Imperial College
. ondon

332

Advanced Computer Architecture
Chapter 7

Data-Level Parallelism
Architectures and Programs

February 2016
Luigi Nardi

These lecture notes are partly based on:

- on the previous year's lecture slides from Paul H. J. Kelly (CO332/2013-2014)
- on the last year’s lecture slides from Fabio Luporini (CO332/2014-2015)

- the course text, Hennessy and Patterson’s Computer Architecture (5t ed.)

Papers mentioning parallel programming languages.
Data according to Google Scholar (Feb. 2014)

12,000

10,000
g 8,000 OpenCL
% =»&=0OpenMP
o
S 6,000 2 P
@ | =&@~CUDA
;5: 4,000 ik

BB
2,000
0 o =

2006 2007 2008 2009 2010 2011 2012 2013

(c) Simon Mcintosh-Smith 2014

Flynn's Taxonomy

* SISD: single-instruction, single-data
(single core CPU)

e MIMD: multiple-instruction, multiple-data
(multi core CPU)

* SIMD: single-instruction, multiple-data
(data-based parallelism)

Single Multiple
* MISD: multiple-instruction, single-data '"gtt'::;tr;]“ instruction
(fault-tolerant computers) uuu

Single
Data _— o
Stream

Multiple

http://www.cems.uwe.ac.uk/teaching/notes/PARALLEL/ARCHITEC

A glimpse of the performance (GFLOPS/s)

Theoretical GFLOP/s

5750
5500
5250
5000

4750
4500 Intel CPU Double Precision

NVIDIA GPU Single Precision
e=smeNVIDIA GPU Double Precision

4250 emg=m|ntel CPU Single Precision

4000
3750
3500
3250
3000
2750
2500
2250
2000
1750 Tesla K40
1500 Tesla K20X
1250

1000 Tesla M2090

750 lesla C2050

500 Tesla C1060
250 Harpertown

0 Pentium 4 Bloomf}el;j Westmere

Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

Source: http://docs.nvidia.com/cuda/cuda-c-programming-guide

vy Bridge

Sandy Bridge

Woodcrest

4

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n

A glimpse of the performance (BW/s)

Theoretical GB/s

360

330

300

an@ue (Pl Tesla K40

270 Gelorce GPU
Tesla K20X

240 Tesla GPU

210

180 =

Tesla M2090
150

Tesla C2050
120

90

Tesla C1060
==t lvy Bridge

60 Sandy Bridge
Bloomfield

30
GeForce FX 5900 Prescot

t Woodcrest
Westmere

0 Northwoo& T T T Halrpertolvvn T T T 1
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Source: http://docs.nvidia.com/cuda/cuda-c-programming-guide/

5

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n

Graphics Processors (GPUs)

* Much of our attention so far has been devoted to making a single
core run a single thread faster

* |f your workload consists of thousands of threads, everything
looks different:

— Never speculate: there is always another thread waiting with work
you know you have to do

— No speculative branch execution, perhaps even no branch
prediction

— Can use SMT to hide cache access latency, and maybe even main
memory latency

— Control is at a premium:
 How to launch >10,000 threads?
* What if they branch in different directions?
* What if they access random memory blocks/banks?

* This is the “manycore” world
* Driven by the gaming market - but with many other applications

A first comparison with CPUs

CPU GPU
e “Simpler” cores

e Many functional units (FUs) (implementing the SIMD model)

* No (or limited) caching; just thousands of threads and
super-fast context switch

* Drop sophisticated branch prediction mechanisms

v

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n

NVIDIA G80 (2006)

Host CPU Bridge System memory 16 cores, each with 8 “SP” units
16x8=128 threads execute in parallel

