamic Instruction Distribution 25
4.5 bi-mode Branch Predictor Structure 27
4.6 Roofline Plot with Kernels . 29

6.1 EPA for processors of different micro-architecture and number of
cores. 38

6.2 EPA for 48 cores in-order processors with various branch predictor. 39
6.3 Large High-latency L2 Cache . 40
6.4 L3 Cache . 40

B.1 depth2vertexKernel 19200 . 52
B.2 depth2vertexKernel 76800 . 53
B.3 depth2vertexKernel 307200 . 53
B.4 halfSampleRobustImageKernel 19200 54
B.5 halfSampleRobustImageKernel 76800 54
B.6 mm2metersKernel 307200 . 55
B.7 reduceKernel 512 . 55
B.8 renderDepthKernel 307200 . 56
B.9 renderTrackKernel 307200 . 56

v

B.10 trackKernel 19200 . 57
B.11 trackKernel 76800 . 57
B.12 trackKernel 307200 . 58
B.13 updatePoseKernel 1 . 58
B.14 vertex2normalKernel 19200 . 59
B.15 vertex2normalKernel 76800 . 59
B.16 vertex2normalKernel 307200 . 60

vi

List of Source Codes

1 Original Main Kernel Loop . 31
2 Unrolled Main Kernel Loop . 31
3 Original float3 Addition . 32
4 Optimised float3 Addition . 32
5 Original scaled pos Kernel . 33
6 Optimised scaled pos Kernel 33

vii

Chapter 1

Introduction

Computer Vision is gaining popularity recently in all fields of science and en-
gineering and simultaneous localisation and mapping (SLAM) is one of the most
important domains because it is the central challenge in facilitating navigation in
previously unexplored environments in robotics and augmented reality (AR).

SLAM is the problem of building a map of the environment while simultan-
eously localising the agent within that map. At first it may seems to be a chicken-
and-egg problem where a map is needed to localize while a pose estimate is re-
quired for mapping, however there are several algorithms developed to solve it
with probabilistic concepts. It is regarded as one of the most challenging prob-
lem in computer vision, a 2008 review of the topic [1] summarised: “[SLAM] is
one of the fundamental challenges of robotics . . . [but it] seems that almost all the
current approaches can not perform consistent maps for large areas, mainly due
to the increase of the computational cost and due to the uncertainties that become
prohibitive when the scenario becomes larger.”

In the last decade the progress made in computer vision has been astound-
ing. Point feature-based SLAM techniques are developed to drastically reduced
the computational requirement, and they are now present in many commercial
embedded systems, including Dyson 360 [2], Google’s Project Tango [3] and its
SCHAFT man-bot. However dense SLAM is still in early prototype state. Sev-
eral real-time algorithms for dense 3D scene reconstruction are developed in the
past few years such as PTAM [4], KinectFusion [5] and StereoScan [6], which
estimates the pose of the camera while building a highly detailed 3D model of the
static environment using a specialized camera. Such capabilities can allow robots
to interact with the world in ways we have never imagined before.

1

1.1 Motivations
There has been a great focus to develop a specialised benchmarking system to

aid the research in computer vision.
SLAMBench [7] is the first performance, energy and accuracy benchmark

dedicated to 3D scene understanding applications. It allows researchers to ex-
plore the design space of algorithmic and implementation-level optimisations in
dense SLAM. It contains a portable, but untuned, KinectFusion [5] implementa-
tion in C++ with OpenMP, OpenCL and CUDA for a wide range of target systems.
It provides tools to measure the time and energy usage of the implementation and
the accuracy comparing with ground truth using the ICL-NUIM [8] dataset.

KinectFusion [5] is the state-of-the-art algorithm for dense 3D scene recon-
struction and is now widely used in commercial products like Microsoft XBox
and many Windows Games. As the adoption is now extending to embedded sys-
tems like HoloLens [9], it became increasingly important that we understand its
behaviour on various target systems and able to achieve real-time power-efficient
on systems with restricted computing resources.

1.2 Objectives
The aim of this project is to explore KinectFusion kernels within SLAMBench

and investigate the characteristics of a selection of the most important kernel com-
ponents, and use various analyses and the Roofline model [10] to guide optim-
isation of the kernels and evaluate the results on a modern embedded system,
using actual hardware combined with gem5 [11] simulator system. Finally we
explore the hardware design-space to enable more efficient computation, in order
to achieve real-time reconstruction solely using CPU.

In Chapter 4 we provide detailed dynamic runtime analysis of KinectFusion
kernels, providing their dynamic instruction distribution, cache behaviour and
branch prediction using real hardware as well as the gem5 simulator system.

In Chapter 5, we attempt to implement the optimisations from opportunities
we discovered and benchmark the achieved improvement and compare with the
theoretical limit. We then evaluate the difficulty and effectiveness of our method-
ology.

In Chapter 6, with the insights gained from previous parts, we look into ex-
ploring the design space, tweaking hardware implementation to accelerate the
SLAMBench, to enable fast, energy efficient, economic computation platform,
achieving real-time energy-efficient detailed 3D reconstruction relying solely on
a multi-core CPU.

2

1.3 Contributions
The main contributions of this thesis are:

• We present a detailed dynamic analysis of a KinectFusion [5] algorithm
implementation on ARM Cortex-A15 architecture.

• We demonstrate a systematic approach to use various dynamic analysis and
the Roofline [10] model to perform guided optimisation of SLAMBench
kernels with the combination of real hardware and gem5 [11] simulator.
We show that we achieved 21% improvement in throughput on Samsung
Chromebook “snow” and we evaluate the effectiveness of the technique in
terms of human effort.

• We devise a process to utilise dynamic analysis to greatly reduce hardware
design exploration space and show that we can reduce delay-area product
by 40% through a GPGPU-like CPU design.

Our work gives a systematic way to optimise arbitrary computer vision ker-
nels with low human effort and allows researchers to explore the design space of
algorithms in dense SLAM more effectively.

3

Chapter 2

Background

Our work is established on the base of many computer architectural research
tools and models. In this chapter, we briefly introduce them and their contribution
to our work. Section 2.1 introduces KinectFusion, the algorithm we are optim-
ising in the thesis. Section 2.2, we introduce the Roofline model, a performance
model for floating-point programs and multi-core CPU architectures. In section
2.4, we talk about the tradeoffs we make when designing a processor architecture,
including energy, performance and die area, leading to 2.5 where we introduce
McPAT, the model we use to analyse the processor design.

2.1 KinectFusion
KinectFusion [5] is a system for dense volumetric reconstruction of complex

indoor scenes, using only a low-cost, noisy monocular depth camera, such as Mi-
crosoft Kinect [12]. It can track 6 degress-of-freedom (6DOF) pose of the sensor
while generates a continuously updating, smooth, fully-fused 3D surface recon-
struction. It fuses the depth data from the specialized sensor into a single global
3D reconstruction model of the observed scene in real-time. The current sensor
pose is simultaneously obtained by tracking the subsequent depth image frame re-
lative to the current global reconstruction model using a coarse-to-fine multi-scale
iterative closest point (ICP) algorithm using all the available data at frame-rate.
The algorithm is optimised for highly parallel general purpose GPU (GPGPU),
allowing both tracking and mapping in real time while consuming small amount
of energy. Figure 2.1 shows an example output from KinectFusion generated with
a hand-held Kinect camera.

Although the details of the algorithm and the mathematical concepts are bey-
ond of scope for our work, we briefly outline the key computational steps involved.
The KinectFusion algorithm is comprised of the following four components:

4

Figure 2.1: Example output from KinectFusion. [5]

Surface Measurement
A pre-processing stage. A bilateral filter [13] is applied to the raw depth
map obtained from the sensor to reduce its noise. An L = 3 level multi-
scale representation of the surface is then computed, in a form of dense
vertex map and normal map pyramid.

Mapping as Surface Reconstruction
The global scene fusion process, where each consecutive raw depth frame
is fused incrementally with the associated sensor pose estimate into a 3D
reconstruction using a variant of iterative closest point (ICP) algorithm [14].

Surface Prediction from Ray Casting the TSDF
The loop between mapping and localisation by tracking the live depth frame
against the globally fused 3D reconstruction is closed by raycasting the
volumetric, truncated signed distance function (TSDF) [15] into the estim-
ated frame to provide a dense 3D surface prediction, where the surfaces are
estimated at the zero crossings of the function.

Sensor Pose Estimation
Live sensor localisation using a multi-scale ICP alignment between the
model prediction from previous frame and live surface measurement, by
assuming small inter-frame sensor motion.

All components of KinectFusion, including tracking and mapping, have trivi-
ally parallelisable structure and scales efficiently with processing power, memory
bandwidth and memory size, taking advantage of the parallelism of commodity
multi-core or GPGPU processing hardware.

As an optimisation to performance, the algorithm may skip surface update
given that the tracking is accurate enough. Also on failure to track the sensor, the
algorithm will perform re-localisation, where the last known sensor pose is used
to provide a surface prediction. They both lead to data dependent running time,
which we will further discuss in the later chapters.

Figure 2.2 shows the complete work-flow of KinectFusion components.

5

Input Surface
Measurement

Surface Re-
construction

Surface
Prediction

Sensor Pose
Estimation

Figure 2.2: KinectFusion components workflow.

2.2 Roofline Model
Roofline [10] is a performance model for floating-point programs and multi-

core CPU architectures, aiding programmers and hardware architects to improve
parallel software and hardware for floating point computations. It uses Bound and
Bottleneck analysis to provide insights into the factors that are negatively affect-
ing the performance of program. It mainly focuses resources including memory
bandwidth and raw computation power.

To model the memory bandwidth an application uses, Roofline uses opera-
tional intensity, meaning (floating) operations per byte of data traffic. The data
traffic is limited to the data transferred between cache hierarchy and off-chip
DRAM memory, since cache accesses are faster in orders of magnitude and it
is often the constraining resource [16]. Thus operational intensity suggests the
minimum DRAM bandwidth required for a particular system.

Roofline also models the peak floating-point performance in terms of the num-
ber of floating-point operations the system can execute per second (FLOPS). This
can be found from hardware specification, but also obtainable by running micro-
benchmarks like the STREAM benchmark [17].

Figure 2.3 shows an example Roofline Model for a AMD Opteron X2, with
data obtained from running STREAM micro-benchmark.

The model gives an upper bound to performance achievable by an arbitrary
kernel. To further utilize the model, ”performance ceilings” where implementa-
tions without different optimisations will be limited by the corresponding limit.
For example, the following optimisations can be performed on kernels to reduce
bottlenecks.

