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Papers on parallel programming languages.
Data according to Google Scholar (Feb. 2014)
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Flynn's Taxonomy (1966):
classification of computer architectures

e SISD: single-instruction, single-data instruction Instruction
(single-core CPU) e »liuu
e MIMD: multiple-instruction, multiple-data

(multi-core CPU, clusters) “Data _,.-- |
e SIMD: single-instruction, multiple-data ~ ~"°""

(data-based parallelism) uLple :;--
e MISD: multiple-instruction, single-data ~ >""**™

(fault-tolerant computers)

Images source: http://www.cems.uwe.ac.

Prof Michael J Flynn (Stanford) was Design Manager
on a prototype of the IBM 7090, and later the IBM
360/91 (the first implementation of Tomasulo’s
Algorithm). He is also Chairman of Maxeler
Technologies, who are hiring...
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A glimpse of the performance (GFLOPS/s)
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http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n

A glimpse of the performance (GB/s)

Theoretical GB/s
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Graphics Processors (GPUs)

* Much of our attention so far: single-core that runs a single thread faster

* If workload consists of thousands of threads, things look different:

— Never speculate: there is always another thread waiting with work you

know you have to do

— No speculative branch execution, perhaps even no branch prediction

— Can use SMT to hide cache access latency, and maybe even main memory

latency

— Control is at a premium (Turing tax avoidance):
 How to launch >10,000 threads?
« What if they branch in different directions?

* What if they access random memory blocks/banks?

* This is the “manycore” world (GPUs but also certain CP

* Driven by the gaming market - but with many other app

Js)

ications
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A first comparlson with CPUs

mming-g

s.nvidia.com/cuda/cuda-c-progra

: http://doc

Source

CPU GPU
“Simpler” cores

Many functional units (FUs) (implementing the SIMD model)

No (or limited) caching; just thousands of threads and
super-fast context switch

Drop sophisticated branch prediction mechanisms
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http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n

NVIDIA G80 (2006)

16x8=128 threads execute in parallel
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No L2 cache coherency problem, data can be in only one cache. Caches are small ROP performs colour and depth frame

buffer operations directly on memory
NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm

John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008) 8



Texture/Processor Cluster (TPC)

TPC

Geometry controller

SMC
SM SM
| cache | cache
MT issue MT issue
C cache C cache
SP SP SP SP

SP || SP SP || SP

SP || SP SP || SP

SP || SP SP || SP

SFU | | SFU SFU || SFU

Shared Shared
memory memory
Texture unit

e SM: Streaming Multiprocessof\\
e SP: Streaming Processor |

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm 9
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

NVIDIA G80 (2006)
16 cores, each with 8 SP units

e Geometry controller:
directs all primitive and
vertex attribute and
topology flow in the TPC

e SMC: Streaming
Multiprocessor controller

e | cache: instruction cache

e MT issue: multithreaded
instruction fetch and issue
unit

e C cache: constant read-only
cache

e SFU: Special-Function Unit,
compute transcendental
functions (sin, log, 1/x)

e Shared memory: scratchpad
memory, i.e. user managed
cache

e Texture cache does
interpolation




NVIDIA’s Tesla micro-architecture

Designed to do rendering
Evolved to do general-purpose computing (GPGPU)

— But to manage thousands of threads, a new programming model is
needed, called CUDA (Compute Unified Device Architecture)

— CUDA is proprietary, but the same model lies behind OpenCL, an open
standard with implementations for multiple vendors’ GPUs

GPU evolved from hardware designed specifically around the
OpenGL/DirectX rendering pipeline, with separate vertex- and pixel-
shader stages

“Unified” architecture arose from increased sophistication of shader
programs

Tesla still has some features specific to graphics:

— Work distribution, load distribution

— Texture cache, pixel interpolation

— Z-buffering and alpha-blending (the ROP units, see diagram)

Tesla is also the NVIDIA brand codename for server GPUs:

