Advanced Computer Architecture
Chapter 7

Data-Level Parallelism
Architectures and Programs

February 2016
Luigi Nardi

These lecture notes are partly based on:
• on the previous year's lecture slides from Paul H. J. Kelly (CO332/2013-2014)
• on the last year’s lecture slides from Fabio Luporini (CO332/2014-2015)
• the course text, Hennessy and Patterson’s Computer Architecture (5th ed.)
Papers mentioning parallel programming languages. Data according to Google Scholar (Feb. 2014)
Flynn's Taxonomy

• **SISD**: single-instruction, single-data (single core CPU)
• **MIMD**: multiple-instruction, multiple-data (multi core CPU)
• **SIMD**: single-instruction, multiple-data (data-based parallelism)
• **MISD**: multiple-instruction, single-data (fault-tolerant computers)

Images source: [http://www.cems.uwe.ac.uk/teaching/notes/PARALLEL/ARCHITEC](http://www.cems.uwe.ac.uk/teaching/notes/PARALLEL/ARCHITEC)
A glimpse of the performance (GFLOPS/s)

Source: http://docs.nvidia.com/cuda/cuda-c-programming-guide/
A glimpse of the performance (BW/s)

Theoretical GB/s

Source: http://docs.nvidia.com/cuda/cuda-c-programming-guide/
Graphics Processors (GPUs)

• Much of our attention so far has been devoted to making a single core run a single thread faster
• If your workload consists of thousands of threads, *everything* looks different:
  – *Never* speculate: there is always another thread waiting with work you *know* you have to do
  – No speculative branch execution, perhaps even no branch prediction
  – Can use SMT to hide cache access latency, and maybe even main memory latency
  
  – Control is at a premium:
    • How to launch >10,000 threads?
    • What if they branch in different directions?
    • What if they access random memory blocks/banks?

• This is the “manycore” world
• Driven by the gaming market - but with many other applications
A first comparison with CPUs

- “Simpler” cores

- Many functional units (FUs) (implementing the SIMD model)

- No (or limited) caching; just thousands of threads and super-fast context switch

- Drop sophisticated branch prediction mechanisms
NVIDIA G80 (2006)
16 cores, each with 8 “SP” units
16x8=128 threads execute in parallel

Each core issues instructions in “warps” of 32
Each core up to 24-way SMT

ROP performs colour and depth frame buffer operations directly on memory

No L2 cache coherency problem, data can be in only one cache. Caches are small

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
Texture/Processor Cluster (TPC) NVIDIA G80 (2006)

16 cores, each with 8 SP units

- **SMC**: Streaming Multiprocessor controller
- **MT issue**: multithreaded instruction fetch and issue unit
- **C cache**: constant read-only cache
- **I cache**: instruction cache
- **Geometry controller**: directs all primitive and vertex attribute and topology flow in the TPC
- **SFU**: Special-Function Unit, compute transcendental functions ($\sin, \cos, \log x, 1/x$)
- **Shared memory**: scratchpad memory, i.e. user managed cache
- **Texture cache does interpolation**

**NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm, John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)**
NVIDIA’s Tesla micro-architecture

• Designed to do rendering
• Evolved to do general-purpose computing (GPGPU)
  – But to manage thousands of threads, a new programming model is needed, called CUDA (Compute Unified Device Architecture)
  – CUDA is proprietary, but the same model lies behind OpenCL, an open standard with implementations for multiple vendors’ GPUs

• GPU evolved from hardware designed specifically around the OpenGL/DirectX rendering pipeline, with separate vertex- and pixel-shader stages
• “Unified” architecture arose from increased sophistication of shader programs
• Tesla still has some features specific to graphics:
  – Work distribution, load distribution
  – Texture cache, pixel interpolation
  – Z-buffering and alpha-blending (the ROP units, see diagram)
• Tesla is also the NVIDIA brand name for server GPUs:
  – NVIDIA micro-architectures: Tesla, Fermi, Kepler and Maxwell
  – NVIDIA brands: Tegra, Quadro, GeForce, Tesla
CUDA Execution Model

• CUDA is a C extension
  – Serial CPU code
  – Parallel GPU code (*kernels*)

• GPU kernel is a C function
  – Each *thread* executes kernel code
  – A group of threads forms a *thread block* (1D, 2D or 3D)
  – Thread blocks are organised into a *grid* (1D, 2D or 3D)
  – Threads within the same thread block can synchronise execution, and share access to local scratchpad memory

Key idea: hierarchy of parallelism, to handle *thousands* of threads

Source: CUDA programming guide
Nested granularity levels

**NVIDIA G80**

Cooperative Thread Array (CTA) = thread block

Different levels have corresponding memory-sharing levels:
- (a) thread
- (b) thread block
- (c) grid

**Note:**
CUDA thread is just a vertical cut of a thread of SIMD instructions, corresponding to one element executed by on SIMD lane.
CUDA threads are very different from POSIX threads; you can’t make arbitrary system calls from a CUDA thread.