Sketchy . GPU
information [Hostinterface l . . .
) [Viewport/clin/ Each core issues instructions in
on graphlcs Input assembler setup/raster/zcull “warps” of 32
primitive l l
. Vertex work Pixel work Compute work | Each core up to 24-way SMT
processing distribution distribution dlspt)rlbutlon
I [l <
| | | | | | | | al
TRC TPC TPC TPC TPC TPC TeC TeC CD
[11 1 1 I 11 1 11 1 | | =
| 1 1 1 i 11 1|1 1 1 | | 2
SM SM SM SM SM SM SM SM SM SM SM SM t
C____Jj(C_1 | I | || (| | — | | — I || IS || | { N || NS || | M—) — <
l l C__] | | | [o C__IC_ Il I) | ||
CEIEE EEE| EEEE oo|eE|ea|Ea|as(aalE:
e][]l (=]] E3|E3|[E3[E3 || E2 (2 || B2 | =Fl=l =l = (| S
=]l |[=°][= [sell==] [0 | (=== s E2|E3)| (2| ({2 | E2 || =1 3 | | B | | | || I S
W%lESP |ss> 5P EE] sps_vl spgl Eso so || sp ss’ss’llgspl EE‘EE‘ al
|:||:| |:||:| LI | (I (1]) () | @
E=A EA =
g ||| g g o | S
| | 1 [. %)
Ragcer operatlon processor (ROP) Interconnection network)

{ I
L

S LT

DRAM DRAM DRAM DRAM DRAM DRAM

No L2 cache coherency problem, data can be in only one cache. Caches are small ROP performs colour and depth frame
buffer operations directly on memory
NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm

John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008) 8

Texture/Processor Cluster (TPC)

Geometry controller

SM SM
| cache | cache
MT issue MT issue
C cache C cache
SP SP SP SP
SP SP SP SP
SP SP SP SP
SP SP SP SP
SFU | | SFU SFU| [SFU
Shared Shared
memory memory
Texture unit

e SM: Streaming Multiprocessor\“x\
e SP: Streaming Processor

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm

John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

9

NVIDIA G80 (2006)

16 cores, each with 8 SP units
e SMC: Streaming

Multiprocessor controller

o MT issue: multithreaded
instruction fetch and issue
unit

e C cache: constant read-only
cache

o | cache: instruction cache

o« Geometry controller:
directs all primitive and
vertex attribute and
topology flow in the TPC

e SFU: Special-Function Unit,
compute trascendental
functions (sin, cos, log X,
1/X)

e Shared memory: scratchpad
memory, i.e. user managed
cache

o Texture cache does
interpolation

NVIDIA’s Tesla micro-architecture

* Designed to do rendering

* Evolved to do general-purpose computing (GPGPU)

— But to manage thousands of threads, a new programming model is
needed, called CUDA (Compute Unified Device Architecture)

— CUDA is proprietary, but the same model lies behind OpenCL, an
open standard with implementations for multiple vendors’ GPUs

* GPU evolved from hardware designed specifically around the
OpenGL/DirectX rendering pipeline, with separate vertex- and
pixel-shader stages

* “Unified” architecture arose from increased sophistication of
shader programs
* Tesla still has some features specific to graphics:
— Work distribution, load distribution
— Texture cache, pixel interpolation
— Z-buffering and alpha-blending (the ROP units, see diagram)

* Tesla is also the NVIDIA brand name for server GPUs:
— NVIDIA micro-architectures: Tesla, Fermi, Kepler and Maxwell

— NVIDIA brands: Tegra, Quadro, GeForce, Tesla

CUDA Execution Model

CUDA is a C extension
— Serial CPU code
— Parallel GPU code (kernels)

GPU kernel is a C function
— Each thread executes kernel
code

— A group of threads forms a
thread block (1D, 2D or 3D)

— Thread blocks are organised into

a grid (1D, 2D or 3D)

— Threads within the same thread
block can synchronise execution,

and share access to local
scratchpad memory

Key idea: hierarchy of parallelism, to
handle thousands of threads

11

CPU GPU
Serial
Code
l ' Grid 1
Kernel Block Block Block |
T =7 ©0 (10 (20
| l Block-~ Block . Block
Serial ©14 N @21
COd. ',” ")
| l | /" Grid 2
Kernel
2 A
Block (1,1)

Source: CUDA programming guide

Thread

(a)

Nested granularity levels

<4+— CUDA thread

Per-thread local memory

Cooperative thread array or thread block

NVIDIA G80

Cooperative Thread Array
(CTA) =
thread block

Different levels have
corresponding memory-
sharing levels:

e (@) thread

e (b) thread block

e (C) grid

Time

Note:

> EE—
b . Per-CTA
3 shared memory
-—
(b)
Grid 0
poe
?
---------- Inter-grid synchronization barrier =--------
Grid 1
o« LLL CLeLL e
e | | e | | e b - H

Global
Memory

CUDA thread is just a vertical
cut of a thread of SIMD
instructions, corresponding to
one element executed by on
SIMD lane.