Computational Bottlenecks:

ILP or SIMD
Instruction Level Parallelism (ILP) works by arranging instructions so that
there is no data dependency in adjacent instructions, so that the super-scalar
architectures can fetch, execute and commit multiple instructions simultan-

6

Figure 2.3: Roofline Model for Opteron X2. (diagram is from [10])

eously.
Single instruction, multiple data (SIMD), is a special class of commands
where the CPU executes same instructions on multiple data. These opera-
tions can usually be completed in a single cycle, resulting in performance
increase of up to several folds.

Floating-point Operation Balance
Most modern CPU ISAs supports multiply–accumulate operation, which is
executed by the multiplier-accumulator (MAC) unit. However, in order to
take advantage of such instructions, floating-point add and multiply instruc-
tions must be balanced and interleaved. For machines that do not possess
such unit, they usually can still be benefited from such optimisations be-
cause the number of floating-point adder and multiplier units are usually
similar.

Memory Bandwidth Bottlenecks:

RestrctureLoops for Unit Stride Accesses
Hardware cache and data pre-fetching are optimised for read or write to
continuous regions of memory. Rewriting loops to facilitate such optimisa-
tions can reduce the data being transferred between cache hierarchies and
memory system and significantly increases memory bandwidth.

7

Memory Affinity
This is an optimisation limited to Non-uniform memory access (NUMA)
systems, where accessing local regions of memory is substantially faster. By
making threads access remote memory less frequently, the memory band-
width could be improved.

Software Prefetching
When accessing a continuous region of data, the CPU is able to predict
and prefetch data quite accurately. However for random access, the use of
prefetch instruction can teach the processor to load data into cache in ad-
vance thus reducing the memory access latency and improving total memory
throughput.

Figure 2.4 adds ceilings to the Roofline model for Opteron X2, employing the
optimisations mentioned above.

Existing un-tuned kernels can be plotted onto the model by running the kernel
and registering the performance counters. The position of the kernel in the model
suggests the percentage of hardware capability it is currently using. If the kernel
sits directly on the computational resources “roofline” means it is executing with
full hardware capabilities. If plotted on the model with optimisation ceilings,
the potential optimisation opportunities can be easily identified and programmers
can attempt to utilise the optimisation directly on the code. Figure 2.5 shows the
general ways to optimise in Roofline model.

2.3 gem5 Simulator System
The gem5 simulator [11] is a state of the art tool for computer system architec-

ture research, widely used in academia and industry, encompassing system-level
architecture and processor micro-architecture. It provides a highly configurable
simulation framework and supports cycle accurate emulation for most commer-
cial instruction set architectures (ISA) and a broad range of CPU models. Since
architecture simulators run orders of magnitudes slower than bare-metal, it allows
configuration for trade-off between speed and accuracy. For example, it provides
two system modes: the Full-System (FS) mode which simulates a bare-metal en-
vironment for running an OS like Linux and the much faster System-call Emula-
tion (SE) mode where system calls are emulated. Figure 2.6 shows many ways to
configure between simulation speed and its accuracy. Finally The framework also
supports for power and energy modelling, so that we have more metrics than pure
performance to evaluate our work.

8

2.4 Energy-Performance-Area Tradeoffs in Processor
Architecture

Minimisation of power consumption while maintaining high performance in
portable and battery powered embedded systems has become a major challenge
for processor and system design today. While commodity processors are optim-
ised for generic programs, but it does not execute arbitrary, especially domain spe-
cific, programs most efficient in terms of speed nor energy. Optimising a processor
for energy efficiency needs to explore the tradeoffs in both micro-architectural
design space and circuit design choices. In micro-architectural design space alone,
the number of potential parameters is huge, with each having different effects on
the overall performance. Table 2.1 shows the typical range for an Out-of-Order
micro-architecture.

Parameter Typical Range

Branch predictor 0-1024 entries
BTB size 0-1024 entries

Cache levels 1-4 levels
Cache associativity Direct-mapped(1 way)

- Fully associative
I-cache size 2-32KB
D-cache size 4-64KB
L1 cache latency 1-3 cycles
L2 cache latency 8-64 cycles
DRAM latency 50-200 cycles

Fetch latency 1-3 cycles
Decode/Reg File/Rename lat. 1-3 cycles
Retire latency 1-3 cycles
Integer ALU latency 1-4 cycles
FP ALU latency 3-12 cycles
ROB size 4-32 entries
IW (centralized) size 2-32 entries
LSQ size 1-16 entries
Cycle Time unrestricted

Table 2.1: Micro-architectural Design Space Parameters.

For different performance targets, a radically different processor macro-architecture
may be most energy-efficient. Pareto-optimal trade-off curves in figure 2.7 shows

9

energy-performance trade-offs of six macro-architectures of different execution
paradigm and issue capabilities, which demonstrates the complicated relationship
between the choice macro and micro architecture and their energy-performance
trade-off; as the performance target is pushed, the optimal choice of macro-architecture
changes to progressively more aggressive configurations.

Another important factor to consider is the die size. As the complexity of the
processor grows, the number of transistors increases significantly, resulting in a
increased manufacture cost and, especially for embedded systems, less portability.
We will consider all these factors in our design space exploration in chapter 6.

2.5 McPAT Processor Modelling Framework
McPAT [19] is an architecture-independent integrated power, area and tim-

ing modelling framework which supports simulating a wide range of multicore
and manycore processors configurations. It enables processor architects to per-
form design space exploration using metrics like the energy-delay-area product
(EDAP) metric, achieving high performance, energy efficient and economic pro-
cessor design. Figure 2.8 shows the structure of the McPAT framework,

Power Modelling
The system dissipate energy in several ways. Dynamic power is when the
CMOS circuit charge and discharge the capacitive loads to switch between
different states. Short-circuit power is caused by momentary direct circuit
path between the source and the ground when transistors change state. They
are both correlated to many parameters, the most significant ones being the
supply voltage, clock frequency and activity factor. The first two factors
are determined by system configuration and the last one is calculated from
the cycle-by-cycle simulation. Since transistors have finite resistance, the
electrons flowing through them causes leakage power, which increases as
the number of active components increases.

Time Modelling
Increasing frequency will increase the performance of the processor, how-
ever there is a physical limit to it since electrons takes time to travel across
transistors. McPAT estimates the delay of the critical path and produces the
maximum achievable clock frequency under certain lithography and supply
voltage.

Area Modelling
McPAT estimates the area of the silicon through an empirical method by
fitting the configuration into a curve built from many existing processor

10

designs. Under unusual configurations, it may not be accurate and may not
even be achievable due to the difficulty of wiring.

It accepts an XML interface for machine configuration and runtime log from
a cycle-by-cycle system simulator like gem5, and produce an estimation of die
area, dynamic energy usage and static energy leakage. It can be routed back to
our simulator to refine our configurations. We will heavily use the framework in
our design space exploration.

11

(a) Computational bottlenecks. (b) Memory bandwidth bottlenecks.

(c) Putting together.

Figure 2.4: Roofline Model with Ceilings for Opteron X2. (diagrams are from
[10])

12

(a) Maximising in-core performance. (b) Maximising bandwidth.

(c) Minimising traffic.

Figure 2.5: General ways to optimise in the Roofline Model. (diagrams are from
[10])

13

Figure 2.6: Speed vs. Accuracy Spectrum. (diagram is from [11])

Figure 2.7: Energy-performance Pareto curve of six macro-architectures. (dia-
gram from [18])

14

Fi
gu

re
2.

8:
B

lo
ck

di
ag

ra
m

of
th

e
M

cP
A

T
fr

am
ew

or
k.

(d
ia

gr
am

is
fr

om
[1

9]
)

15

Chapter 3

Related Work

There are many works that give us inspiration and help us understand the pro-
gress on the related field. In this chapter we give an overview of these research. In
section sec:sysanal we give an overview of several computer vision benchmarks
and the analysis used to characterise their behaviour on embedded system. In
section 3.2 we talk about existing work to use the Roofline model for analysing
dynamic program behaviour. In section 3.3 we talk about a study of gem5 error
margin on a similar platform as we are using.

3.1 Systematic Analysis for Computer Vision Ker-
nels

Guthaus et al [20] introduced MiBench, a benchmark suite designed for em-
bedded systems, in 2001. In the paper, the authors provided a systematic way
to identify characteristics of each benchmark program in the MiBench includ-
ing instruction distribution, branch predictability, and memory accesses using the
SimpleScalar performance simulator.

By looking at instruction distribution, one can easily identify whether a pro-
gram is computation intensive, control intensive or I/O intensive, and whether its
fp/int instructions are balanced. The branch predication rates analysis gives clue
about inherent branch correlation nature of the kernel. Finally the memory ac-
cesses characteristics shows the miss rate for different size and configurations of
caches. All of these analysis are helpful for statically analyse kernels and under-
stand their behaviour.

In MEVBench [21] paper, the authors looked into further profiling multi-
core scalability by introducing branch divergence and average multi-threaded in-
struction per cycle (IPC) analysis. These two metrics show how well the kernel
may perform on heterogeneous design, where a power core will deal with single-

16

threaded applications plus additional small cores to support explicit parallelism.
This inspires us to adding such configuration into our design space exploration.

3.2 Applying the Roofline Model on Hardware
The Roofline is a very simple model which only requires two factors about the

hardware in order to develop the model, i.e. memory bandwidth and peak floating-
point performance. However it has been used almost exclusively with back-of-
the-envelope calculations , which is inaccurate and hard to work with for more
complex algorithms such as FFT or dgemm. [22] Ofenbeck et al [22] presented a
strategy on how to produce Roofline model plots with using performance counters
on modern Intel platforms. Although it appears to be straight forward, there are
many pitfalls around low level system details making the process complicated,
followed are some of the aspects.

• The operating system has unpredictable effects on the kernel execution, in-
troducing noise to the result. In case of context switches, the run time could
bump by several times.

• The compiler may optimise by rewriting the code used to perform system
performance benchmarking, results in over-estimating data.

• In order to collect correct results, some of the hardware functionalities need
to be disabled, which deviates from common usage.

• The result still has a considerably large error margin, results will be hard to
reproduce.

Another issue with using performance counters is that it is not portable across
architectures, even different generations of the same architecture. Different ar-
chitectures have drastically different collection of performance counters and for
embedded systems, they can be inaccurate and does not convey enough run time
information for plotting the Roofline model.

3.3 Sources of Error in Full-System Simulation
Gutierrez et al [23] studied using gem5 to simulate an ARM Versatile Ex-

press (Cortex-A15) development board and analysed the run time and key micro-
architectural statistics error margin. The work provided a systematic method to
precisely model an actual hardware relying on manufacturer manual. It shows
that with appropriate modelling, the run time error for a mean percentage run

17

time error of 5% for SPEC CPU 2006. This work establishes the foundation for
our research into other ARM-based systems and helps us to establish confidence
in our simulation results and allows us to consider the accuracy margin for our
optimisation analysis.