— NVIDIA micro-architectures: Tesla, Fermi, Kepler, Maxwell, Pascal, Volta
— NVIDIA brands: Tegra, Quadro, GeForce, Tesla



CUDA Executlon Model

* CUDA 1s a C extension

— Serial CPU code geor;g
— Parallel GPU code (kernels) |
- GPU kernel is a C function —
— Each thread executes kernel code 1= o0 00 (20
— A group of threads forms a thread }
block (pm 2D or 3D) S.L. of b
— Thread blocks are organised into code L
a grid (1D, 2D or 3D) || | ee
— Threads within the same thread Kemel | 1| |/
block can synchronise execution, wi i |
and share access to local “Block(.1)

scratchpad memory

Key idea: hierarchy of parallelism,
to handle thousands of threads

Blocks are allocated (dynamically) to SMs.
Threads within a block run on the same SM Source. CUDA programming quide

Blocks in a grid can’t interact with each other
11




Nested granularity levels

i NVIDIA G80 ,
CUDAThread Cooperative Thread Array

(CTA) = thread block

Per-thread local memory

(@) Different levels have
Cooperative thread array or thread block corresponding memory-
L. sharing levels:
g shaza%r.r%xnory ° (a) thread
e o (b) thread block
(b) e (c) grid
Grid 0 rme  Note:
CUDA thread is just a vertical
|| S0 | S| || 0 0 |S50| e cut of a thread of SIMD
instructions, corresponding to

one element executed by on

---------- Inter-grid synchronization barrier -=-=-=----- Global
Grid 1 Memory SIMD lane.
CUDA threads are very
> (S0 (S|P different from POSIX threads;
Y you can’t make arbitrary
(©) system calls from a CUDA
NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm th read

John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008) 12



CUDA Memory Model

— Local memory — private to each eRUGrd

thread (slow if off-chip, fast if Block (0, 0) Block (1, 0)

register allocated) ﬂ

— Shared memory — shared between ﬂ
threads in a thread block (fast on- ! !
chip)
Thread (0, 0) Thread (1, 0)

— Global memory — shared between Threed (0, 0) || Threed (1, 0)

thread blocks in a grid (off-chip
DRAM but in the GPU card) i

— Constant memory (small, read-only)

— Texture memory (read-only; cached,
stored in Global memory)

— Memory instructions load-global,
store-global, load-shared, store-
shared, load-local, and store-local Souroe. GUDA orogramming e

» Diagram is misleading: logical association but not hardware locality
» “Local memory” is non-cached (in Tesla), stored in global DRAM

» Critical thing is that “shared” memory is shared among all threads in
a block, since they all run on the same SM 13

CPU




// Invoke DAXPY
daxpy(n, 2.0, x, Y);
// DAXPY in C
void daxpy(int n,
double a,
double* x,
double* y) {
for(int i=0; i1 < n; ++i)
y[i] = a*x[i] + y[i];
} fully parallel loop

__global void daxpy(int N,
double a,
double* x,
double* y) {
int i = blockIdx.x *
blockDim.x +
threadlIdx.x;
if (1 < N)
y[i] = a*x[i] + y[il];

}

e e CUDA example: DAXPY

int N = 1024;

int blockDim = 256; // These are the threads per block

int gridDim = N / blockDim;// These are the number of blocks
daxpy<<<gridDim, blockDim>>>(N, 2.0, x, y);// Kernel invocation

} » Kernel invocation (“<<<...>>>") corresponds to enclosing loop nest, managed by
hardware
» Explicitly split into 2-level hierarchy:
blocks (which share “shared” memory), and grid
» Kernel commonly consists of just one iteration but could be a loop

» Multiple tuning parameters trade off register pressure, shared-memory capacity
and parallelism



Running DAXPY (N=1024) on a GPU

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

DRAM

Note that: SIMD + MIMD Host (via /0 bus, DMA)
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Running DAXPY (N=1024) on a GPU

Multithreaded SIMD Processor (SM)