CUDA threads are very

different from POSIX threads;

(c)

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

12

you can’t make arbitrary
system calls from a CUDA
thread

CUDA Memory Model

— Local memory - private to each SruGrid

thread (slow if off-chip, fast if Block (0, 0) Block (1, 0)

register allocated) ﬂ

— Shared memory - shared between ﬂ
threads in a thread block (fast on- ’ ’
chip)
Thread (0, 0) Thread (1, 0)

— Global memory - shared between W B0 MR

thread blocks in a grid (off-chip
DRAM but in the GPU card) i

— Constant memory (small, read-only)

— Texture memory (read-only; cached,
stored in Global memory)

— Memory instructions load-global,
store-global, load-shared, store-
shared, load-local, and store-local Souroe. GUDA orogramming e

» Diagram is misleading: logical association but not hardware locality
» “Local memory” is non-cached (in Tesla), stored in global DRAM

» Critical thing is that “shared” memory is shared among all threads in
a block, since they all run on the same SM 13

CPU

// Invoke DAXPY
daxpy(n, 2.0, x, y);
// DAXPY in C

e void daxpy(int n,
double* y) { double a,

int 1 = bioctléx.x * double* x,
blockDim.x + double* y) ({

threadldx.x; for(int i=0; i < n; ++i)

if (i < N) —_— : :
N . o y[i] = a*x[i] + y[i];
y[1] = a*x[1] + y[1]; } fully parallel loop

~_global void daxpy(int N,
double a,
double* x,

}

tnt main(){ CUDA example: DAXPY

// Kernel setup

int N = 1024;

int blockDim = 256; // These are the threads per block

int gridDim = N / blockDim;// These are the number of blocks
daxpy<<<gridDim, blockDim>>>(N, 2.0, x, y);// Kernel invocation

} » Kernel invocation (“<<<...>>>") corresponds to enclosing loop nest, managed by

hardware
» Explicitly split into 2-level hierarchy:
blocks (which share “shared” memory), and grid
» Kernel commonly consists of just one iteration but could be a loop

» Multiple tuning parameters trade off register pressure, shared-memory capacity
and parallelism

Running DAXPY (N=1024) on a GPU

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

DRAM

Multithreaded SIMD Processor (SM)

Observation: SIMD + MIMD Host (via I/O bus, DMA)

15

Running DAXPY (N=1024) on a GPU

Multithreaded SIMD Processor (SM)

: BLOCK 1 BLOCK 4
E (DAXPY 0-255) (DAXPY 768-1023)

Multithreaded SIMD Processor (SM)

4l BLOCK 2 : | DRAM
3l (DAXPY 256-511) :

Multithreaded SIMD Processor (SM)

4l BLOCK 3
3l (DAXPY 512-767)

Observation: SIMD + MIMD Host (via I/O bus, DMA)

15

Running DAXPY (N=1024) on a GPU

Multithreaded SIMD Processor (SM)

BLOCK 1 BLOCK 4 BLOCK x
(DAXPY 0-255) [(DAXPY 768-1023) (...)
Multithreaded SIMD Processor (SM)

BLOCK 2 | BLOCK x+1 : | DRAM
(DAXPY 256-511) (-..) :

Multithreaded SIMD Processor (SM)
BLOCK 3 BLOCK x+2
(DAXPY 512-767) (-..)

Observation: SIMD + MIMD Host (via /O bus, DMA)

15

Running DAXPY on a GPU

Multithreaded SIMD Processor

Multithreaded SIMD Processor

DRAM

A warp comprises of 32 CUDA threads
Host (via /O bus, DMA)

16

Mapping from CUDA to TESLA

* Array of streaming multiprocessors (SMs)

— (we might call them “cores”, when comparing to conventional multicore; each
SM is an instruction-fetch-execution engine)

* CUDA thread blocks get mapped to SMs

* SMs have thread processors, private registers,
shared memory, etc.