18

Chapter 4

Kernel Analysis

We start our investigation by detailed analysis of the SLAMBench kernels.
In section 4.1, by setting up the benchmarking environment and configure the
gem5 simulator system to mimic the characteristics of our environment as closely
as possible. We then attempt to construct the Roofline model for our simulation
environment and add various optimisation ceilings to it.

In section 4.2, we perform a run time distribution analysis to find out the most
time consuming kernels which will be the focus of our detailed analysis. Due to
the slowdown effect of system emulation, we reduced and separated the selected
kernels and picked a sample frame before detailed analysis using gem5. We first
use the traditional methods to look at each specific runtime statistics to explain
the performance gap and look for opportunities for optimisation.

In section 4.3, We plot the kernels onto the Roofline model and show that we
can save a lot of human effort and obtain the exactly same results through this
high level abstraction model.

4.1 Benchmarking Environment
Our tests are conducted on a Samsung Chromebook “Snow” running Cortex-

A15 based Exynos 5 Dual (Exynos 5250). The system is chosen for its popularity
in many commercial embedded systems of various form factors, ranging from
single board computer and smart phones to desktop computers and tablets, and it
is one of the most studied high performance embedded systems. It is also one of
the recommended platforms for Cortex-A15 benchmarking by Linaro.

We set up the Chromebook using the environment shown in table 4.1. We sim-
ulated the system in gem5 with the best possible details using data derived from
ARM Processor Technical Reference Manual (TRM) [24], Exploring the design of
the cortex-a15 processor [25] and the Chromium project reference [26], with the

19

guidance from Sources of error in full-system simulation paper [23]. Appendix
A lists the changes we made to gem5 source code to accurately emulate the pro-
cessor and the command-line arguments we use. Table 4.2 shows the comparison
between parameters for the Samsung Chromebook and our gem5 configuration.

Parameter Setting
Distro Arch Linux ARM
Kernel Linux 3.4.0-ARCH
Kernel Parameters isolcpus=1 (for sequential tests)
cpufreq Driver exynos cpufreq
cpufreq Governor Performance
Compiler GCC 4.9.2
Compiler Flags -O3

Table 4.1: System Configuration of Testbed.

Parameter Chromebook gem5

Pipeline ARM Cortex-A15 O3CPU
CPU Clock 1.7GHz 1.7GHz
Branch Predictor Bi-Mode Bi-Mode
Fetch Buffer 16 Bytes 16 Bytes

FP Instr. Issue 2 per cycle 2 per cycle
FP Add Lat. 5 cycles 5 cycles
FP Mul Lat. 4 cycles 4 cycles

Cache Block 64 Bytes 64 Bytes
L1 I-cache 2-way 32KB 2-way 32KB
L1 D-cache 2-way 32KB 2-way 32KB
L2 cache 16-way 1MB 16-way 1MB

DRAM DDR3L @ 800MHz LPDDR3 1600 x32
Memory Size 2GB 2GB
System Bus 128 @ 500MHz 128 @ 500MHz

Table 4.2: Parameters for the Samsung Chromebook and our gem5 configuration.

With gem5, plotting the Roofline model is straight-forward, because both peak
FLOPS and memory bandwidth are defined by our configuration. The system has
2 cores and each has 2 VFP/NEON engine. One engine is capable of executing
128 bit MAC operations and another only 64 bits, equating to 12 single position
floating point operations per clock cycle. Therefore the theoretical ceiling for

20

floating point operations per second is that multiplied by frequency (1.7GHz),
which equates to 20.4 GFLOPS. Without balanced floating point operations, 6
single position is the theoretical limit (10.2 GFLOPS). Further without SIMD,
only 3 operations can be executed at the same time (5.1 GFLOPS), and without
ILP, only 2 single position operations are possible per clock cycle (3.4 GFLOPS).
Finally with no task parallelism (TLP), only half of the number can be executed
(1.7 GFLOPS).

The LPDDR3 module in Samsung Chromebook is capable of transfer 6.4 GB/s
of memory per second, which can be found in system.mem ctrls.peakBW sim-
ulation statistic. Without unit stride access, the memory access would be similar
to random access, which is ranked at only 1.6 GB/s.

Figure 4.1 shows the theoretical performance and optimisation ceilings for our
gem5 configuration.

 0.5

 1

 2

 4

 8

 16

 32

 64

 0.125 0.25 0.5 1 2 4 8 16

A
tt
a
in

a
b
le

 G
F

lo
p
s
/s

Operational Intensity (Flops/Byte)

Peak Floating-Point Performance

Pea
k
M

em
or

y
Ban

dw
id
th

1. Mul/Add Balance

2. SIMD

3. ILP Only

4. TLP (All cores used)

5.
 S

tri
de

 A
cc

es
s

 0.5

 1

 2

 4

 8

 16

 32

 64

 0.125 0.25 0.5 1 2 4 8 16

A
tt
a
in

a
b
le

 G
F

lo
p
s
/s

Operational Intensity (Flops/Byte)

Peak Floating-Point Performance

Pea
k
M

em
or

y
Ban

dw
id
th

1. Mul/Add Balance

2. SIMD

3. ILP Only

4. TLP (All cores used)

5.
 S

tri
de

 A
cc

es
s

 0.5

 1

 2

 4

 8

 16

 32

 64

 0.125 0.25 0.5 1 2 4 8 16

A
tt
a
in

a
b
le

 G
F

lo
p
s
/s

Operational Intensity (Flops/Byte)

Peak Floating-Point Performance

Pea
k
M

em
or

y
Ban

dw
id
th

1. Mul/Add Balance

2. SIMD

3. ILP Only

4. TLP (All cores used)

5.
 S

tri
de

 A
cc

es
s

 0.5

 1

 2

 4

 8

 16

 32

 64

 0.125 0.25 0.5 1 2 4 8 16

A
tt
a
in

a
b
le

 G
F

lo
p
s
/s

Operational Intensity (Flops/Byte)

Peak Floating-Point Performance

Pea
k
M

em
or

y
Ban

dw
id
th

1. Mul/Add Balance

2. SIMD

3. ILP Only

4. TLP (All cores used)

5.
 S

tri
de

 A
cc

es
s

 0.5

 1

 2

 4

 8

 16

 32

 64

 0.125 0.25 0.5 1 2 4 8 16

A
tt
a
in

a
b
le

 G
F

lo
p
s
/s

Operational Intensity (Flops/Byte)

Peak Floating-Point Performance

Pea
k
M

em
or

y
Ban

dw
id
th

1. Mul/Add Balance

2. SIMD

3. ILP Only

4. TLP (All cores used)

5.
 S

tri
de

 A
cc

es
s

Figure 4.1: Roofline plot for gem5 simulation environment, produced using our
analysis.

21

4.2 SLAMBench Kernels Analysis
The SLAMBench contains a number of kernels, each being independent from

the others. Most of the kernels are invoked once for each frame, however some are
called multiple times with different input sizes due to ICP algorithm and others
are called every several frames, as explained in section 2.1.

To simplify our analysis, we tune the benchmark to execute all kernels for
each frame. Due to the independent nature of the kernels, the analysis applies to
other configurations as well. We attempted to lower the volume resolution down
from (256,256,256) to (128,128,128), however we observe that this significantly
changes memory behaviour and is no longer representative.

We ran the full benchmark for ICL-NUIM ’lr kt2’ dataset using ’cpp’

serial and OpenMP parallel implementations of SLAMBench. Figure 4.2 shows
the run time distribution on ARM Cortex-A15, table C.1 and C.2 in appendix C
includes detailed run time analysis for all kernels.

10 20 30 40

renderVolume

raycast

bilateralFilter

integrate

32.76

32.57

19.13

8.73

34.72

33.79

15.67

8.53

Time(%)

Sequential
Parallel

Figure 4.2: Execution Time of Selection of Kernels on Cortex-A15.

Since renderVolume, raycast, bilateralFilter and integrate kernels
accounts for more than 90% of both serial and parallel run time, we will focus on
these kernels for detailed analysis.

Input Dependency Analysis

We investigating their dependency on the input, since finding an representative
frame could greatly reduce our benchmarking workload. We plot their run time
across the entire 882 frames 4.3.

22

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 0 100 200 300 400 500 600 700 800 900

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

renderVolumeKernel_307200

Execution Time

(a) renderVolume.

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 0 100 200 300 400 500 600 700 800 900

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

raycastKernel_307200

Execution Time

(b) raycast.

 7.4e+08

 7.45e+08

 7.5e+08

 7.55e+08

 7.6e+08

 7.65e+08

 7.7e+08

 7.75e+08

 7.8e+08

 7.85e+08

 7.9e+08

 0 100 200 300 400 500 600 700 800 900

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

bilateralFilterKernel_307200

Execution Time

(c) bilateralFilter.

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

 5e+08

 5.5e+08

 6e+08

 0 100 200 300 400 500 600 700 800 900

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

integrateKernel_65536

Execution Time

(d) integrate.

Figure 4.3: Timing of Selected Kernels across entire 882 frames.

Plots a and b are distinctively bi-modal. We took the experiment multiple
times and found that the behaviour is non-deterministic. This anomaly does not
reproduce on more powerful x86 machine. We do not fully understand this beha-
viour but we suspect this has to do with clock system call bugs in the ChromeOS
kernel.

Plots a, b and d follow a clear trend. We then performed per frame execution
path analysis of all 882 frames and found out that their run time is input dependent
by that if the camera moves slower or moves into a previously mapped position,
the raycast will be more likely to hit surface interface, reducing the number of
times the main kernel loop needs to be executed. Knowing that, we decided to
reduce the kernel by separating out the fifth frame run and put into test in the
gem5 simulation environment, since it is both representative of the entire series
by that it takes about average amount of time to complete and the volume no
longer empty.

Finally, bilateralFilter (plot c) is purely dependent on the input. However
since this kernel only uses camera input, which entirely fits into the L2 cache and
is freshly used by mm2meters kernel, it is not interesting to examine closely. We

23

will discard this kernel from our following detailed analysis as well.
We run the said simulation under gem5, and obtained their results (appendix

D). The simulation on an modern X86 machine 1 takes around 1.5 hours to simu-
late a 1 second run on real hardware.

4.2.1 Dynamic Instruction Distribution
We start by looking into the dynamic distribution of instructions. There are

four main classes of instructions: control logic(branches and jumps), integer cal-
culations, floating point calculations and memory accesses (load and store). We
can classify programs according to the percentage distribution of instruction classes.

• Control intensive programs are those with larger percentage of control lo-
gic instructions, which usually put heavy load on the branch predictor. For
software optimisation, we are interested in techniques like loop unrolling to
reduce the control overhead. As for hardware optimisation, a more aggress-
ive branch prediction scheme and larger branch prediction table could bene-
fit the prediction hits and a shallower pipeline could reduce mis-prediction
penalty.

