
Advanced Computer Architecture Chapter 7.2

Data-Level Parallelism
Architectures and Programs

February 2016
Luigi Nardi

332
Advanced Computer Architecture

Chapter 7

These lecture notes are partly based on:
• on the previous year's lecture slides from Paul H. J. Kelly (CO332/2013-2014)
• on the last year’s lecture slides from Fabio Luporini (CO332/2014-2015)
• the course text, Hennessy and Patterson’s Computer Architecture (5th ed.)

Advanced Computer Architecture Chapter 7.2
2

Papers mentioning parallel programming languages.
Data according to Google Scholar (Feb. 2014)

Advanced Computer Architecture Chapter 7.2

Flynn's Taxonomy

• SISD: single-instruction, single-data  
(single core CPU)

• MIMD: multiple-instruction, multiple-data 
(multi core CPU)

• SIMD: single-instruction, multiple-data 
(data-based parallelism)

• MISD: multiple-instruction, single-data 
(fault-tolerant computers)

3

Images source: http://www.cems.uwe.ac.uk/teaching/notes/PARALLEL/ARCHITEC

http://www.cems.uwe.ac.uk/teaching/notes/PARALLEL/ARCHITEC

Advanced Computer Architecture Chapter 7.2
4

A glimpse of the performance (GFLOPS/s)

Source: http://docs.nvidia.com/cuda/cuda-c-programming-guide/

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n

Advanced Computer Architecture Chapter 7.2
5

A glimpse of the performance (BW/s)

Source: http://docs.nvidia.com/cuda/cuda-c-programming-guide/

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n

Advanced Computer Architecture Chapter 7.2

Graphics Processors (GPUs)
• Much of our attention so far has been devoted to making a single

core run a single thread faster
• If your workload consists of thousands of threads, everything

looks different:
– Never speculate: there is always another thread waiting with work

you know you have to do
– No speculative branch execution, perhaps even no branch

prediction
– Can use SMT to hide cache access latency, and maybe even main

memory latency

– Control is at a premium:
• How to launch >10,000 threads?
• What if they branch in different directions?
• What if they access random memory blocks/banks?

• This is the “manycore” world
• Driven by the gaming market – but with many other applications

6

Advanced Computer Architecture Chapter 7.2

A first comparison with CPUs

7

So
ur

ce
: h

ttp
://

do
cs

.n
vi

di
a.

co
m

/c
ud

a/
cu

da
-c

-p
ro

gr
am

m
in

g-
gu

id
e/

• “Simpler” cores

• Many functional units (FUs) (implementing the SIMD model)

• No (or limited) caching; just thousands of threads and
super-fast context switch

• Drop sophisticated branch prediction mechanisms

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n

Advanced Computer Architecture Chapter 7.2

NVIDIA G80 (2006)
16 cores, each with 8 “SP” units

16x8=128 threads execute in parallel

Each core issues instructions in
“warps” of 32

Each core up to 24-way SMT

Sketchy
information
on graphics

primitive
processing

No L2 cache coherency problem, data can be in only one cache. Caches are small

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

ROP performs colour and depth frame
buffer operations directly on memory

8

St
re

am
in

g
Pr

oc
es

so
r A

rra
y

(S
PA

)

Raster operation processor (ROP)

Advanced Computer Architecture Chapter 7.2

NVIDIA G80 (2006)
16 cores, each with 8 SP units

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

Texture/Processor Cluster (TPC)

9

•SMC: Streaming
Multiprocessor controller

•MT issue: multithreaded
instruction fetch and issue
unit

•C cache: constant read-only
cache

• I cache: instruction cache
•Geometry controller:

directs all primitive and
vertex attribute and
topology flow in the TPC

•SFU: Special-Function Unit,
compute trascendental
functions (sin, cos, log x,
1/x)

• Shared memory: scratchpad
memory, i.e. user managed
cache

•Texture cache does
interpolation

•SM: Streaming Multiprocessor
• SP: Streaming Processor

Advanced Computer Architecture Chapter 7.2

NVIDIA’s Tesla micro-architecture
• Designed to do rendering
• Evolved to do general-purpose computing (GPGPU)

– But to manage thousands of threads, a new programming model is
needed, called CUDA (Compute Unified Device Architecture)