41 BLOCK 1 BLOCK 4
E (DAXPY 0-255) (DAXPY 768-1023)

Multithreaded SIMD Processor (SM)

4] BLOCK 2 : | DRAM
4l (DAXPY 256-511) E

Multithreaded SIMD Processor (SM)

BLOCK 3
41 (DAXPY 512-767)

Note that: SIMD + MIMD Host (via /0 bus, DMA)
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Running DAXPY (N=1024) on a GPU

Multithreaded SIMD Processor (SM)

4l BLOCK 1 BLOCK 4 BLOCK x
4| (DAXPY0-255) | (DAXPY 768-1023) (-..)

Multithreaded SIMD Processor (SM)

4l BLOCK2 | BLOCK x+1 : | DRAM
4l (DAXPY 256-511) (...) :

Multithreaded SIMD Processor (SM)

BLOCK 3 BLOCK x+2
41 (DAXPY 512-767) (.-.)

Note that: SIMD + MIMD Host (via I/O bus, DMA)
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Running DAXPY on a GPU

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

DRAM

A warp comprises of 32 CUDA threads

Host (via I/0 bus, DMA)

16



Mapping from CUDA to TESLA

* Array of streaming multiprocessors (SMs)
— (we might call them “cores”, when comparing to conventional
multi-core; each SM is an instruction-fetch-execution engine)

* CUDA thread blocks get mapped to SMs

* SMs have thread processors, private registers, shared
memory, etc.

* Each SM executes a pool of warps, with a separate
instruction pointer for each warp. Instructions are
issued from each ready-to-run warp in turn (SMT,
hyper-threading)

 Awarp is like a traditional thread (32 CUDA threads
executed as 32 SIMD operations)

» Corollary: enough warps are needed to avoid stalls (i.e., enough threads per
block). Also called GPU occupancy in CUDA

» But: high occupancy is not always a good solution to achieve good
performance, I.e., memory bound applications may need a less busy bus to
perform well. Reduce the number of in-flight loads/stores by reducing the
number of blocks on a SM and improve cache trashing. How?

- If you are a ninja: use dynamic shared memory to reduce occupancy
- Or increase the number of registers in your kernel




Branch divergence
In a warp threads all take the same path (good!) or diverge!
- A warp serially executes each path, disabling some of the
threads
- When all paths complete, the threads reconverge
Divergence only occurs within a warp - different warps execute
independently

This model of execution is called lockstep instructions are
serialised on branch divergence

Control-flow coherence: every thread goes the same way (a
form of locality) Predicate bits: enable/disable each lane

LDR r5, X
pl <- r5 eq 10

if (x == 10) <pl> LDR rl1 <= C
c =c + 1; <pl> ADD rl1, rl, 1
. <p1> STR rl —-> C

18



Single-instruction, multiple-thread (SIMT)

Photo: Judy Schoonmaker

SM multithreaded
instruction scheduler

Time

gangeg )

Warp 8, instruction 11

YYYYYVYVYYYYVYYYVYYY
111 L1

gEmjEng ) ) | jESyES)E—

Warp 1, instruction 42

YYYYYVYVYYVYYVYVYYVYVYY
L1 1 |

| [0 L (L

Warp 3, instruction 95

YYYVYYVYYYYYVYVYVYVYY

] I o e D

Warp 8, instruction 12

YYYVYYVYYYYYYYYVYYY
L1 |

L T |

Warp 3, instruction 96

YYYVYYVYYYYYYVYVYVYY
|1 [

| I O O

Warp 1, instruction 43

v

YYYYYVYYYVYVYVYVYYVYYY

A new parallel programming model: SIMT

The SM’s SIMT multithreaded instruction
unit creates, manages, schedules and
executes threads in groups of warps

The term warp originates from weaving:
refers to the group of threads being
woven together into fabric

Each SM manages a pool of 24 warps, 24
ways SMT

Individual threads composing a SIMT warp
start together at the same program
address, but they are otherwise free to
branch and execute independently