* Each SM executes a pool of warps, with a separate
instruction pointer for each warp. Instructions are
issued from each ready-to-run warp in turn (SMT,
hyperthreading)

 Awarp is like a traditional thread (32 CUDA
threads executed as 32 SIMD operations)

» Corollary: enough warps are needed to avoid stalls (i.e., enough threads per
block). Also called GPU occupancy in CUDA

» But: high occupancy is not always a good solution to achieve good
performance, i.e., memory bound applications may need a less busy bus to
perform well. Reduce the number of in-flight loads/stores by reducing the
number of blocks on a SM and improve cache trashing. How?

- |If you are a ninja: use dynamic shared memory to reduce occupancy
- Or increase the number of registers in your kernel

Single-instruction, multiple-thread (SIMT)

SM multithreaded
instruction scheduler

Time

SN (N NN N N U N N N S N S N

Warp 8, instruction 11

VYYVYYYYYVYYVYVYVYVYYY
L1 | L1

N T N S S N . .

Warp 1, instruction 42

YYVYYYYYVYYVYVYVYVYYYY
L1 L1l

) I N S R N A S -

Warp 3, instruction 95

VYYYYVYVYYVYYVYYVYVYYY

N N NN N N NN N (N A N NN N N

Warp 8, instruction 12

VYYVYYYYYYYVYVYVYVYYY
L1 1 L1

I T N I S N A S

Warp 3, instruction 96

VYYVYYYYYVYYVYVYVYVYYY
L1 1 |

I N N S N N .

Warp 1, instruction 43

v

VYYYYVYVYYVYYVYYVYVYY

A new parallel programming model: SIMT

The SM’s SIMT multithreaded instruction
unit creates, manages, schedules, and
executes threads in groups of warps

The term warp originates from weaving

Each SM manages a pool of 24 warps, 24
ways SMT

Individual threads composing a SIMT warp
start together at the same program
address, but they are otherwise free to
branch and execute independently

At instruction issue time, select ready-to-
run warp and issue the next instruction to
that warp’s active threads

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm 18
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

SM multithreaded
instruction scheduler

Time

SN N SN Y N N U N N S N N

Warp 8, instruction 11

YYYVYYYYVYYYVYVYYVYYY
L1 1 L1

) I N S N N S N -

Warp 1, instruction 42

YYYVYYVYYYVYYVYVYYVYVYY
L1l L1

| I N S N N N S -

Warp 3, instruction 95

VYYYYVYVYYVYYVYYYVYYY

I N N N SN N S SN RN S N NN S

Warp 8, instruction 12

YYYVYYYYYYYVYVYYVYYY
L1 | L1 |

N I N S I S

Warp 3, instruction 96

YYYVYYYYYYYVYVYYVYYY
|11 [

| N N S I N S S .

Warp 1, instruction 43

VYYYYYYYVYYVYYVYVYY

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

More on SIMT

* SIMT architecture is similar to SIMD

design, which applies one instruction to
multiple data lanes

The difference: SIMT applies one
instruction to multiple independent
threads in parallel, not just multiple data
lanes. A SIMT instruction controls the
execution and branching behaviour of one
thread

For program correctness, programmers
can ignore SIMT executions; but, they can
achieve performance improvements if
threads in a warp don’t diverge

Correctness/performance analogous to
the role of cache lines in traditional
architectures

The SIMT design shares the SM instruction
fetch and issue unit efficiently across 32
threads but requires a full warp of active
threads for full performance efficiency

19

threads

Branch divergence

- In a warp threads all take the same path (good!) or diverge!
- A warp serially executes each path, disabling some of the

- When all paths complete, the threads reconverge
- Divergence only occurs within a warp - different warps execute
independently

- This model of execution is called lockstep instructions are
serialised on branch divergence

- Control-flow coherence: every thread goes the same way (a form

of locality)