– CUDA is proprietary, but the same model lies behind OpenCL, an
open standard with implementations for multiple vendors’ GPUs

• GPU evolved from hardware designed specifically around the
OpenGL/DirectX rendering pipeline, with separate vertex- and
pixel-shader stages

• “Unified” architecture arose from increased sophistication of
shader programs

• Tesla still has some features specific to graphics:
– Work distribution, load distribution
– Texture cache, pixel interpolation
– Z-buffering and alpha-blending (the ROP units, see diagram)

• Tesla is also the NVIDIA brand name for server GPUs:
– NVIDIA micro-architectures: Tesla, Fermi, Kepler and Maxwell
– NVIDIA brands: Tegra, Quadro, GeForce, Tesla 10

Advanced Computer Architecture Chapter 7.2

CUDA Execution Model
• CUDA is a C extension

– Serial CPU code
– Parallel GPU code (kernels)

• GPU kernel is a C function
– Each thread executes kernel

code
– A group of threads forms a

thread block (1D, 2D or 3D)
– Thread blocks are organised into

a grid (1D, 2D or 3D)

– Threads within the same thread
block can synchronise execution,
and share access to local
scratchpad memory

Key idea: hierarchy of parallelism, to
handle thousands of threads

Source: CUDA programming guide

11

Advanced Computer Architecture Chapter 7.2

NVIDIA G80

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

Nested granularity levels

12

Cooperative Thread Array
(CTA) =  
thread block

Different levels have
corresponding memory-
sharing levels:
• (a) thread
• (b) thread block
• (c) grid

CUDA thread

Note:
CUDA thread is just a vertical
cut of a thread of SIMD
instructions, corresponding to
one element executed by on
SIMD lane.
CUDA threads are very
different from POSIX threads;
you can’t make arbitrary
system calls from a CUDA
thread

Advanced Computer Architecture Chapter 7.2

CUDA Memory Model
– Local memory – private to each

thread (slow if off-chip, fast if
register allocated)

– Shared memory – shared between
threads in a thread block (fast on-
chip)

– Global memory – shared between
thread blocks in a grid (off-chip
DRAM but in the GPU card)

– Constant memory (small, read-only)
– Texture memory (read-only; cached,

stored in Global memory)
– Memory instructions load-global,

store-global, load-shared, store-
shared, load-local, and store-local

! Diagram is misleading: logical association but not hardware locality
! “Local memory” is non-cached (in Tesla), stored in global DRAM
! Critical thing is that “shared” memory is shared among all threads in

a block, since they all run on the same SM 13

Source: CUDA programming guide

Advanced Computer Architecture Chapter 7.2

// Invoke DAXPY
daxpy(n, 2.0, x, y);
// DAXPY in C
void daxpy(int n,
 double a,
 double* x,

 double* y) {
 for(int i=0; i < n; ++i)
 y[i] = a*x[i] + y[i];
} fully parallel loop

int main(){
// Kernel setup

 int N = 1024;
 int blockDim = 256; // These are the threads per block
 int gridDim = N / blockDim;// These are the number of blocks
 daxpy<<<gridDim, blockDim>>>(N, 2.0, x, y);// Kernel invocation
}

CUDA example: DAXPY

! Kernel invocation (“<<<…>>>”) corresponds to enclosing loop nest, managed by
hardware

! Explicitly split into 2-level hierarchy:  
blocks (which share “shared” memory), and grid

! Kernel commonly consists of just one iteration but could be a loop
! Multiple tuning parameters trade off register pressure, shared-memory capacity

and parallelism
14

__global__ void daxpy(int N,
 double a,
 double* x,
 double* y) {
 int i = blockIdx.x *
 blockDim.x +
 threadIdx.x;
 if (i < N)
 y[i] = a*x[i] + y[i];
}

Advanced Computer Architecture Chapter 7.2
15

Running DAXPY (N=1024) on a GPU

……..

DRAM

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

Host (via I/O bus, DMA)Observation: SIMD + MIMD

Advanced Computer Architecture Chapter 7.2
15

Running DAXPY (N=1024) on a GPU

……..