At instruction issue time, select ready-to-
run warp and issue the next instruction to
that warp’s active threads

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008) 19



Photo: Judy Schoonmaker

More on SIMT
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 SIMT architecture is similar to SIMD

design, which applies one instruction to
multiple data lanes

The difference: SIMT applies one
instruction to multiple independent
threads in parallel, not just multiple data
lanes. A SIMT instruction controls the
execution and branching behaviour of one
thread

For program correctness, programmers
can ignore SIMT executions; but, they can
achieve performance improvements if
threads in a warp don’t diverge

Correctness/performance analogous to
the role of cache lines in traditional
architectures

The SIMT design shares the SM instruction
fetch and issue unit efficiently across 32
threads but requires a full warp of active
threads for full performance efficiency

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008) 20



GPU SM or multithreaded SIMD processor

Warp scheduler Scoreboard O Ut'Of'o rder
_ Warp No. | Address | SIMD instructions Operands? .
Instruction . i 42 d.global.f64 Ready execution
cache 1 43 mul.f64 No
3 95 shl.s32 Ready
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| Instruction register | * * . Thread blOCk

v Y Y Y Y ‘ ‘ Y Y .
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oAKe e Number of SIMD lanes
Figure 4.14 Hennessy and Patterson’s Computer Architecture (5th ed.) varies across

generations 2



SIMT vs SIMD - GPUs without the hype

« GPUs combine many * So basically a GPU core
architectural techniques: is a lot like the
— Multi-core processor architectures
— Simultaneous we have studied!

multithreading (SMT)
— Vector instructions
— Predication
— 000 execution

But the SIMT
programming model
makes it look different

» Overloading the same architectural concept doesn’t help GPU
beginners

» GPU learning curve is steep in part because of using terms such as
“Streaming Multiprocessor” for the SIMD Processor, “Thread
Processor” for the SIMD Lane, and “Shared Memory” for Local
Memory - especially since Local Memory is not shared between SIMD
Processor



SIMT vs SIMD - GPUs without the hype

SIMT: SIMD:
* One thread per lane * Each thread may
« Adjacent threads include SIMD vector
(“warp”/”wavefront”) instructions
execute in lockstep * SMT: a small number of
+ SMT: multiple “warps” threads run on the
run on the same core, same core to hide

to hide memory latency ~ memory latency

Which one is easier for the programmer?



SIMT vs SIMD - spatial locality

SIMT:

Sﬁatial locality = adjacent
’é reads access adjacent
ata

A load instruction can result
in a completely different
address being accessed by
each lane

“Coalesced” loads, where
accesses are (almost)
adjacent, run much faster

Branch coherence =
adjacent threads in a warp
all usually branch the same
way (spatial locality for
branches, across threads)

SIMD:

Spatial locality = adjacent
loop iterations access
adjacent data

A SIMD vector load usually
has to access adjacent
locations

Some recent processors have
“gather” instructions which
can fetch from a different
address per lane

 But performance is often

serialised

Branch predictability = each
individual branch is mostly
taken or not-taken (or is
well-predicted by global
history)



NVIDIA GPU Instruction Set Architecture

Unlike most system processors, the instruction set target of
the NVIDIA compilers is an abstraction of the hardware
instruction set

PTX (Parallel Thread Execution) assembler provides a stable
instruction set for compilers as well as compatibility across
generations of GPUs (PTX is an intermediate representation)

The hardware instruction set is hidden from the programmer
One PTX instruction can expand to many machine instructions

Similarity with x86 microarchitecture, both translate to an
internal form (microinstructions for x86). But translation
happens (look at the diagram in the next slide):

 in hardware at runtime during execution on x86
* in software and load time on a GPU

PTX uses virtual registers, the assignment to physical registers
occurs at load time

25



real sm architecture

virtual compute architecture

Source code -> virtual GPU -> real GPU

* NVCC is the NVIDIA compiler
* cubin is the CUDA binary

* Runtime generation may be costly (increased load time), but
it is normally cached