• Compute intensive programs are those have a majority of integer or floating
point instructions. For software optimisation, we could balance the float-
ing point and integer operations to utilise both kinds of functional units, or
aggressively vectorisation to utilise instruction level parallelism (ILP). For
hardware optimisation, we could configure the ratio of integer and floating
point functional units to match the actual distribution, or to use a deeper
functional unit pipeline to increase the overall throughput.

• Memory intensive programs are those which have larger proportion of memory
access instructions. For software optimisation, we could tile the loop to
increase memory access locality and reduce cache misses. For hardware
optimisation, a larger cache could reduce cache miss rate, larger memory
bandwidth and shorter memory access delay could reduce cache miss pen-
alty.

We can easily extract the details from the gem5 execution report and figure
4.4 shows the dynamic instruction distribution for our kernels. We can immedi-
ately see that all three kernels are highly compute intensive, showing that we have
greater need for high computing throughput than memory system.

1Intel i7-4770 CPU, 16GB DRAM

24

0 20 40 60 80 100

renderVolume

raycast

integrate

InstructionsInt FP MemRead MemWrite
ucond cond

Figure 4.4: Dynamic Instruction Distribution for the gem5 simulation.

All of the kernels have very balanced integer / floating point instructions,
which exploits both integer and floating point pipeline. This is confirmed by
digging into the simulation log and found out that both pipelines are fully sat-
urated, which indicates that we have good balance in terms of the proportion of
integer and floating point pipelines for these two kernels, and decoded instruc-
tion queue is large enough to allow all the pending instructions to be issued.

By looking into the exact type of instructions (table 4.3), we found that in
renderVolume and raycast kernel, although there are fairly balanced number
of floating point addition and multiplication in both kernels, only around 10% are
multiply–accumulate operations (MAC). This shows an opportunity for floating
point balance optimisation.

Kernel FPAdd FPMult FMAC

renderVol 34574330 48383886 9634641
raycast 35968831 49917533 11007828
integrate 28049207 65790 22476946

Table 4.3: Floating point balance of three kernels, integrate has very high utilisa-
tion of MAC unit while the others are seriously lacking.

The integrate kernel has less memory access and much more branch instruc-
tions. Detailed inspection shows very low L2 cache miss and branch prediction
miss rate. It is because the kernel frequently access the depth which already
resides in the L2 cache, and as we are integrating for every frame, we get far less
movement than default thus branches are heavily biased, and the access to volume
data is rarely accessed as well. In actual scenario, there will see a slightly higher
L2 cache miss rate because it is only recently accessed and incurs compulsory
misses.

25

4.2.2 Cache
Accesses to data in the cache hierarchy are magnitudes faster than the main

memory system, and make a big difference in terms of average memory access
delay. In table 4.4 we summarise the cache miss rate in our configuration. Al-
though there seems to be a huge miss rate for the integrate kernel, there are
actually few accesses to it, since everything fits into the L1 cache.

Kernel dcache icache L2 Cache

renderVol 10.28% 0.00% 5.03%
raycast 10.36% 0.00% 5.29%
integrate 0.00% 0.00% 93.33%

Table 4.4: Cache miss rates of the kernels. Note that the cache hierarchy at the
beginning of our simulation is warmed up, instead of potentially code in real world
execution.

The L2 miss rate for renderVol and raycast is compulsory because they
follow the search/stencil memory access pattern [7], and software optimisation
cannot improve that much. However on the hardware size, addition of a large L3
cache could fit the entire volume and alleviate the memory pressure.

4.2.3 Branches
Another important thing to look at is the branches, especially predication rates.

The Cortex-A15 utilises a bi-mode branch predictor [27] which is a dynamic pre-
diction scheme, using two pattern history tables (PHT) indexed in gshare fashion,
and a separate choice predictor, a table of 2-bit counters indexed in the lower bits
of the branch address. The final prediction finally chooses one of the PHT based
on the choice predictor table. Figure 4.5 illustrates the mechanism of the scheme.
The scheme is highly efficient when the branch is heavily biased to one direction
and less affected by destructive interference.

It turns out that the conditional branches in all of these kernels are heavily
biased, resulting in a very low mispredication rate, as shown in table 4.5. This
shows that compiler branch prediction hint is not likely to be effective and in ar-
chitecture side we are are interested into using a simple branch predictor which
might be a better trade-off between energy and performance.

26

Figure 4.5: Structure of bi-mode branch predictor. (diagram is from [27])

Kernel Branches(Million) Mispredication rate

renderVolume 143.0 0.28%
raycast 142.1 0.28%
integrate 3.743 0.04%

Table 4.5: Branch prediction rate for three kernels.

4.2.4 Instruction Level Parallelism
Given the amount of power and die area costs to implement instruction level

parallelism (ILP) on embedded systems, it is vital that we’re fully utilising it to
be energy and die area efficient. The number of instructions per cycle (IPC) is
a good indication of the utilisation of ILP. Table 4.6 shows the IPC of the three
kernels and we found that for integration, the compiler is already reordering
most operations and high IPC is achieved. The other two kernels are not highly
parallelised. By reordering instructions and breaking dependency, there could
be more opportunity for the processor to execute instructions in concurrent. On
the architecture side, a larger instruction dispatch buffer could benefit the per-
formance and shallower pipeline coud reduce energy consumption.

Another thing to look at is the proportion of instructions that are SIMD (NEON)

27

Kernel IPC

renderVolume 1.232
raycast 1.230
integrate 1.776

Table 4.6: Instructions per cycle for three kernels.

instructions, which could show how far the compiler auto-vectorised the kernel.
However we cannot obtain that data such since the Cortex-A15 executes both
floating point and SIMD instructions on the NEON engine and we cannot dis-
tinguish between them without runtime trace. Since this will further slow the
simulation and we opt to not analyse it.

4.3 Roofline Model
Finally we plot the renderVolume and raycast kernels onto our previously

established Roofline model. We omit integrate kernel since its image data mostly
resides in L2 cache and there is rarely any access to the volumetric data. We
calculate the operational intensity and floating operations per second (Flops) of
the kernels, as shown in table 4.7, results figure 4.6. Both of the kernels have
large operational intensity for our system, the memory bandwidth is hardly going
to affecting the performance. However they only utilises around a quarter of peak
floating point capability, and below ILP ceiling and floating point balance ceilings.
This suggests we need to focus on improving ILP and reduce memory bandwidth
on the architecture side to save power and die area. This simple model agrees
with all our previous findings and proves to be really effective and labour saving
method to look for optimisation opportunities. In addition, the model also shows
that instructing SIMD instructions will help to improve performance while our
previous analysis in section 4.2.4 fail to produce.

Kernel Operational Intensity GFLops

renderVolume 9.71 2.04
raycast 8.89 2.02

Table 4.7: Kernels roofline parameters under gem5 simulation environment.

28

 0.5

 1

 2

 4

 8

 16

 32

 64

 0.125 0.25 0.5 1 2 4 8 16

A
tt

a
in

a
b

le
 G

F
lo

p
s
/s

Operational Intensity (Flops/Byte)

Peak Floating-Point Performance

Pea
k
M

em
or

y
Ban

dw
id
th

1. Mul/Add Balance

2. SIMD

3. ILP Only

4. TLP (All cores used)

5.
 S

tri
de

 A
cc

es
s

renderVol

raycast

 0.5

 1

 2

 4

 8

 16

 32

 64

 0.125 0.25 0.5 1 2 4 8 16

A
tt

a
in

a
b

le
 G

F
lo

p
s
/s

Operational Intensity (Flops/Byte)

Peak Floating-Point Performance

Pea
k
M

em
or

y
Ban

dw
id
th

1. Mul/Add Balance

2. SIMD

3. ILP Only

4. TLP (All cores used)

5.
 S

tri
de

 A
cc

es
s

renderVol

raycast

 0.5

 1

 2

 4

 8

 16

 32

 64

 0.125 0.25 0.5 1 2 4 8 16

A
tt

a
in

a
b

le
 G

F
lo

p
s
/s

Operational Intensity (Flops/Byte)

Peak Floating-Point Performance

Pea
k
M

em
or

y
Ban

dw
id
th

1. Mul/Add Balance

2. SIMD

3. ILP Only

4. TLP (All cores used)

5.
 S

tri
de

 A
cc

es
s

renderVol

raycast

 0.5

 1

 2

 4

 8

 16

 32

 64

 0.125 0.25 0.5 1 2 4 8 16

A
tt

a
in

a
b

le
 G

F
lo

p
s
/s

Operational Intensity (Flops/Byte)

Peak Floating-Point Performance

Pea
k
M

em
or

y
Ban

dw
id
th

1. Mul/Add Balance

2. SIMD

3. ILP Only

4. TLP (All cores used)

5.
 S

tri
de

 A
cc

es
s

renderVol

raycast

 0.5

 1

 2

 4

 8

 16

 32

 64

 0.125 0.25 0.5 1 2 4 8 16

A
tt

a
in

a
b

le
 G

F
lo

p
s
/s

Operational Intensity (Flops/Byte)

Peak Floating-Point Performance

Pea
k
M

em
or

y
Ban

dw
id
th

1. Mul/Add Balance

2. SIMD

3. ILP Only

4. TLP (All cores used)

5.
 S

tri
de

 A
cc

es
s

renderVol

raycast

Figure 4.6: Roofline model with kernels plotted onto it. The machine rooflines
are from figure 4.1, and kernels are plotted using our analysis in section 4.3

4.4 Summary
With our deep knowledge in the runtime behaviour of SLAMBench kernels,

we are ready to improve the execution efficiency either by software optimisation
or hardware optimisation. In chapter 5 we use the insights to use different software
optimising technique to increase the throughput and in 6 we look into adapting the
hardware for efficient software execution.

29

Chapter 5

Assessment of Optimisations

From our insights into the selected kernels, we are now able to perform guided
optimisation. In section 5.1 we summerise the opportunities identified from pre-
vious chapter and in section 5.2 we implement the optimisation opportunities and
finally in section 5.3 we evaluate our methodology in identifying and implement-
ing optimisations in terms of achieved speed up and the amount of human labour.

5.1 Opportunities for Optimisation
We summarise the opportunities identified from our previous analysis.

1. All kernels can benefit from reordering instructions, unrolling loops and
inlining functions to improve IPC.

2. renderVolume and raycast can benefit from vectorising and using SIMD
instructions.

3. renderVolume and raycast can benefit from balancing floating point op-
erations.

We determined that optimisation techniques to reduce memory bandwidth, e.g.
software pre-fetching, unit stride access, are not likely to improve the perform-
ance. Since we are beyond memory bandwidth bound region, reducing memory
traffic by better utilisation of cache is also not going to improve the throughput
much.