DRAM

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

Host (via I/O bus, DMA)

BLOCK 1
(DAXPY 0-255)

BLOCK 2
(DAXPY 256-511)

BLOCK 3
(DAXPY 512-767)

BLOCK 4
(DAXPY 768-1023)

Observation: SIMD + MIMD

Advanced Computer Architecture Chapter 7.2
15

Running DAXPY (N=1024) on a GPU

……..

DRAM

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

Host (via I/O bus, DMA)

BLOCK 1
(DAXPY 0-255)

BLOCK 2
(DAXPY 256-511)

BLOCK 3
(DAXPY 512-767)

BLOCK 4
(DAXPY 768-1023)

BLOCK x
(…)

BLOCK x+1
(…)

BLOCK x+2
(…)

Observation: SIMD + MIMD

Advanced Computer Architecture Chapter 7.2
16

……..
Multithreaded SIMD Processor

Multithreaded SIMD Processor

Multithreaded SIMD Processor

WARPSWARPSWARPS FUFUFUFUFU
FUFUFUFUFUIF ID

A warp comprises of 32 CUDA threads

Running DAXPY on a GPU

DRAM

Host (via I/O bus, DMA)

Advanced Computer Architecture Chapter 7.2

Mapping from CUDA to TESLA
• Array of streaming multiprocessors (SMs)

– (we might call them “cores”, when comparing to conventional multicore; each
SM is an instruction-fetch-execution engine)

• CUDA thread blocks get mapped to SMs
• SMs have thread processors, private registers,

shared memory, etc.
• Each SM executes a pool of warps, with a separate

instruction pointer for each warp. Instructions are
issued from each ready-to-run warp in turn (SMT,
hyperthreading)

• A warp is like a traditional thread (32 CUDA
threads executed as 32 SIMD operations)

17

! Corollary: enough warps are needed to avoid stalls (i.e., enough threads per
block). Also called GPU occupancy in CUDA

! But: high occupancy is not always a good solution to achieve good
performance, i.e., memory bound applications may need a less busy bus to
perform well. Reduce the number of in-flight loads/stores by reducing the
number of blocks on a SM and improve cache trashing. How?

• If you are a ninja: use dynamic shared memory to reduce occupancy
• Or increase the number of registers in your kernel

Advanced Computer Architecture Chapter 7.2

Single-instruction, multiple-thread (SIMT)
• A new parallel programming model: SIMT
• The SM’s SIMT multithreaded instruction

unit creates, manages, schedules, and
executes threads in groups of warps

• The term warp originates from weaving
• Each SM manages a pool of 24 warps, 24

ways SMT
• Individual threads composing a SIMT warp

start together at the same program
address, but they are otherwise free to
branch and execute independently

• At instruction issue time, select ready-to-
run warp and issue the next instruction to
that warp’s active threads

18NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

Advanced Computer Architecture Chapter 7.2

More on SIMT
• SIMT architecture is similar to SIMD

design, which applies one instruction to
multiple data lanes

• The difference: SIMT applies one
instruction to multiple independent
threads in parallel, not just multiple data
lanes. A SIMT instruction controls the
execution and branching behaviour of one
thread

• For program correctness, programmers
can ignore SIMT executions; but, they can
achieve performance improvements if
threads in a warp don’t diverge

• Correctness/performance analogous to
the role of cache lines in traditional
architectures

• The SIMT design shares the SM instruction
fetch and issue unit efficiently across 32
threads but requires a full warp of active
threads for full performance efficiency

19NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

Advanced Computer Architecture Chapter 7.2
20

Branch divergence
• In a warp threads all take the same path (good!) or diverge!
• A warp serially executes each path, disabling some of the

threads
• When all paths complete, the threads reconverge

• Divergence only occurs within a warp - different warps execute
independently

• This model of execution is called lockstep instructions are
serialised on branch divergence

• Control-flow coherence: every thread goes the same way (a form
of locality) Predicate bits: enable/disable each lane

:
:
if (x == 10)
 c = c + 1;
:

 :
 LDR r5, X
 p1 <- r5 eq 10
<p1> LDR r1 <- C
<p1> ADD r1, r1, 1
<p1> STR r1 -> C
 :