A i = |71 o J———
x.cu (device code) o x.cu (device code)
gl .
§ Stage 1 g § Stage 1 g
: (PTX Generation) : : (PTX Generation) g
: o 5 :
°
£
X.ptx 'S X.ptx
i A R R s deadi e i
..... CUDA Runtime ..cccoamniaaanes, ----- CUDA Runtime -----ceeeveeeeeen.
o
: 2 Stage 2 :
Stage 2 ;.3 (Cubin Generation)
: (Cubin Generation) 'g :
c |
= x.cubin
g l
X.cubin > Execute P Execute
R R T e  etseeeeeessssssseemeseesnesseesasnnnnsemenns]

Source: http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
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__global  void daxpy(int N, double a, double* x, double* y) {
int i = blockIdx.x *
blockDim.x +

threadIdx.x; NVIDIA GPU ISA example

yl[i] = a*x[i] + y[i];

}

PTX instructions for one iteration of DAXPY

shl.u32 R8, blockIdx, 8 Thread Block ID Block size (256 or 28)
add.u32 R8, R8, threadIdx; R8 = i = my CUDA thread ID

shl.u32 R8, R8, 3 byte offset (double we shift 23)
ld.global.f64 RDO, [X+R8]; RDO = X[i]

ld.global.f64 RD2, [Y+R8]; RDO = Y[i]

mul.f£64 RDO, RDO, RD4 Product in RDO = RDO * RD4 (scalar a)
add.f64 RDO, RDO, RD2 Sum in RDO = RDO + RD2 (Y[i])
st.global.f64 [Y+R8], RDO; Y[i] = sum (X[i]*a + Y[i])

we we we we we we we we

Hennessy and Patterson’s Computer Architecture (5th ed.)

« Unlike vector architectures, GPUs don’t have separate instructions for
sequential data transfers, stripped data transfers, and gather-scatter data
transfers: all data transfers are gather-scatter

» Special Address Coalescing hardware recognises when the SIMD lanes within
a thread of SIMD instructions are collectively issuing sequential addresses

* No loop incrementing or branching code like for the original for loop
27



eEach ban

Shared memory bank conflicts

«Shared memory has 32 banks that are organised such that successive
32-bit words map to successive banks

Threads: Threads: Banks:
1 1 1,
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Threads:

O NSOV SASE W N ~O

k has a bandwidth of 32 bit

Stride-3:
Conflict-free
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-2-x

Fermi GTX 480 (March 2010)

1340 GFLOPS
700 MHz

Fermi GTX 480
32 FUs per processor
Peak (SP):

177 GB/s

BW

Core clock

DRAM
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Fermi's 16 SM are positioned around a common L2 cache. Each SM is a vertical
(execution units), and light blue portions (register file and L1 cache).

rectangular strip that contain an orange portion (scheduler and dispatch),
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Kepler GTX Titan (February 2013)

PCI Express 3.0 Host Interface
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Kepler GTX Titan:

192 FUs per SMX

Peak (SP): 4.5 TFLOPS
BW: 290 GB/s

Core clock: 830 MHz
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Source: http://www.anandtech.com/show/5699/nvidia-geforce-gtx-680-review/2
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Maxwell GTX 980 Ti (June 2015)

PCI Express 3.0 Host Interface

GPC GPC

Raster Engine
M » SmMuM s

S

Jonuon Lowaw

Maxwell GTX 980 Ti:
128 FUs per SMM
Peak (SP): 5.6 TFLOPS
BW: 336 GB/s

Core clock: 1 GHz

Jonuon Lowaw
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Source: http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/2
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Maxwell GTX 980 Ti:

Dvapatch Unit

128 FUs per SMM
Peak (SP): 5.6 TFLOPS
BW: 336 GB/s

Core clock: 1 GHz
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t IS a heterogeneous world