30

5.2 Implementing Optimisations

5.2.1 ILP
We first attempted simplest and most common way which is by unrolling loops

within kernels. The loops in these three kernels all operates on their respective
input matrix thus are statically unrollable with the assumption that the size is
power of 2. For illustration, we unroll the code in listing 1 by four times and
results in listing 2. The performance benefit of this is modest, because the main
kernel loop is very large in size and the benefit is partially cancelled out by the
bloated binary size (more instructions need to be loaded into cache hierarchy).
Benchmarks show merely 0.4% increase in performance across all kernels when
unrolled by 2 times, and performance degradation when unrolled further.

for (y = 0; y < vol.size.y; y++) {

for (x = 0; x < vol.size.x; x++) {

// Main kernel loop

}

}

Listing 1: Original main kernel loop.

for (y = 0; y < vol.size.y; y++) {

for (x = 0; x < vol.size.x; x += 4) {

// Main kernel loop 1

// Main kernel loop 2

// Main kernel loop 3

// Main kernel loop 4

}

}

Listing 2: Main kernel loop unrolled by four times.

Inlining function calls does not help the performance because the compiler is
already doing so for smaller funtcions while the bloated binary size for inlining
larger functions offsets the improvement in ILP.

5.2.2 SIMD
Because computer vision kernels operates on three dimensional space or three

directions, and most operations are applied to all three dimensions simultaneously,

31

which exposes great opportunity to vectorisation. We enabled -ffast-math and
-ftree-vectorize to allow compiler auto-vectorisation and observed output of
-fopt-info-vec. It turns out that the compiler was only able to vectorise a tiny
fraction of the code, and most floating point matrix and vector operations are left
unoptimised. However the use of -fast-math alone does significantly increases
the performance due to reduced floating point accuracy and the benchmark shows
a 13% percent increase in throughput.

Since all the kernels use CUTIL library for these computations, we hand vec-
torised the most used functions in it, so that every kernel would benefit. For ex-
ample, the addition of float3 type is vectorised by placing the three dimensions
into the first three lanes of the 128-bit NEON registers, and apply vsubq f32 in-
struction on them, as shown in listing 3 and 4. We also modified Volume::interp
to use the overloaded operation of float3 in order to utilise vectorisation.

float3 operator+(float3 a, float3 b) {

return make_float3(a.x + b.x, a.y + b.y, a.z + b.z);

}

Listing 3: Original float3 addition.

float3 operator+(float3 a, float3 b) {

float32x4_t vsum = vaddq_f32({a.x, a.y, a.z, 0},

{b.x, b.y, b.z, 0});

return make_float3(vsum[0], vsum[1], vsum[2]);

}

Listing 4: float3 addition vectorised using vsubq f32.

There is a significant overhead in this method because each time an operation
is finished, it needs to be transformed from an float32x4 t type to float3, and
the subsequent operation needs to transform it again. Thus the manual vector-
isation actually slowed down the entire KinectFusion by 4%. We modified the
codebase to transfer the results directly through the 128-bit type and the overall
performance showed another 7% increase on top of the fast math optimisation.

5.2.3 Floating Point Balancing
Balancing floating-points is the one of the most tricky optimisation techniques.

The imbalance is an inherent property of the kernel algorithm, and the compiler
optimisation reorders the instructions and it is hard to understand from the output.

32

The work we can do is really limited. Listing 5 and 6 show one of the subtle optim-
isation we used. It used to take three operations (one multiplication, one division
and one addition) and now it takes two (one division and one FMAC). Benchmarks
show a small margin of improvement (0.3%) across three entire benchmark.

const float3 scaled_pos =

make_float3((pos.x * size.x / dim.x) - 0.5f,

(pos.y * size.y / dim.y) - 0.5f,

(pos.z * size.z / dim.z) - 0.5f);

Listing 5: Original scaled pos calculation.

const float3 scaled_pos =

make_float3((pos.x / dim.x) * size.x - 0.5f,

(pos.y / dim.y) * size.y - 0.5f,

(pos.z / dim.z) * size.z - 0.5f);

Listing 6: scaled pos optimised by balancing floating point operation. It now
takes two cycles instead of three through the use of FMAC.

5.3 Evaluation
Manual fine-tuned optimisation is a complicated process, the programmer

need to look at a large codebase and attempt various optimisation techniques try-
ing to find a combination to reach higher performance. The gem5 analysis gives
us important details about the runtime behaviour of the program and helps us to
restrict the type of optimisation techniques to look at. The Roofline model, be-
ing a high level abstraction of program and machine behaviour, proves to be a
more effective method which achieves similar conclusions as full system simula-
tion while requiring far less low level details. It also gives an visual indication of
how much machine capability is utilised.

Our optimisation effectively reduced the total runtime of the selected kernels
by 21.3% and entire KinectFusion implementation by 20.7% on the Exynos Dual
SoC. In the mean while, the human input is mostly focused in setting up the testing
environment and implementing the optimisations, and spotting for optimisation
opportunities is very effortless. Besides, the testing environment can be reused
since it is not dependent on the program to be optimised. We conclude that our

33

methodology for optimising computer vision kernels is a highly effective way in
both the speed up achieved and the amount of effort required.

34

Chapter 6

Hardware Design-space Exploration

With our deep understanding of SLAMBench kernels, we finally look into
optimisation hardware for more efficient execution of SLAMBench kernels using
gem5. This is essentially a Pareto optimality problem where we are looking for
a machine configuration with high performance with low energy consumption,
as well as small die area so that the system is economic. We will only focus
on the renderVolume kernel due to the massive slow down effect of full system
simulation, but due to the generality of our methodology, this shall apply to any
other computer vision kernels.

6.1 Methodology
As studied in section 2.4, the design space for processor architecture is huge,

it is almost impossible to simulate every combination to find the optimal set up.
However since we have performed bound-and-bottleneck analysis on our kernel,
we can significantly reduce the search range. For our experiment, we will only
study the renderVolume kernel due to limited time, however the methodology
shall apply to arbitrary computer vision kernel due to its generality.

From our dynamic analysis, we found out that renderVolume is computa-
tional bound on our architecture, thus the main idea is to reduce the cost on
memory and cache subsystem and focus on increasing its computing capability.
The reduced range is shown in table 6.1.

We devise our exploration methodology based on the fact that in computer
vision, it is important to achieve real time reconstruction of the 3D scenario of 30
frames per second. We reduce the energy-delay-area product (EDAP) metric from
McPAT to:

EAP = Energy×Area

35

Pa
ra

m
et

er
Ty

pi
ca

lR
an

ge
C

ur
re

nt
Se

tu
p

R
ed

uc
ed

R
an

ge

C
or

e
co

un
t

1-
32

2
2-

32
a

M
ic

ro
-a

rc
hi

te
ct

ur
e

O
oO

/i
n

or
de

r
O

oO
O

oO
/i

n
or

de
r

B
ra

nc
h

pr
ed

ic
to

r
Si

m
pl

e
/C

om
pl

ex
C

om
pl

ex
(B

i-
m

od
e)

Si
m

pl
e

/C
om

pl
ex

b

C
ac

he
le

ve
ls

1-
4

le
ve

ls
2

2-
4

c

L
1

C
ac

he
as

so
ci

at
iv

ity
D

ir
ec

t-
m

ap
pe

d(
1

w
ay

)
2

1
-2

-F
ul

ly
as

so
ci

at
iv

e
I-

ca
ch

e
si

ze
2-

32
K

B
32

K
B

2-
32

K
B

d

D
-c

ac
he

si
ze

4-
64

K
B

32
K

B
32

K
B

L
2

ca
ch

e
si

ze
25

6-
40

96
K

B
1M

B
1-

4M
B

e

L
3

ca
ch

e
si

ze
1-

32
M

B
N

/A
0-

32
M

B

M
em

or
y

ba
nd

w
id

th
1-

12
8G

/s
6.

4G
B

/s
1-

6.
4G

B
/s

Ta
bl

e
6.

1:
R

ed
uc

in
g

de
si

gn
sp

ac
e

pa
ra

m
et

er
s,

us
in

g
ex

is
tin

g
kn

ow
le

dg
e.

a M
or

e
co

re
s

co
ul

d
si

gn
ifi

ca
nt

ly
ra

is
e

th
e

co
m

pu
ta

tio
n

ca
pa

bi
lit

y.
b L

oo
ps

ar
e

hi
gh

ly
bi

as
ed

,a
si

m
pl

er
pr

ed
ic

to
rc

ou
ld

sa
ve

di
e

sp
ac

e
an

d
en

er
gy

.
c A

la
rg

e
L

3
ca

ch
e

ca
n

st
or

e
th

e
en

tir
e

vo
lu

m
et

ri
c

re
pr

es
en

ta
tio

n
in

ca
ch

e.
d T

he
si

ze
of

ou
rk

er
ne

li
s

m
uc

h
sm

al
le

rt
ha

n
32

K
B

.
e St

en
ci

lm
em

or
y

ac
ce

ss
pa

tte
rn

co
ul

d
be

ne
fit

s
fr

om
la

rg
er

co
nt

ex
ts

to
re

d
up

in
th

e
ca

ch
e

hi
er

ar
ch

y.

36

for our exploration so that we place equal importance to energy usage and
processor manufacturing cost 1. Our goal is thus to find the optimal configuration
to minimise EAP. We integrated McPAT framework into gem5 through a script,
by translating the gem5 statistics and machine configuration report to McPAT’s
XML input format. We devise a procedure briefly as follows:

1. For each parameter combination in the parameter set, we set up the gem5
simulator. The clock frequency is initially set to 1GHz.

2. Recompile the kernel targeting the selected architecture to allow the com-
piler to automatic optimise the code for the target architecture.

3. Simulate the hardware under gem5 simulator and determine the time to
render.

4. Calculate the required clock frequency in order to achieve real time recon-
struction.

5. Take the feedback and rerun the simulation under gem5, using the minimum
required clock frequency.

6. Integrate the simulation results into McPAT model, then bisect the design
space again if there is improvement in energy-area product.

6.2 Baseline System
Since the exact energy usage and die area is closely related to lithography tech-

nology, we need to set up a reference system for comparison. We first attempted
the Exynos Dual set up, but it was not possible to reach real time reconstruc-
tion, because it requires a clock frequency of over 18GHz which is physically
impossible to reach as determined by McPAT. We opt to increase the core count
to 6 and were able to reach real time rendering at 6.3Ghz clock frequency McPAT
reported 75.3 mm2 in area and used 4.2 J to render a single frame. The EAP for
our baseline system is 75.3×4.2 = 316mm2 J.

6.3 Exploration

6.3.1 Micro-architecture
We start by looking into the micro-architecture. There are two main paradigms

for CPU architecture, in-order and out-of-order (OoO) processors. In-order pro-
1The cost for manufacturing the processor is roughly proportional to die area.