CUDA Memory Model

- Local memory - private to each thread (slow if off-chip, fast if register allocated)
- Shared memory - shared between threads in a thread block (fast on-chip)
- Global memory - shared between thread blocks in a grid (off-chip DRAM but in the GPU card)
- Constant memory (small, read-only)
- Texture memory (read-only; cached, stored in Global memory)
- Memory instructions load-global, store-global, load-shared, store-shared, load-local, and store-local

- Diagram is misleading: logical association but not hardware locality
- “Local memory” is non-cached (in Tesla), stored in global DRAM
- Critical thing is that “shared” memory is shared among all threads in a block, since they all run on the same SM

Source: CUDA programming guide
__global__ void daxpy(int N,
  double a,
  double* x,
  double* y) {
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i < N)
    y[i] = a*x[i] + y[i];
}

int main(){
  // Kernel setup
  int N = 1024;
  int blockDim = 256; // These are the threads per block
  int blockDim = N / blockDim; // These are the number of blocks
  daxpy<<<gridDim, blockDim>>>(N, 2.0, x, y); // Kernel invocation
}

CUDA example: DAXPY

- Kernel invocation ("<<<...>>>") corresponds to enclosing loop nest, managed by hardware
- Explicitly split into 2-level hierarchy: blocks (which share "shared" memory), and grid
- Kernel commonly consists of just one iteration but could be a loop
- Multiple tuning parameters trade off register pressure, shared-memory capacity and parallelism
Running DAXPY \((N=1024)\) on a GPU

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

Host (via I/O bus, DMA)

Observation: SIMD + MIMD
Running DAXPY ($N=1024$) on a GPU

Multithreaded SIMD Processor (SM)

BLOCK 1 (DAXPY 0-255)  BLOCK 4 (DAXPY 768-1023)

Multithreaded SIMD Processor (SM)

BLOCK 2 (DAXPY 256-511)

Multithreaded SIMD Processor (SM)

BLOCK 3 (DAXPY 512-767)

DRAM

Host (via I/O bus, DMA)

Observation: SIMD + MIMD
Running DAXPY (N=1024) on a GPU

**Observation:** SIMD + MIMD
Running DAXPY on a GPU

A warp comprises of 32 CUDA threads

Host (via I/O bus, DMA)
Mapping from CUDA to TESLA

- Array of streaming multiprocessors (SMs)
  – (we might call them “cores”, when comparing to conventional multicore; each SM is an instruction-fetch-execution engine)
- CUDA thread blocks get mapped to SMs
- SMs have thread processors, private registers, shared memory, etc.
- Each SM executes a pool of warps, with a separate instruction pointer for each warp. Instructions are issued from each ready-to-run warp in turn (SMT, hyperthreading)
- A warp is like a traditional thread (32 CUDA threads executed as 32 SIMD operations)

- **Corollary**: enough warps are needed to avoid stalls (i.e., enough threads per block). Also called GPU occupancy in CUDA
- **But**: high occupancy is not always a good solution to achieve good performance, i.e., memory bound applications may need a less busy bus to perform well. Reduce the number of in-flight loads/stores by reducing the number of blocks on a SM and improve cache trashing. How?
  - If you are a ninja: use dynamic shared memory to reduce occupancy
  - Or increase the number of registers in your kernel
Single-instruction, multiple-thread (SIMT)

- A new parallel programming model: SIMT
- The SM’s SIMT multithreaded instruction unit creates, manages, schedules, and executes threads in groups of warps
- The term warp originates from weaving
- Each SM manages a pool of 24 warps, 24 ways SMT
- Individual threads composing a SIMT warp start together at the same program address, but they are otherwise free to branch and execute independently
- At instruction issue time, select ready-to-run warp and issue the next instruction to that warp’s active threads
More on SIMT