GTX 870M
2827 GFLOPS

<400W <100 W

ODROID-XU3 Arndale
404 GFLOPS 170 GFLOPS 87 GFLOPS
<20 W <10W <5W
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ARM-based Samsung Exynos 7420 System on Chip (SoC)
Reverse engineered

M-Comp | SlimSSS 5SS SMDMA
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ARM MALI GPU: Midgard microarchitecture

Shader Core Architecture

~

Thread Issue

Arithmetic Arithmetic
Pipeline Pipeline
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Load/Score
Pipeline Texturing

Pipeline
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L

Thread Completion

Compute
Data and
Results

Triangle
Compute Rasterizer Setup
Thread Unit
Creator
L
Early Z
Thread Execution - “Tri Pipe”
$ " L -
| e |
Z/Stencil
Buffer
Late Z
'
[ Blender Tile Buffers

feature with respect to other GPUs)

Tiler Data
Structures

Textures

Frame
Buffer

Variable number of Arithmetic Pipelines (uncommon

Fixed number of Load/Store and Texturing Pipelines
In-order scheduling
This diagram shows only the Shader Core, there is much®

ource: http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4

more supporting hardware to make a complete GPU, i.e.
tiling unit, memory management unit, L2 cache, etc.


http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4

Midgard arithmetic Pipe

V_MUL

V_SFU

9| ARM Mali Midgard Arithmetic Pipe

V_ADD

FP32 FP32

FP32

FP32

 Very flexible SIMD
« Simply fill the SIMD with
as many (identical)

operations as will fit, and
the SIMD will handle it

-:Z\RM Midgard is a VLIW design with SIMD characteristics (power efficient)

«50, at a high level ARM is feeding multiple ALUs, including SIMD units, with a

single long word of instructions (ILP)

e Support a wide range of data types, integer and FP: I8, 116, 132, 164, FP16,

FP32, FP64

«17 SP GFLOPS per core at 500 MHz (if you count also the SFUs)
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Optimising for MALI GPUs

To run optimally OpenCL code on Mali GPUs means mainly to locate
and remove optimisations for alternative compute devices:
eUse of local or private memory: Mali GPUs use caches instead of
local memories. There is therefore no performance advantage using
these memories on a Mali
eBarriers: data transfers to or from local or private memories are
typically synchronised with barriers. If you remove copy operations
to or from these memories, also remove the associated barriers
e Use of scalars: some GPUs work with scalars whereas Mali GPUs can
also use vectors. Do vectorise your code
« Optimisations for divergent threads: threads on a Mali are
independent and can diverge without any performance impact. If
your code contains optimisations for divergent threads in warps,
remove them
« Modifications for memory bank conflicts: some GPUs include per-
warp memory banks. If the code includes optimisations to avoid
conflicts in these memory banks, remove them
«No host-device copies: Mali shares the same memory with the CPU
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http://infocenter.arm.com/help/topic/com.arm.doc.dui0538f/DUI0538F_mali_t600_opencl_dg.pdf

Portability: code vs performance

OpenCL performance depends on how the code is written

Intel® SDK for OpenCL*
Applications 2013 AMD Accelerated Parallel Processing

Optimization Guide OpenCL" Programming Guide

OpenCL Programming

Guide for Mac NVIDIA OpenCL
Best Practices Guide

Altera SDK for OpenCL

Optimization Guide ARM Mali-T600 Series GPU OpenCL

Version 2.0

Optimizing with OpenCL on Intel® Xeon Developer Guide
Phi tutorials at CGO'13, IWOCL'13

Source: “OpenCL heterogeneous portability — theory and practice”, Ayal Zaks (Intel), PEGPUM 2014
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Where to start

e CUDA programming guide: https://docs.nvidia.com/cuda/
cuda-c-programming-gquide/

e OpenCL http://www.nvidia.com/content/cudazone/download/
opencl/nvidia_opencl_programmingguide.pdf
http://developer.amd.com/tools-and-sdks/opencl-zone/
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