37

23 24 25 26

200

400

600

800

Number of Cores

E
A

P

Out-of-order
In-order

Figure 6.1: EPA for processors of different micro-architecture and number of
cores.

cessors have a simple design, with a very shallow pipeline, very limited ILP. They
are much smaller in die size, far less power hungry but a lot slower than OoO
processors. Many small in-order processors are usually used to offset the low per-
formance of a single processor. Another interesting component to look at is the
branch predictor, there is a small margin of power and area saving for a simpler
branch predictor.

We run the exploration on 4 to 16 out-of-order processors and 16 to 64 in-
order processors using the procedure previously described. Figure 6.1 shows the
trend of these configurations, and 48 in-order processors configuration is the clear
winner with more than 35% reduction in EAP compared with baseline system and
29% lower than the best OoO. Figure 6.2 shows the EPA using either the complex
bi-mode branch predictor, tournament predictor and the simplest 2-bit predictor
on the optimal in-order processor. The tournament predictor has a marginally
smaller EPA than the bi-mode predictor in Cortex-A15, but the 2-bit predictor
shows worse results due to higher miss prediction rate offsetting the benefit from
its hardware implementation.

6.3.2 Cache
We then attempt to change the cache parameters to further reduce the EPA.

We have previously concluded that a larger cache is likely to benefit since it can
store the entire volumetric representation. There are two possible methods of
achieving this, a large high-latency L2 cache or a small L2 cache with a large L3

38

bimodal tournament 2-bit
200

205

210

215

Number of Cores

E
A

P

Figure 6.2: EPA for 48 cores in-order processors with various branch predictor.

cache. Since the size of the entire volume is 32MB, we will explore up to that
limit. Figure 6.3 shows the effect of a larger 64-cycle latency L2 cache, the EAP
improved by 7% compared to fast 1MB L2 cache. However the optimal is not at
32MB, matching the volumetric size, this is because with memory pre-fetching,
a cache smaller than the entire object could still provide very high hit rate with a
lower energy and die size usage. Adding an L3 cache is disappointing, as shown in
figure 6.4. The EAP increases slightly, due to more components draining energy
and taking up more die area.

Another conclusion we made is that a smaller L1i cache could save energy and
die size because of the current under usage. We were not able to verify this as it
triggers a bug within the gem5 simulator.

6.3.3 Memory Controller
With the processor micro-architecture, core number and cache hierarchy de-

termined, we can finally decide the minimum memory bandwidth we require. Al-
though it is not part of the original LPDDR3 standard, we can change its clock
frequency in the simulator. However our experiments find out that with the clas-
sic memory system model we use in our simulation, it causes strange behaviours
due to its inaccuracy. The Ruby model should be able to handle the modifica-
tion but since it requires major changes to our benchmarking framework and time
constraint, we will not investigate further.

39

21 22 23 24 25
185

190

195

200

205

210

Size of L2 cache (MB)

E
A

P

Figure 6.3: Effect of having a 64 cycle high latency L2 cache, 16MB is the optimal
size which reduces EAP rating by 7%.

22 23 24 25 26

220

230

240

250

Size of L3 cache (MB)

E
A

P

Figure 6.4: Effect of having a L3 cache, the rating decreases in this case.

40

6.4 Summary
Through detailed dynamic kernel analyses, we accurately identified the bottle-

neck parameters and significantly reduced the search space for hardware design.
The results show a massively parallelled CPU design with 48 ”small” cores and a
large slow L2 cache can reduce the EAP by massive 40% compared to the baseline
system, through a much lower energy consumption compensating the increase in
die size.

This is an interesting result in that our optimal configuration shows similarity
with a GPGPU architecture, which both have large number of small cores and
large memory bandwidth (in our case, since the volumetric size is small, we have
a large L2 cache). This study shows a possibility to bridge the gap between CPU
and GPU architecture. One of the possible impact is in heterogeneous CPU archi-
tecture, where we may be able to have a small number of ”large” cores to handle
the sequential tasks and a large number of smaller cores to handle both simple
sequential tasks and act as a GPU to reduce the cost of high performance SoC.

41

Chapter 7

Conclusions and Future Work

In this chapter, we give a summary of our findings and address the objectives
set for the investigation. In section 7.2 we discuss some of limitation of the work
and the direction for further investigation.

7.1 Summary
The aim of this project is to explore different implementations of the Kin-

ectFusion kernels and investigate where and how to introduce optimisations of
various kinds, in order to improve its performance and reduce the energy usage.
In chapter 4 we investigated the KinectFusion kernels and reduced our investig-
ation to three kernels that takes up most execution time and performed detailed
dynamic analysis for them. In chapter 5 we use analyses and model guided op-
timisation to improve the performance of the KinectFusion benchmark by 20.7%
on the Exynos Dual SoC with small amount of manual effort. Lastly in chapter
6 we investigated optimising processor micro-architecture configurations to fur-
ther improve performance and energy consumption and achieved 40% reduction
in energy-area product (EPA).

In this thesis we have made the following contributions:

• We presented a detailed dynamic analysis on KinectFusion algorithm imple-
mentation on ARM Cortex-A15 architecture to understand its runtime beha-
viour, including dynamic instruction distribution, cache hierarchy, branch-
ing and instruction level parallelism. We plotted the kernels onto the Roofline
model as an alternative approach.

• We demonstrated a systematic method to use the dynamic analysis and
Roofline model to perform guided optimisation of SLAMBench kernels and

42

achieved 20% improvement in throughput and demostrated the effectiveness
of the technique in terms of human effort.

• We devise a metric to assess hardware energy efficiency and die area and
introduce a process to utilise dynamic analysis to greatly reduce hardware
design exploration space. We reduced delay-area product by 40% through
a GPGPU-like CPU design.

• From our conclusion that a GPGPU-like CPU design is energy efficient is
efficient in processing parallelised programs, we discuss about the possibil-
ity to fuse CPU and GPU through an heterogeneous processor design.

7.2 Future Work
In this thesis, there are several areas where we do not have time to investigate

and future work is required:

• Due to slowdown effect of system simulator, we were only able to investig-
ate three kernels, two of which have very similar memory access behaviour.
We need to extend the experiment to a more diverse set of kernels in order
to prove the generality of the approach.

• We only used a fraction of the low level details provided by the system
simulator in kernel analysis. Investigation in utilising the rest of the data for
better understanding and using a higher level simulation system for faster
turnaround time are two interesting areas to look at.

• We need to look at other optimisation methodology, manual or autotun-
ing system, to compare and contrast in terms of speed up achieved and the
amount of effort.

• We combined two simulation models (gem5 and McPAT) to study the sys-
tem behaviour. This also multiplies the error range of the models from the
actual hardware [23, 19]. Especially in the design space exploration where
we used an unusual set of configurations of processor micro-architecture,
work is required to investigate their accuracy under these extreme circum-
stances.

The success of using GPGPU-like many-core processor design for energy-
efficient high-performance massively parallel workloads processing, which are
usually thought to be only achievable by GPGPU is a important insight. Replacing
GPU with massively parallel CPU cores can greatly reduce the silicon area has

43

many applications including Internet of Things (IoT), extremely low-cost systems,
accelerating OpenCL computation, etc. With many modern embedded systems
already taking heterogeneous CPU design, this opens up a lot of possibility for
future research.

44

Bibliography

[1] J. Aulinas, Y. R. Petillot, J. Salvi, and X. Lladó, “The slam problem: a
survey.,” in CCIA, pp. 363–371, Citeseer, 2008. 1

[2] “Dyson 360 website.” https://www.dyson360eye.com. Accessed: June
2015. 1

[3] “Project tango website.” https://www.google.com/atap/project-

tango. Accessed: June 2015. 1

[4] G. Klein and D. Murray, “Parallel tracking and mapping for small ar work-
spaces,” in Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and
ACM International Symposium on, pp. 225–234, IEEE, 2007. 1

[5] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton,
D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon, “Kinectfusion: Real-
time dense surface mapping and tracking,” in Mixed and augmented reality
(ISMAR), 2011 10th IEEE international symposium on, pp. 127–136, IEEE,
2011. 1, 2, 3, 4, 5

[6] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d reconstruction in
real-time,” in Intelligent Vehicles Symposium (IV), 2011 IEEE, pp. 963–968,
IEEE, 2011. 1

[7] L. Nardi, B. Bodin, M. Z. Zia, J. Mawer, A. Nisbet, P. H. J. Kelly, A. J. Dav-
ison, M. Luján, M. F. P. O’Boyle, G. Riley, N. Topham, and S. Furber, “In-
troducing SLAMBench, a performance and accuracy benchmarking method-
ology for SLAM,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
May 2015. arXiv:1410.2167. 2, 26

[8] A. Handa, T. Whelan, J. McDonald, and A. J. Davison, “A benchmark for
rgb-d visual odometry, 3d reconstruction and slam,” in Robotics and Auto-
mation (ICRA), 2014 IEEE International Conference on, pp. 1524–1531,
IEEE, 2014. 2

45

https://www.dyson360eye.com
https://www.google.com/atap/project-tango
https://www.google.com/atap/project-tango

[9] “Hololens website.” https://www.microsoft.com/microsoft-

hololens/en-us/hardware. Accessed: June 2015. 2

[10] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful visual
performance model for multicore architectures,” Communications of the
ACM, vol. 52, no. 4, pp. 65–76, 2009. 2, 3, 6, 7, 12, 13

[11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5 simu-
lator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7,
2011. 2, 3, 8, 14

[12] “Kinect website.” https://www.microsoft.com/en-us/

kinectforwindows. Accessed: June 2015. 4

[13] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,”
in Computer Vision, 1998. Sixth International Conference on, pp. 839–846,
IEEE, 1998. 5

[14] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in
Robotics-DL tentative, pp. 586–606, International Society for Optics and
Photonics, 1992. 5

[15] B. Curless and M. Levoy, “A volumetric method for building complex mod-
els from range images,” in Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pp. 303–312, ACM, 1996. 5

[16] D. A. Patterson, “Latency lags bandwith,” Communications of the ACM,
vol. 47, no. 10, pp. 71–75, 2004. 6

[17] J. D. McCalpin, “Stream: Sustainable memory bandwidth in high perform-
ance computers,” 1995. 6

[18] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz, “Energy-
performance tradeoffs in processor architecture and circuit design: a mar-
ginal cost analysis,” in ACM SIGARCH Computer Architecture News,
vol. 38, pp. 26–36, ACM, 2010. 14

[19] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: an integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in Microarchitecture, 2009.
MICRO-42. 42nd Annual IEEE/ACM International Symposium on, pp. 469–
480, IEEE, 2009. 10, 15, 43