Predicate bits: enable/disable each lane

—

20

<pl>
<pl>
<pl>

LDR r5, X

pl <- r5 eqgq 10
LDR rl <= C
ADD rl, rl, 1
STR rl -> C

GPU SM or multithreaded SIMD processor

Warp scheduler Scoreboard
_ Warp No. | Address | SIMD instructions | Operands? ° Many parallel
instruction - 1 42 d.global.f64 Ready functional units instead
cache 1 43 mul.f64 No faf d l
3 95 shl.s32 Ready Ol a Tew deeply
A . .
: T Tgotaitd | Teew pipelined
3 12 d.global f64 Ready e Thread block scheduler
[.
+ | assigns a thread block
Instruction register to the SM]
s s s e wll BE TR R T T O D e o e Scoreboard tells which
simp LanesWarp (or thread of SIMD
VIV YNNI Y S, instruction) i
processors) INSTruction) is ready to
I:tee?is- Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg run
TKx32 [1Kx32 [1Kx32 [1Kx32 |[1Kx32 |[1TKx 32 | 1TKx32 | 1TKx32 | 1Kx32 [1Kx32 [1Kx32 [1Kx32 | 1TKx32 | 1Kx32 | 1Kx 32 | 1Kx 32 ° GPU haS tWO level Of
ous | Loss | Loss | Loss | Lo | Lo | Lo | Lo | s | Lons | Lons | ons | ons | ons | ons | Low hardware schedulers:
e Threads blocks

EESEEESNEEENEEENENEEEEEEEEEEEE . Waros

Address coalescing unit Interconnection network ° Number Of SlMD laneS
: i i varies across
Local Memory "Memory enerations
64KB smen g

Figure 4.14 Hennessy and Patterson’s Computer Architecture (5th ed.)
21

SIMT vs SIMD - GPUs without the hype

* GPUs combine many * So basically a GPU core
architectural is a lot like the
techniques: processor architectures
— Multicore we have studied!

— Simultaneous * But the SIMT
multithreading (SMT) programming model

— Vector instructions makes it look different

— Predication

» Overloading the same architectural concept doesn’t help GPU
beginners

» GPU learning curve is steep in part because of using terms such as
“Streaming Multiprocessor” for the SIMD Processor, “Thread
Processor” for the SIMD Lane, and “Shared Memory” for Local
Memory - especially since Local Memory is not shared between SIMD
Processor

SIMT vs SIMD - GPUs without the hype

SIMT: SIMD:
* One thread per lane * Each thread may
+ Adjacent threads include SIMD vector
(“warp”/”wavefront”) instructions
execute in lockstep * SMT: a small number of
+ SMT: multiple “warps” threads run on the
run on the same core, same core to hide

to hide memory latency = memory latency

Which one is easier for the programmer?

SIMT vs SIMD - spatial locality

SIMT:

Sﬁatial locality = adjacent
EI reads access adjacent
ata

A load instruction can result
in a completely different
address being accessed by
each lane

“Coalesced” loads, where
accesses are (almost)
adjacent, run much faster

Branch coherence =
adjacent threads in a warp
all usually branch the same
way (spatial locality for
branches, across threads)

SIMD:

Spatial locality = adjacent
loop iterations access
adjacent data

A SIMD vector load usually
has to access adjacent
locations

Some recent processors have
“gather” instructions which
can fetch from a different
address per lane

 But performance is often

serialised

Branch predictability = each
individual branch is mostly
taken or not-taken (or is
well-predicted by global
history)

NVIDIA GPU Instruction Set Architecture

* Unlike most system processors, the instruction set target of
the NVIDIA compilers is an abstraction of the hardware
instruction set

« PTX (Parallel Thread Execution) assembler provides a stable
instruction set for compilers as well as compatibility across
generations of GPUs (PTX is an intermediate representation)

* The hardware instruction set is hidden from the programmer
* One PTX instruction can expand to many machine instructions

 Similarity with x86 microarchitecture, both translate to an
internal form (microinstructions for x86). But translation
happens (look at the diagram in the next slide):

* in hardware at runtime during execution on x86
* in software and load time on a GPU

« PTX uses virtual registers, the assignment to physical registers
occurs at load time

25

real sm architecture

virtual compute architecture

Source code -> virtual GPU -> real GPU

* NVCC is the NVIDIA compiler
* cubin is the CUDA binary

* Runtime generation may be costly (increased load time), but

it is normally cached

X.cu (device code)

|

Stage 1
: (PTX Generation) g

X.ptx
T T EEEEp PSRN U
..... CUDA Runtime ..ccceeemmnaannnns,
Stage 2
g (Cubin Generation) P
X.cubin > Execute
L R . . T,

virtual compute architecture

real sm architecture

A

ade
e

x.cu (device code)

|

Stage 1
: (PTX Generation) :

— - ek e e e - e ey S e e S e e e e e e - — — — —

Stage 2
(Cubin Generation)