Advanced Computer Architecture Chapter 7.2

21
Figure 4.14 Hennessy and Patterson’s Computer Architecture (5th ed.)

GPU SM or multithreaded SIMD processor
•Many parallel

functional units instead
of a few deeply
pipelined

•Thread block scheduler
assigns a thread block
to the SM

•Scoreboard tells which
warp (or thread of SIMD
instruction) is ready to
run

•GPU has two level of
hardware schedulers:
•Threads blocks
•Warps

•Number of SIMD lanes
varies across
generations

Instruction
cache

Instruction register

Regi-
sters

1K × 32

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Address coalescing unit Interconnection network

Local Memory
64 KB

To Global
 Memory

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Reg

1K × 32

Operands?
ld.global.f64

ld.global.f64
ld.global.f64

mul.f64
shl.s32
add.s32

Ready
No

Ready

Ready
Ready

No

Warp scheduler

Warp No. Address SIMD instructions
42
43
95
96

SIMD Lanes
(Thread

Processors)

11
12

1
1
3
3
8
8

Scoreboard

Advanced Computer Architecture Chapter 7.2

SIMT vs SIMD – GPUs without the hype
• GPUs combine many

architectural
techniques:
– Multicore
– Simultaneous

multithreading (SMT)
– Vector instructions
– Predication

• So basically a GPU core
is a lot like the
processor architectures
we have studied!

• But the SIMT
programming model
makes it look different

22

! Overloading the same architectural concept doesn’t help GPU
beginners

! GPU learning curve is steep in part because of using terms such as
“Streaming Multiprocessor” for the SIMD Processor, “Thread
Processor” for the SIMD Lane, and “Shared Memory” for Local
Memory - especially since Local Memory is not shared between SIMD
Processor

Advanced Computer Architecture Chapter 7.2

SIMT vs SIMD – GPUs without the hype

SIMT:
• One thread per lane
• Adjacent threads

(“warp”/”wavefront”)
execute in lockstep

• SMT: multiple “warps”
run on the same core,
to hide memory latency

SIMD:
• Each thread may

include SIMD vector
instructions

• SMT: a small number of
threads run on the
same core to hide
memory latency

Which one is easier for the programmer?
23

Advanced Computer Architecture Chapter 7.2

SIMT vs SIMD – spatial locality
SIMT:

• Spatial locality = adjacent
threads access adjacent
data

• A load instruction can result
in a completely different
address being accessed by
each lane

• “Coalesced” loads, where
accesses are (almost)
adjacent, run much faster

• Branch coherence =
adjacent threads in a warp
all usually branch the same
way (spatial locality for
branches, across threads)

SIMD:
• Spatial locality = adjacent

loop iterations access
adjacent data

• A SIMD vector load usually
has to access adjacent
locations

• Some recent processors have
“gather” instructions which
can fetch from a different
address per lane

• But performance is often
serialised

• Branch predictability = each
individual branch is mostly
taken or not-taken (or is
well-predicted by global
history)

24

Advanced Computer Architecture Chapter 7.2
25

NVIDIA GPU Instruction Set Architecture

• Unlike most system processors, the instruction set target of
the NVIDIA compilers is an abstraction of the hardware
instruction set

• PTX (Parallel Thread Execution) assembler provides a stable
instruction set for compilers as well as compatibility across
generations of GPUs (PTX is an intermediate representation)

• The hardware instruction set is hidden from the programmer
• One PTX instruction can expand to many machine instructions
• Similarity with x86 microarchitecture, both translate to an

internal form (microinstructions for x86). But translation
happens (look at the diagram in the next slide):
• in hardware at runtime during execution on x86
• in software and load time on a GPU

• PTX uses virtual registers, the assignment to physical registers
occurs at load time

Advanced Computer Architecture Chapter 7.2
26

Source code -> virtual GPU -> real GPU
• NVCC is the NVIDIA compiler
• cubin is the CUDA binary
• Runtime generation may be costly (increased load time), but

it is normally cached

Source: http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/

http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/

Advanced Computer Architecture Chapter 7.2

• Unlike vector architectures, GPUs don’t have separate instructions for
sequential data transfers, stripped data transfers, and gather-scatter data
transfers: all data transfers are gather-scatter

• Special Address Coalescing hardware to recognise when the SIMD lanes
within a thread of SIMD instructions are collectively issuing sequential
addresses