46

https://www.microsoft.com/microsoft-hololens/en-us/hardware
https://www.microsoft.com/microsoft-hololens/en-us/hardware
https://www.microsoft.com/en-us/kinectforwindows
https://www.microsoft.com/en-us/kinectforwindows

[20] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4. 2001 IEEE
International Workshop on, pp. 3–14, IEEE, 2001. 16

[21] J. Clemons, H. Zhu, S. Savarese, and T. Austin, “Mevbench: A mobile com-
puter vision benchmarking suite,” in Workload Characterization (IISWC),
2011 IEEE International Symposium on, pp. 91–102, IEEE, 2011. 16

[22] G. Ofenbeck, R. Steinmann, V. Caparros, D. G. Spampinato, and M. Puschel,
“Applying the roofline model,” in Performance Analysis of Systems and Soft-
ware (ISPASS), 2014 IEEE International Symposium on, pp. 76–85, IEEE,
2014. 17

[23] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi, C. D.
Emmons, M. Hayenga, and N. Paver, “Sources of error in full-system sim-
ulation,” in Performance Analysis of Systems and Software (ISPASS), 2014
IEEE International Symposium on, pp. 13–22, IEEE, 2014. 17, 20, 43

[24] A. ARM, “Cortex-a15 mpcore processor technical reference manual,” 2013.
19

[25] T. Lanier, “Exploring the design of the cortex-a15 processor,” 19

[26] “Samsung arm chromebook - the chromium projects.” https://http:

//www.chromium.org/chromium-os/developer-information-for-

chrome-os-devices/samsung-arm-chromebook. Accessed: June 2015.
19

[27] C.-C. Lee, I.-C. K. Chen, and T. N. Mudge, “The bi-mode branch predictor,”
in Microarchitecture, 1997. Proceedings., Thirtieth Annual IEEE/ACM In-
ternational Symposium on, pp. 4–13, IEEE, 1997. 26, 27

47

https://http://www.chromium.org/chromium-os/developer-information-for-chrome-os-devices/samsung-arm-chromebook
https://http://www.chromium.org/chromium-os/developer-information-for-chrome-os-devices/samsung-arm-chromebook
https://http://www.chromium.org/chromium-os/developer-information-for-chrome-os-devices/samsung-arm-chromebook

Appendices

48

Appendix A

gem5 System Configuration

A.1 Modification to Source Code
In order to accurately emulate Samsung Exynos Dual (ARM Cortex-A15)

SoC, we made the following changes to the gem5 source code.
The following diffs are relative to the tip of gem5 development branch.

A.1.1 L2 Cache Prefetch
--- a/configs/common/O3_ARM_v7a.py

+++ b/configs/common/O3_ARM_v7a.py

@@ -185,7 +185,7 @@

size = ’1MB’

assoc = 16

write_buffers = 8

- prefetch_on_access = True

+ prefetch_on_access = False

Simple stride prefetcher

prefetcher = StridePrefetcher(degree=8, latency = 1)

tags = RandomRepl()

A.1.2 L1 I/DTLB Size
--- a/src/arch/arm/ArmTLB.py

+++ b/src/arch/arm/ArmTLB.py

@@ -63,7 +63,7 @@

type = ’ArmTLB’

cxx_class = ’ArmISA::TLB’

49

cxx_header = "arch/arm/tlb.hh"

- size = Param.Int(64, "TLB size")

+ size = Param.Int(32, "TLB size")

walker = Param.ArmTableWalker(ArmTableWalker(), "HW Table walker")

is_stage2 = Param.Bool(False, "Is this a stage 2 TLB?")

A.1.3 Fetch Buffer Size
--- a/src/cpu/o3/O3CPU.py

+++ b/src/cpu/o3/O3CPU.py

@@ -59,9 +59,9 @@

iewToFetchDelay = Param.Cycles(1, "Issue/Execute/Writeback to fetch "

"delay")

commitToFetchDelay = Param.Cycles(1, "Commit to fetch delay")

fetchWidth = Param.Unsigned(8, "Fetch width")

- fetchBufferSize = Param.Unsigned(16, "Fetch buffer size in bytes")

+ fetchBufferSize = Param.Unsigned(64, "Fetch buffer size in bytes")

fetchQueueSize = Param.Unsigned(32, "Fetch queue size in micro-ops "

"per-thread")

renameToDecodeDelay = Param.Cycles(1, "Rename to decode delay")

A.1.4 2GB LPDDR3
--- a/src/mem/DRAMCtrl.py

+++ b/src/mem/DRAMCtrl.py

@@ -746,7 +746,7 @@

dll = False

size of device

- device_size = ’512MB’

+ device_size = ’2048MB’

1x32 configuration, 1 device with a 32-bit interface

device_bus_width = 32

A.1.5 Syscall Workaround
This workaround ignores timing system calls in order to appease the system

when running unmodified SLAMBench kernels.

50

--- a/src/arch/arm/linux/process.cc

+++ b/src/arch/arm/linux/process.cc

@@ -381,10 +381,10 @@

/* 259 */ SyscallDesc("timer_gettime", unimplementedFunc),

/* 260 */ SyscallDesc("timer_getoverrun", unimplementedFunc),

/* 261 */ SyscallDesc("timer_delete", unimplementedFunc),

- /* 262 */ SyscallDesc("clock_settime", unimplementedFunc),

- /* 263 */ SyscallDesc("clock_gettime", unimplementedFunc),

- /* 264 */ SyscallDesc("clock_getres", unimplementedFunc),

- /* 265 */ SyscallDesc("clock_nanosleep", unimplementedFunc),

+ /* 262 */ SyscallDesc("clock_settime", ignoreFunc),

+ /* 263 */ SyscallDesc("clock_gettime", ignoreFunc),

+ /* 264 */ SyscallDesc("clock_getres", ignoreFunc),

+ /* 265 */ SyscallDesc("clock_nanosleep", ignoreFunc),

/* 266 */ SyscallDesc("statfs64", unimplementedFunc),

/* 267 */ SyscallDesc("fstatfs64", unimplementedFunc),

/* 268 */ SyscallDesc("tgkill", unimplementedFunc),

A.2 Command-line to Start Simulation
We opt to use System Emulation (SE) mode in our experiment for quicker

simulation. The arm detailed CPU is the detailed O3CPU model with certain
parameters set to model a modern Out-of-Order ARM CPU.

Refer to section 4.2.

./build/ARM/gem5.opt configs/example/se.py \

--cpu-type=arm_detailed --num-cpus=2 --cpu-clock=1.7GHz \

--mem-type=LPDDR3_1600_x32 --mem-size=2GB \

--caches --l2cache \

--l1d_size=32kB --l1i_size=32kB --l1d_assoc=2 --l1i_assoc=2 \

--l2_size=1MB --l2_assoc=16 \

-c PROGRAM

51

Appendix B

Kernel Timing Trend

We show the per call kernel execution time graph for the rest of the kernels in
SLAMBench in 4.2.

B.1 depth2vertexKernel

 300000

 350000

 400000

 450000

 500000

 550000

 600000

 0 100 200 300 400 500 600 700 800 900

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

depth2vertexKernel_19200

Execution Time

Figure B.1: depth2vertexKernel 19200

52

 1.2e+06

 1.3e+06

 1.4e+06

 1.5e+06

 1.6e+06

 1.7e+06

 1.8e+06

 1.9e+06

 2e+06

 2.1e+06

 2.2e+06

 2.3e+06

 0 100 200 300 400 500 600 700 800 900

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

depth2vertexKernel_76800

Execution Time

Figure B.2: depth2vertexKernel 76800

 5e+06

 5.5e+06

 6e+06

 6.5e+06

 7e+06

 7.5e+06

 8e+06

 8.5e+06

 9e+06

 0 100 200 300 400 500 600 700 800 900

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

depth2vertexKernel_307200

Execution Time

Figure B.3: depth2vertexKernel 307200

53

B.2 halfSampleRobustImageKernel

 480000

 500000

 520000

 540000

 560000

 580000

 600000

 0 100 200 300 400 500 600 700 800 900

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

halfSampleRobustImageKernel_19200

Execution Time

Figure B.4: halfSampleRobustImageKernel 19200

 1.85e+06

 1.9e+06

 1.95e+06

 2e+06

 2.05e+06

 2.1e+06

 2.15e+06

 2.2e+06

 2.25e+06

 0 100 200 300 400 500 600 700 800 900

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

halfSampleRobustImageKernel_76800

Execution Time

Figure B.5: halfSampleRobustImageKernel 76800

54

B.3 mm2metersKernel

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 4e+06

 4.2e+06

 0 100 200 300 400 500 600 700 800 900

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

mm2metersKernel_307200

Execution Time

Figure B.6: mm2metersKernel 307200

B.4 reduceKernel

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 0 2000 4000 6000 8000 10000 12000

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

reduceKernel_512

Execution Time

Figure B.7: reduceKernel 512

55

B.5 renderDepthKernel

 5e+06

 5.5e+06

 6e+06

 6.5e+06

 7e+06

 7.5e+06

 8e+06

 8.5e+06

 9e+06

 0 100 200 300 400 500 600 700 800 900

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

renderDepthKernel_307200

Execution Time

Figure B.8: renderDepthKernel 307200

B.6 renderTrackKernel

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 3.8e+06

 4e+06

 4.2e+06

 4.4e+06

 4.6e+06

 0 100 200 300 400 500 600 700 800 900

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

renderTrackKernel_307200

Execution Time

Figure B.9: renderTrackKernel 307200

56

B.7 trackKernel

 1.8e+06

 2e+06

 2.2e+06

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

trackKernel_19200

Execution Time

Figure B.10: trackKernel 19200

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1.1e+07

 1.2e+07

 1.3e+07

 1.4e+07

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

trackKernel_76800

Execution Time

Figure B.11: trackKernel 76800

57

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

trackKernel_307200

Execution Time

Figure B.12: trackKernel 307200

B.8 updatePoseKernel

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 2000 4000 6000 8000 10000 12000

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

updatePoseKernel_1

Execution Time

Figure B.13: updatePoseKernel 1

58

B.9 vertex2normalKernel

 600000

 650000

 700000

 750000

 800000

 850000

 0 100 200 300 400 500 600 700 800 900

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

vertex2normalKernel_19200

Execution Time

Figure B.14: vertex2normalKernel 19200

 2.4e+06

 2.6e+06

 2.8e+06

 3e+06

 3.2e+06

 3.4e+06

 3.6e+06

 0 100 200 300 400 500 600 700 800 900

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

vertex2normalKernel_76800

Execution Time

Figure B.15: vertex2normalKernel 76800

59

 9.5e+06

 1e+07

 1.05e+07

 1.1e+07

 1.15e+07

 1.2e+07

 1.25e+07

 1.3e+07

 1.35e+07

 0 100 200 300 400 500 600 700 800 900

T
im

e
(n

a
n
o
s
e
c
o
n
d
s
)

Call

vertex2normalKernel_307200

Execution Time

Figure B.16: vertex2normalKernel 307200

60

Appendix C

Sequential and OpenMP parallel
runtime of untuned kernels

These are the run time statics for sequential and OpenMP versions of SLAM-
Bench kernels running on the Samsung Chromebook, with the ICL-NUIM Living
Room Dataset ’lr kt2’ with 882 frames. % gives the percentage of time spent in
the specific kernel running certain input size and Σ% gives the total time spent.