Source: http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/

20

http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/

__global void daxpy(int N, double a, double* x, double* y) {

int 1 = blockIdx.x *
blockDim.x +
threadIdx.x;

y[i] = a*x[i] + y[i];

}

NVIDIA GPU ISA example

PTX instructions for one iteration of DAXPY

shl.u32 R8, blockIdx, 9
add.u32 R8, R8, threadlIdx
shl.u32 R8, R8, 3
ld.global.f64 RDO, [X+R8];
ld.global.f64 RD2, [Y+R8];
mul.f64 RDO, RDO, RD4
add.f64 RDO, RDO, RD2
st.global.f64 [Y+R8], RDO

we we we

we we we

Thread Block ID Block size (512 or 29)
R8 = i = my CUDA thread ID

byte offset

RDO = X[i]

RDO = Y[i]

Product in RDO = RDO * RD4 (scalar a)
Sum in RDO = RDO + RD2 (Y[i])

Y[i] = sum (X[i]*a + ¥Y[i])

Hennessy and Patterson’s Computer Architecture (5th ed.)

» Unlike vector architectures, GPUs don’t have separate instructions for
sequential data transfers, stripped data transfers, and gather-scatter data
transfers: all data transfers are gather-scatter

» Special Address Coalescing hardware to recognise when the SIMD lanes
within a thread of SIMD instructions are collectively issuing sequential

addresses

* No loop incrementing or branching code 2/

Shared memory bank conflicts

«Shared memory has 32 banks that are organised such that successive

32-bit words map to successive banks
eEach bank has a bandwidth of 32 bits per clock cycl

Threads: Banks:
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8§ —»~ 8
4 9
10—+ 10
1n1—-=F-11
12 12
13—~ 13
14 > 14
15 15
16 16
17 17
18 > 18
19—~ 19
20— 20
21—t 21
22 > 22
23— 23
24— 24
25 25
26 26
27 27
28—~ 28
29— 29
30— 30
31 31

Threads: Banks:
o — = o
1 [1
2\ T2
N/
S\ N\ e
NN, /=
o \ Yol
A\ =
s \\ 2k
Y)=
10 "' "_.ﬂ/]
) 'ts'-i{
i\ My 2
g\ =
14 ,M’) oz
i =
09 oSS
7 0‘0‘0‘“01@ 1
e
19 ‘N‘tﬂg)
20 “ |

Threads: Banks:
0 = o,
/ /g 2,
3 1~ 3,
4 o 4,
5 "@L
6 [T 6],
7 M'!'!L
s \WX K
o WX XLl
10 “‘4 f',pzmy;
11 \\‘\ " ‘@
WVl av

! i
A
15 “0“‘ ‘r’@
16 —Jrg 16,
7 M
18\ ‘vw_ﬂh;
19 " (‘ ‘f‘.ml;
20\ PN \20]
a1 4\§ 2
22 (N N NI 22),
23 ':.‘vvg%
24 (- 24],
e
w// /\(Easl
29 {@
30/~ \E30),
" [3i1)

28

Threads: Banks:
0
1 e 1
2 >
3 3
4
5 5
6
7 7
8
9 9
10 1
11 > 11
12 1
13 13
14 1
15 b 15
16 1
17 17
18 1
19 19
20 2
21 21
22 2
23 > 23
24 24
25 (=25
26— 2
27 27
28 (b 2
29 29
30 3
31 31

Threads: Banks:
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 > 8
9 /wﬂ 9
10 [10
11—~ 11
12 12
13 13
14><{*- 14
15— 15
16 16
17 17
18 18
19 19
20 20

21— 21
22 22
23 23
24 24
25— 25
26 26
27 27
28 28
29 29
30—~ 30
31 31

Threads:

O e N OOV s W N =D

e
- O

- ek
s wN

d

£

Ll

|

a

Wil lW|IN]|| -

|

l

ML

e

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-2-x

Shared memory bank conflicts

eShared memory has 32 banks that are organised such that successive
32-bit words map to successive banks
eEach bank has a bandwidth of 32 bits.per clock'cycle

Banks: Threads Banks: Threads:

ANAARE

ke

O @ N O WU A WN =D
L‘

"

—_
-0

2ol

b ek ek ek e e e e
B N O N b W N o P N WU AE WN-O

N I

12 yg

-] 1],

14 lg’