- SIMT architecture is similar to SIMD design, which applies one instruction to multiple data lanes.
- The difference: SIMT applies one instruction to multiple independent threads in parallel, not just multiple data lanes. A SIMT instruction controls the execution and branching behaviour of one thread.
- For program correctness, programmers can ignore SIMT executions; but, they can achieve performance improvements if threads in a warp don’t diverge.
- Correctness/performance analogous to the role of cache lines in traditional architectures.
- The SIMT design shares the SM instruction fetch and issue unit efficiently across 32 threads but requires a full warp of active threads for full performance efficiency.
Branch divergence

- In a warp threads all take the same path (good!) or **diverge**!
- A warp serially executes each path, disabling some of the threads
- When all paths complete, the threads reconverge
- **Divergence only occurs within a warp** - different warps execute independently
- This model of execution is called lockstep instructions are serialised on branch divergence
- **Control-flow coherence**: every thread goes the same way (a form of locality)

```
if (x == 10)
    c = c + 1;
```

Predicate bits: enable/disable each lane

```
LDR r5, X
p1 <- r5 eq 10
<LDR r1 <- C
<ADD r1, r1, 1
<STR r1 -> C
```
GPU SM or multithreaded SIMD processor

- Many parallel functional units instead of a few deeply pipelined
- Thread block scheduler assigns a thread block to the SM
- Scoreboard tells which warp (or thread of SIMD instruction) is ready to run
- GPU has two level of hardware schedulers:
  - Threads blocks
  - Warps
- Number of SIMD lanes varies across generations

Figure 4.14 Hennessy and Patterson’s Computer Architecture (5th ed.)
SIMT vs SIMD - GPUs without the hype

• GPUs combine many architectural techniques:
  – Multicore
  – Simultaneous multithreading (SMT)
  – Vector instructions
  – Predication

• So basically a GPU core is a lot like the processor architectures we have studied!

• But the SIMT programming model makes it look different

Overloading the same architectural concept doesn’t help GPU beginners

GPU learning curve is steep in part because of using terms such as “Streaming Multiprocessor” for the SIMD Processor, “Thread Processor” for the SIMD Lane, and “Shared Memory” for Local Memory - especially since Local Memory is not shared between SIMD Processor.
SIMT vs SIMD - GPUs without the hype

SIMT:
• One thread per lane
• Adjacent threads (“warp”/”wavefront”) execute in lockstep
• SMT: multiple “warps” run on the same core, to hide memory latency

SIMD:
• Each thread may include SIMD vector instructions
• SMT: a small number of threads run on the same core to hide memory latency

Which one is easier for the programmer?
SIMT vs SIMD - spatial locality

SIMT:
• Spatial locality = adjacent threads access adjacent data
• A load instruction can result in a completely different address being accessed by each lane
• “Coalesced” loads, where accesses are (almost) adjacent, run much faster
• Branch coherence = adjacent threads in a warp all usually branch the same way (spatial locality for branches, across threads)

SIMD:
• Spatial locality = adjacent loop iterations access adjacent data
• A SIMD vector load usually has to access adjacent locations
• Some recent processors have “gather” instructions which can fetch from a different address per lane
• But performance is often serialised
• Branch predictability = each individual branch is mostly taken or not-taken (or is well-predicted by global history)
NVIDIA GPU Instruction Set Architecture

• Unlike most system processors, the instruction set target of the NVIDIA compilers is an abstraction of the hardware instruction set

• PTX (Parallel Thread Execution) assembler provides a stable instruction set for compilers as well as compatibility across generations of GPUs (PTX is an intermediate representation)

• The hardware instruction set is hidden from the programmer

• One PTX instruction can expand to many machine instructions

• Similarity with x86 microarchitecture, both translate to an internal form (microinstructions for x86). But translation happens (look at the diagram in the next slide):
  • in hardware at runtime during execution on x86
  • in software and load time on a GPU

• PTX uses virtual registers, the assignment to physical registers occurs at load time
Source code -> virtual GPU -> real GPU

- NVCC is the NVIDIA compiler
- cubin is the CUDA binary
- Runtime generation may be costly (increased load time), but it is normally cached

Unlike vector architectures, GPUs don’t have separate instructions for sequential data transfers, stripped data transfers, and gather-scatter data transfers: all data transfers are gather-scatter.

Special Address Coalescing hardware to recognise when the SIMD lanes within a thread of SIMD instructions are collectively issuing sequential addresses.

No loop incrementing or branching code.
Shared memory bank conflicts

- Shared memory has 32 banks that are organised such that successive 32-bit words map to successive banks.
- Each bank has a bandwidth of 32 bits per clock cycle.

Source: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-2-x
Shared memory bank conflicts

- Shared memory has 32 banks that are organised such that successive 32-bit words map to successive banks.
- Each bank has a bandwidth of 32 bits per clock cycle.