The system configurations are documented in section 4.2.

61

Kernel Name Input Size Calls Total Time(s) % Σ%
bilateralFilter 307200 882 672.07 19.13 19.13

depth2vertex
19200 882 0.28 0.01

0.1776800 882 1.13 0.03
307200 882 4.53 0.13

halfSampleRobustImg
19200 882 0.46 0.01

0.06
76800 882 1.67 0.05

integrate 65536 882 306.82 8.73 8.73
mm2meters 307200 882 2.57 0.07 0.07
raycast 307200 879 1144.39 32.57 32.57
reduce 512 11160 28.45 0.81 0.81
renderDepth 307200 882 5.93 0.17 0.17
renderTrack 307200 882 2.86 0.08 0.08
renderVolume 307200 882 1150.97 32.76 32.76

track
19200 3508 8.97 0.26

5.1276800 3851 13.46 1.03
307200 3801 36.19 3.83

updatePose 1 11160 0.18 0.01 0.01

vertex2normal
19200 882 0.54 0.02

0.3276800 882 2.26 0.06
307200 882 8.43 0.24

Table C.1: Sequential Execution Time on Samsung Chromebook.

62

Kernel Name Input Size Calls Total Time(s) % Σ%
bilateralFilter 307200 882 354.98 15.67 15.67

depth2vertex
19200 882 0.18 0.01

0.1676800 882 0.67 0.12
307200 882 2.66 0.03

halfSampleRobustImg
19200 882 0.36 0.01

0.07
76800 882 1.33 0.06

integrate 65536 882 193.35 8.53 8.53
mm2meters 307200 882 1.42 0.06 0.06
raycast 307200 879 765.52 33.79 33.79
reduce 512 11160 18.06 0.80 0.80
renderDepth 307200 882 3.46 0.15 0.15
renderTrack 307200 882 2.56 0.11 0.11
renderVolume 307200 882 786.67 34.72 34.72

track
19200 3508 7.02 0.31

5.6376800 3851 24.92 1.10
307200 3801 95.52 4.22

updatePose 1 11160 0.18 0.01 0.01

vertex2normal
19200 882 0.33 0.01

0.2776800 882 1.34 0.06
307200 882 4.93 0.22

Table C.2: Parallel Execution Time on Samsung Chromebook.

63

Appendix D

gem5 Statistics Reports

These are the runtime statistics obtained from gem5 simulator. The results are
heavily reduced to fit into the report.

D.1 renderVolumeKernel
sim_seconds 1.371254

sim_ticks 1371253774884

final_tick 4595948169792

sim_freq 1000000000000

host_inst_rate 713682

host_op_rate 837834

host_tick_rate 193584854

host_mem_usage 2252708

host_seconds 7083.48

sim_insts 5055348923

sim_ops 5934776199

system.mem_ctrls.bytes_read::cpu.inst 4224

system.mem_ctrls.bytes_read::cpu.data 140844544

system.mem_ctrls.bytes_read::l2.prefetcher 989376

system.mem_ctrls.bytes_read::total 141838144

system.mem_ctrls.bytes_inst_read::total 4224

system.mem_ctrls.bytes_written::total 1997632

system.mem_ctrls.bw_read::total 103436830

system.mem_ctrls.bw_write::total 1456792

system.mem_ctrls.bw_total::total 104893623

system.cpu.fetch.icacheStallCycles 402581

system.cpu.decode.BlockedCycles 1150760890

64

system.cpu.rename.serializeStallCycles 0

system.cpu.branchPred.lookups 213696066

system.cpu.branchPred.condPredicted 138393488

system.cpu.branchPred.condIncorrect 394256

system.cpu.branchPred.BTBLookups 51741613

system.cpu.branchPred.BTBHits 51403963

system.cpu.branchPred.BTBHitPct 99.347430

system.cpu.commit.committedInsts 2873149991

system.cpu.commit.swp_count 0

system.cpu.commit.refs 499358375

system.cpu.commit.loads 397684551

system.cpu.commit.membars 0

system.cpu.commit.branches 209751945

system.cpu.commit.fp_insts 1396704528

system.cpu.commit.int_insts 1812656512

system.cpu.commit.function_calls 36405541

system.cpu.dcache.overall_mshr_miss_rate::total 0.102785

system.cpu.icache.overall_miss_rate::total 0.000000

system.l2.overall_mshr_miss_rate::cpu.inst 0.970588

system.l2.overall_mshr_miss_rate::cpu.data 0.050299

system.l2.overall_mshr_miss_rate::l2.prefetcher inf

system.l2.overall_miss_rate::total 0.050301

D.2 raycastKernel
sim_seconds 1.366140

sim_ticks 1366140241116

final_tick 4587789179988

sim_freq 1000000000000

host_inst_rate 622077

host_op_rate 730626

host_tick_rate 168625308

host_mem_usage 2252708

host_seconds 8101.63

sim_insts 5039836469

sim_ops 5919263734

system.mem_ctrls.bytes_read::cpu.inst 4032

system.mem_ctrls.bytes_read::cpu.data 143906880

system.mem_ctrls.bytes_read::l2.prefetcher 4745536

system.mem_ctrls.bytes_read::total 148656448

65

system.mem_ctrls.bytes_inst_read::cpu.inst 4032

system.mem_ctrls.bytes_inst_read::total 4032

system.mem_ctrls.bytes_written::writebacks 7811456

system.mem_ctrls.bytes_written::total 7811456

system.mem_ctrls.bw_read::total 108814925

system.mem_ctrls.bw_write::total 5717902

system.mem_ctrls.bw_total::total 114532827

system.cpu.fetch.icacheStallCycles 391119

system.cpu.decode.BlockedCycles 1147977330

system.cpu.rename.BlockCycles 775429728

system.cpu.branchPred.lookups 212841453

system.cpu.branchPred.condPredicted 137264445

system.cpu.branchPred.condIncorrect 384332

system.cpu.branchPred.BTBLookups 51808916

system.cpu.branchPred.BTBHits 51537406

system.cpu.branchPred.BTBHitPct 99.475940

system.cpu.commit.committedInsts 2857637845

system.cpu.commit.swp_count 0

system.cpu.commit.refs 496321671

system.cpu.commit.loads 394410760

system.cpu.commit.membars 0

system.cpu.commit.branches 208935411

system.cpu.commit.fp_insts 1387089514

system.cpu.commit.int_insts 1808699100

system.cpu.commit.function_calls 36405541

system.cpu.dcache.overall_mshr_miss_rate::total 0.103591

system.cpu.icache.overall_miss_rate::total 0.000000

system.l2.overall_mshr_miss_rate::cpu.inst 0.984127

system.l2.overall_mshr_miss_rate::cpu.data 0.051233

system.l2.overall_mshr_miss_rate::l2.prefetcher inf

system.l2.overall_mshr_miss_rate::total 0.052924

D.3 integrateKernel
sim_seconds 0.534651

sim_ticks 34651310368

final_tick 3773103562284

sim_freq 1000000000000

host_inst_rate 955324

host_op_rate 1189087

66

host_tick_rate 133021540

host_mem_usage 2252720

host_seconds 4019.28

sim_insts 3839719124

sim_ops 4779277103

system.mem_ctrls.bytes_read::cpu.inst 1408

system.mem_ctrls.bytes_read::cpu.data 448

system.mem_ctrls.bytes_read::total 1856

system.mem_ctrls.bytes_inst_read::cpu.inst 1408

system.mem_ctrls.bytes_inst_read::total 1408

system.mem_ctrls.bytes_written::writebacks 1920

system.mem_ctrls.bytes_written::total 1920

system.mem_ctrls.bw_read::total 3471

system.mem_ctrls.bw_write::total 3591

system.mem_ctrls.bw_total::total 7063

system.cpu.fetch.icacheStallCycles 67334

system.cpu.decode.BlockedCycles 224324688

system.cpu.rename.serializeStallCycles 0

system.cpu.commit.committedInsts 1614494049

system.cpu.commit.swp_count 0

system.cpu.commit.refs 270081579

system.cpu.commit.loads 152637718

system.cpu.commit.membars 0

system.cpu.commit.branches 251789827

system.cpu.commit.fp_insts 775106638

system.cpu.commit.int_insts 689973052

system.cpu.commit.function_calls 16777217

system.cpu.dcache.overall_mshr_miss_rate::total 0.000000

system.cpu.icache.overall_miss_rate::total 0.000000

system.l2.overall_mshr_miss_rate::cpu.inst 0.954545

system.l2.overall_mshr_miss_rate::cpu.data 0.875000

system.l2.overall_mshr_miss_rate::total 0.933333

67

	Contents
	List of Tables
	List of Figures
	Introduction
	Motivations
	Objectives
	Contributions

	Background
	KinectFusion
	Roofline Model
	gem5 Simulator System
	Energy-Performance-Area Tradeoffs in Processor Architecture
	McPAT Processor Modelling Framework

	Related Work
	Systematic Analysis for Computer Vision Kernels
	Applying the Roofline Model on Hardware
	Sources of Error in Full-System Simulation

	Kernel Analysis
	Benchmarking Environment
	SLAMBench Kernels Analysis
	Dynamic Instruction Distribution
	Cache
	Branches
	Instruction Level Parallelism

	Roofline Model
	Summary

	Assessment of Optimisations
	Opportunities for Optimisation
	Implementing Optimisations
	ILP
	SIMD
	Floating Point Balancing

	Evaluation

	Hardware Design-space Exploration
	Methodology
	Baseline System
	Exploration
	Micro-architecture
	Cache
	Memory Controller

	Summary

	Conclusions and Future Work
	Summary
	Future Work

	Bibliography
	gem5 System Configuration
	Modification to Source Code
	L2 Cache Prefetch
	L1 I/DTLB Size
	Fetch Buffer Size
	2GB LPDDR3
	Syscall Workaround

	Command-line to Start Simulation

	Kernel Timing Trend
	depth2vertexKernel
	halfSampleRobustImageKernel
	mm2metersKernel
	reduceKernel
	renderDepthKernel
	renderTrackKernel
	trackKernel
	updatePoseKernel
	vertex2normalKernel

	Sequential and OpenMP parallel runtime of untuned kernels
	gem5 Statistics Reports
	renderVolumeKernel
	raycastKernel
	integrateKernel