• No loop incrementing or branching code

shl.u32 R8, blockIdx, 9 ; Thread Block ID Block size (512 or 29)
add.u32 R8, R8, threadIdx; R8 = i = my CUDA thread ID
shl.u32 R8, R8, 3 ; byte offset
ld.global.f64 RD0, [X+R8]; RD0 = X[i]
ld.global.f64 RD2, [Y+R8]; RD0 = Y[i]
mul.f64 RD0, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)
add.f64 RD0, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])
st.global.f64 [Y+R8], RD0; Y[i] = sum (X[i]*a + Y[i])

27

NVIDIA GPU ISA example

PTX instructions for one iteration of DAXPY

Hennessy and Patterson’s Computer Architecture (5th ed.)

__global__ void daxpy(int N, double a, double* x, double* y) {
 int i = blockIdx.x *
 blockDim.x +
 threadIdx.x;
 y[i] = a*x[i] + y[i];
}

Advanced Computer Architecture Chapter 7.2
28

Shared memory bank conflicts
•Shared memory has 32 banks that are organised such that successive
32-bit words map to successive banks

•Each bank has a bandwidth of 32 bits per clock cycle

So
ur

ce
: h

ttp
s:

//d
oc

s.
nv

id
ia

.c
om

/c
ud

a/
cu

da
-c

-p
ro

gr
am

m
in

g-
gu

id
e/

in
de

x.
ht

m
l#

co
m

pu
te

-c
ap

ab
ilit

y-
2-

x

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-2-x

Advanced Computer Architecture Chapter 7.2
28

Shared memory bank conflicts
•Shared memory has 32 banks that are organised such that successive
32-bit words map to successive banks

•Each bank has a bandwidth of 32 bits per clock cycle

two-way bank conflict

So
ur

ce
: h

ttp
s:

//d
oc

s.
nv

id
ia

.c
om

/c
ud

a/
cu

da
-c

-p
ro

gr
am

m
in

g-
gu

id
e/

in
de

x.
ht

m
l#

co
m

pu
te

-c
ap

ab
ilit

y-
2-

x

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-2-x

Advanced Computer Architecture Chapter 7.2
29

Fermi GTX 480 (March 2010)

Fermi GTX 480:
32 FUs per processor
Peak (sp): 1340 GFLOPS/s
BW: 177 GB/s
Core clock: 700 MHz

So
ur

ce
: h

ttp
://

w
w

w.
te

ch
sp

ot
.c

om
/re

vi
ew

/2
63

-n
vi

di
a-

ge
fo

rc
e-

gt
x-

48
0/

pa
ge

2.
ht

m
l

http://www.techspot.com/review/263-nvidia-geforce-gtx-480/page2.html

Advanced Computer Architecture Chapter 7.2
30

Kepler GTX Titan (February 2013)

Kepler GTX Titan:
192 FUs per SMX
Peak (sp): 4.5 TFLOPS
BW: 290 GB/s
Core clock: 830 MHz

So
ur

ce
: h

ttp
://

w
w

w.
an

an
dt

ec
h.

co
m

/s
ho

w
/5

69
9/

nv
id

ia
-g

ef
or

ce
-g

tx
-6

80
-re

vi
ew

/2

http://www.anandtech.com/show/5699/nvidia-geforce-gtx-680-review/2

Advanced Computer Architecture Chapter 7.2

31

Maxwell GTX 980 Ti:
128 FUs per SMM
Peak (sp): 5.6 TFLOPS
BW: 336 GB/s
Core clock: 1 GHz

Source: http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3

Maxwell GTX 980 Ti (June 2015)

http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3

Advanced Computer Architecture Chapter 7.2

32

So
ur

ce
: h

ttp
://

w
w

w.
an

an
dt

ec
h.