Source: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-2-0
Fermi GTX 480 (March 2010)

Fermi GTX 480:
32 FUs per processor
Peak (sp): 1340 GFLOPS/s
BW: 177 GB/s
Core clock: 700 MHz

Source: http://www.techspot.com/review/263-nvidia-geforce-gtx-480/page2.html

Fermi's 16 SM are positioned around a common L2 cache. Each SM is a vertical rectangular strip that contain an orange portion (scheduler and dispatch), a green portion (execution units), and light blue portions (register file and L1 cache).
Kepler GTX Titan (February 2013)

Kepler GTX Titan:
- 192 FUs per SMX
- Peak (sp): 4.5 TFLOPS
- BW: 290 GB/s
- Core clock: 830 MHz

Source: http://www.anandtech.com/show/5699/nvidia-geforce-gtx-680-review/2
Maxwell GTX 980 Ti (June 2015)

Maxwell GTX 980 Ti:
- 128 FUs per SMM
- Peak (sp): 5.6 TFLOPS
- BW: 336 GB/s
- Core clock: 1 GHz

Source: http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3
Maxwell GTX 980 Ti:
128 FUs per SMM
Peak (sp): 5.6 TFLOPS
BW: 336 GB/s
Core clock: 1 GHz
It is a heterogeneous world

- **TITAN**
  - GFLOPS: 4998
  - Power: < 400 W

- **GTX 870M**
  - GFLOPS: 2827
  - Power: < 100 W

- **TK1**
  - GFLOPS: 404
  - Power: < 20 W

- **ODROID**
  - GFLOPS: 170
  - Power: < 10 W

- **Arndale**
  - GFLOPS: 87
  - Power: < 5 W
ARM-based Samsung Exynos 7420 SoC
Reverse engineered

Source: http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2
ARM MALI GPU: Midgard microarchitecture

- Variable number of Arithmetic Pipelines (uncommon feature with respect to other GPUs)
- Fixed number of Load/Store and Texturing Pipelines
- In-order scheduling
- This diagram shows only the Shader Core, there is much more supporting hardware to make a complete GPU, i.e., tiling unit, memory management unit, L2 cache, etc.

Source: http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4
ARM Mali Midgard Arithmetic Pipe

- **V_MUL**
  - FP32  
  - FP32  
  - FP32  
  - FP32
- **V_ADD**
  - FP32  
  - FP32  
  - FP32  
  - FP32
- **V_SFU**
  - FP32  
  - FP32  
  - FP32  
  - FP32

- **FP32 Scalar MUL**
- **FP32 Scalar ADD**

**Source:** [http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/5](http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/5)

- Very flexible SIMD
- Simply fill the SIMD with as many (identical) operations as will fit, and the SIMD will handle it

- ARM Midgard is a VLIW design with SIMD characteristics (power efficient)
- So, at a high level ARM is feeding multiple ALUs, including SIMD units, with a single long word of instructions (ILP)
- Support a wide range of data types, integer and FP: I8, I16, I32, I64, FP16, FP32, FP64
- 17 SP GFLOPS per core at 500 MHz (if you count also the SFUs)
Optimising for MALI GPUs

How to run optimally OpenCL code on Mali GPUs means mainly to locate and remove optimisations for alternative compute devices:

- **Use of local or private memory**: Mali GPUs use caches instead of local memories. There is therefore no performance advantage using these memories on a Mali.
- **Barriers**: data transfers to or from local or private memories are typically synchronised with barriers. If you remove copy operations to or from these memories, also remove the associated barriers.
- **Use of scalars**: some GPUs work with scalars whereas Mali GPUs can also use vectors. Do vectorise your code.
- **Optimisations for divergent threads**: threads on a Mali are independent and can diverge without any performance impact. If your code contains optimisations for divergent threads in warps, remove them.
- **Modifications for memory bank conflicts**: some GPUs include per-warp memory banks. If the code includes optimisations to avoid conflicts in these memory banks, remove them.
- **No host-device copies**: Mali shares the same memory with the CPU.

Portability: code vs performance

OpenCL performance depends on how the code is written

Source: “OpenCL heterogeneous portability – theory and practice”, Ayal Zaks (Intel), PEGPUM 2014
Where to start

- CUDA programming guide: https://docs.nvidia.com/cuda/cuda-c-programming-guide/
- OpenCL http://www.nvidia.com/content/cudazone/download/opencl/nvidia_opencl_programmingguide.pdf