15 15,

16 ‘;-gi

17 //-ni

> 18 18 !' \ 18],

20 - ,:ﬁiﬂ!
.)7
. 22 [/,lzi
23 / /()

24 24|,

21)/ 25}

26 26 26 |’ 2

W NN NNNNN
S O @ N OV s W

two-way bank conflict
O B VS

W
—

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-2-x

Fermi GTX 480 (March 2010)

1340 GFLOPS/s
700 MHz

32 FUs per processor
177 GB/s

Peak (sp)

BW

Fermi GTX 480

Core clock

DRAM

TI T 11T LI 11T TITI}

a green portion

(execution units), and light blue portions (register file and L1 cache).

NEEEEEEENNEREREN

EEEHEENHEEEEBEHBHE: HEEREHNEREEEEHEER

i] vneva] 1 1 L. _ | | =]
EEEEEEREERRERNEE; NHEENE D RN EEE R

I

EEEENENNEEEEENENR) NN EEEREN

| NI § WL SN SE—

EEENENEENEEEEEEN]

“ _ . 1
EEEEEEEENENEEEREN

i I i P) A1 R | 1 1 1
HEEEHEOODODOEHEHERRE; ERHDANESODNHEEEER

Fermi's 16 SM are positioned around a common L2 cache. Each SM is a vertical

@oBLaIU| JSOH peayrebn

rectangular strip that contain an orange portion (scheduler and dispatch),

WY ¢o0Ba/0g8T-X10-0010]80-BIPIAU-EOg/MATAS IO JOOSUOST MMM/ O] :90IN0S

Advanced Computer Architecture Chapter 7.2

29

http://www.techspot.com/review/263-nvidia-geforce-gtx-480/page2.html

Kepler GTX Titan (February 2013)

PCI Express 3.0 Host Interface

AENRNRNNRRRRNRNE
1] UIU]I

A

19jjo3uon Aaowaw
19jjon3uon Aaoway

A

Kepler GTX Titan:

192 FUs per SMX
Peak (sp): 4.5 TFLOPS
BW: 290 GB/s

Core clock: 830 MHz

4
0
3
0
<
0
)
=]
-
)
0]
0

J9jjon3uon Aiowaw

11|

(1]

“n]'J

J9jj013uo0n Aioway

Source: http://www.anandtech.com/show/5699/nvidia-geforce-gtx-680-review/2

30

http://www.anandtech.com/show/5699/nvidia-geforce-gtx-680-review/2

Maxwell GTX 980 Ti (June 2015)

PCI Express 3.0 Host Interface

GPC GPC

Raster Engine
M » SmMuM s

S

Jonuon Lowaw

Maxwell GTX 980 Ti:
128 FUs per SMM

Peak (sp): 5.6 TFLOPS
BW: 336 GB/s

Core clock: 1 GHz

Jonuon Lowaw

http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3

Source: http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/2

Warp Scheduler Warp Scheduler

Dispatch Urmt Dispatch Una Drapaten Uit Despateh Unit
L > 1 b

Register File (16,384 x 32-bit) Register Flle (16,384 x 32-bit)

Core Core Core ST SFU Core Core Core
Core Core Core SFU Core Core Core
Core Core SFU Core Core Core
Core Core SFU Core

Core Core SFU Core

= = = Maxwell GTX 980 Ti:
- | . 128 FUs per SMM

m—— | Peak (sp): 5.6 TFLOPS
BW: 336 GB/s

Instruction Buffer | [} Instruction Buffer

— Po—— Core clock: 1 GHz

Dispatch Urat Dispatch Unat Despratcn Urst Despratcn Uest
k3 s z r

Register File (16,384 x 32-bit) Register Flle (16,384 x 32-bit)

Core Core Core Core Core Core Core
Core Core Core Core Core Core
Core Core Core Core Core
Core SFU Core Core Core
Core SFuU Core Core Core
Core SFU Core Core Core
Core SFU Core Core Core

Core SFU Core Core Core

Texture / L1 Cache

32

http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/2

t IS a heterogeneous world
v ol r - il —/

‘ 0
. -] ' . 44

T Goroms 6TR O, ¥ 5 \ R

‘ ——— ol " \

TITAN b GTX 870M
Bmw 4998 GFLOPS [2827 GFLOPS
<400 W <100 W

.....