co
m

/s
ho

w
/8

52
6/

nv
id

ia
-g

ef
or

ce
-g

tx
-9

80
-re

vi
ew

/2

Maxwell GTX 980 Ti:
128 FUs per SMM
Peak (sp): 5.6 TFLOPS
BW: 336 GB/s
Core clock: 1 GHz

http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/2

Advanced Computer Architecture Chapter 7.2

It is a heterogeneous world

33

TITAN 
4998 GFLOPS 

< 400 W

GTX 870M 
2827 GFLOPS 

< 100 W

TK1
404 GFLOPS 

< 20 W

ODROID 
170 GFLOPS 

< 10 W

Arndale  
87 GFLOPS 

< 5 W

Advanced Computer Architecture Chapter 7.2
34

AR
M

-b
as

ed
 S

am
su

ng
 E

xy
no

s
74

20
 S

oC

Re
ve

rs
e

en
gi

ne
er

ed

Source: http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2

http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2

Advanced Computer Architecture Chapter 7.2

35

ARM MALI GPU: Midgard microarchitecture

So
ur

ce
: h

ttp
://

w
w

w.
an

an
dt

ec
h.

co
m

/s
ho

w
/8

23
4/

ar
m

s-
m

al
i-m

id
ga

rd
-a

rc
hi

te
ct

ur
e-

ex
pl

or
ed

/4

• Variable number of Arithmetic Pipelines (uncommon
feature with respect to other GPUs)

• Fixed number of Load/Store and Texturing Pipelines
• In-order scheduling
• This diagram shows only the Shader Core, there is much

more supporting hardware to make a complete GPU, i.e.
tiling unit, memory management unit, L2 cache, etc.

http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4

Advanced Computer Architecture Chapter 7.2

Midgard arithmetic Pipe

36

•ARM Midgard is a VLIW design with SIMD characteristics (power efficient)
•So, at a high level ARM is feeding multiple ALUs, including SIMD units, with a
single long word of instructions (ILP)

•Support a wide range of data types, integer and FP: I8, I16, I32, I64, FP16,
FP32, FP64

•17 SP GFLOPS per core at 500 MHz (if you count also the SFUs)

So
ur

ce
: h

ttp
://

w
w

w.
an

an
dt

ec
h.

co
m

/s
ho

w
/8

23
4/

ar
m

s-
m

al
i-m

id
ga

rd
-a

rc
hi

te
ct

ur
e-

ex
pl

or
ed

/5

•Very flexible SIMD
•Simply fill the SIMD with
as many (identical)
operations as will fit, and
the SIMD will handle it

http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/5

Advanced Computer Architecture Chapter 7.2
37

Optimising for MALI GPUs
How to run optimally OpenCL code on Mali GPUs means mainly to
locate and remove optimisations for alternative compute devices:
•Use of local or private memory: Mali GPUs use caches instead of
local memories. There is therefore no performance advantage using
these memories on a Mali

•Barriers: data transfers to or from local or private memories are
typically synchronised with barriers. If you remove copy operations
to or from these memories, also remove the associated barriers

•Use of scalars: some GPUs work with scalars whereas Mali GPUs can
also use vectors. Do vectorise your code

•Optimisations for divergent threads: threads on a Mali are
independent and can diverge without any performance impact. If
your code contains optimisations for divergent threads in warps,
remove them

•Modifications for memory bank conflicts: some GPUs include per-
warp memory banks. If the code includes optimisations to avoid
conflicts in these memory banks, remove them

•No host-device copies: Mali shares the same memory with the CPU
Source: http://infocenter.arm.com/help/topic/com.arm.doc.dui0538f/DUI0538F_mali_t600_opencl_dg.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.dui0538f/DUI0538F_mali_t600_opencl_dg.pdf

Advanced Computer Architecture Chapter 7.2
38

Portability: code vs performance

Source: “OpenCL heterogeneous portability – theory and practice”, Ayal Zaks (Intel), PEGPUM 2014

OpenCL performance depends on how the code is written

Advanced Computer Architecture Chapter 7.2

• CUDA programming guide: https://docs.nvidia.com/cuda/
cuda-c-programming-guide/

• OpenCL http://www.nvidia.com/content/cudazone/download/
opencl/nvidia_opencl_programmingguide.pdf  
http://developer.amd.com/tools-and-sdks/opencl-zone/

39

Where to start

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.nvidia.com/content/cudazone/download/opencl/nvidia_opencl_programmingguide.pdf
http://www.nvidia.com/content/cudazone/download/opencl/nvidia_opencl_programmingguide.pdf
http://developer.amd.com/tools-and-sdks/opencl-zone/
http://developer.amd.com/tools-and-sdks/opencl-zone/