ODROID Arndale
404 GFLOPS 170 GFLOPS 87 GFLOPS
<20W <10 W <5W 33

M-Comp | SlimSSS 555 SMDMA

' '

Unknown
AS53 AS53

o /56KBL2

ANANDIECH

Exynos 7420

Abstracted Floor Plan
©06/2015 Andrei Frumusanu

I

Shader

Core
Scaler

Scaler

5127KB L2
5127KB L2

BNS 3
N AA Shader Shader

Core Core
e |SP + Cameras
(Largely unknown)

O
O
N
)
O
C
O)
C
)
O
9p]
N
0
>
O

O

Shader Shader Shader
Core Core Core

Shader Shader

- UniPro
Core

UES 2.0

O
@)
@p)
)
Al
ﬁ_
Ne
)
O
(-
>
>
LL]
O)
(-
D)
0P
-
qV)
@p)
5
D
0P
Qv
LID
=
s
<

Source: http:

Advanced Computer Architecture Chapter 7.2

http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2

ARM MALI GPU: Midgard microarchitecture

Shader Core Architecture

~

Thread Issue

Arithmetic Arithmetic
Pipeline Pipeline

Load/Score
Pipeline Texturing

Pipeline

YRV IY

L

Thread Completion

Compute
Data and
Results

Triangle
Compute Rasterizer Setup
Thread Unit
Creator
L]
Early Z
Thread Execution - “Tri Pipe”
£ R L -
| e |
Z/Stencil
Buffer
Late Z
'
[Blender Tile Buffers

feature with respect to other GPUs)

Tiler Data
Structures

Textures

Frame
Buffer

Variable number of Arithmetic Pipelines (uncommon

Fixed number of Load/Store and Texturing Pipelines
In-order scheduling

This diagram shows only the Shader Core, there is much
more supporting hardware to make a complete GPU, i.e.

tiling unit, memory management unit, L2 cache, etc.

Source: http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4

http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4

Midgard arithmetic Pipe

ARM Mali Midgard Arithmetic Pipe

V_MUL
« Simply fill the SIMD with
V_ADD as many (identical)
_ - operations as will fit, and
the SIMD will handle it

V_SFU

FP32 FP32 FP32 FP32

LO)|
9
S
9
>
@
o
—
=
O
D
=
e
O
—
P
e
P
©
9
£
©
£
)
S
-
©
-
™
Ql
Q0|
=
0
e
(2
S
o
Q
e
O
D
2
e
C
©
C
@
=
3
=
=
e
©
O
—

« ARM Midgard is a VLIW design with SIMD characteristics (power efficient)

«50, at a high level ARM is feeding multiple ALUs, including SIMD units, with a
single long word of instructions (ILP)

e Support a wide range of data types, integer and FP: 18, 116, 132, 164, FP16,
FP32, FP64

e 17 SP GFLOPS per core at 500 MHz (if you count also the SFUs) 36

http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/5

Optimising for MALI GPUs

How to run optimally OpenCL code on Mali GPUs means mainly to
locate and remove optimisations for alternative compute devices:
eUse of local or private memory: Mali GPUs use caches instead of
local memories. There is therefore no performance advantage using
these memories on a Mali
eBarriers: data transfers to or from local or private memories are
typically synchronised with barriers. If you remove copy operations
to or from these memories, also remove the associated barriers
eUse of scalars: some GPUs work with scalars whereas Mali GPUs can
also use vectors. Do vectorise your code
e Optimisations for divergent threads: threads on a Mali are
independent and can diverge without any performance impact. If
your code contains optimisations for divergent threads in warps,
remove them
e Modifications for memory bank conflicts: some GPUs include per-
warp memory banks. If the code includes optimisations to avoid
conflicts in these memory banks, remove them
*No host-device copies: Mali shares the same memory with the CPU

Source: http://infocenter.arm.com/help/topic/com.arm.doc.duiO%S78f/DUI0538F mali_t600_opencl_dg.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.dui0538f/DUI0538F_mali_t600_opencl_dg.pdf

Portability: code vs performance

OpenCL performance depends on how the code is written

Intel® SDK for OpenCL*
Applications 2013 AMD Accelerated Parallel Processing

Optimization Guide OpenCL" Programming Guide

OpenCL Programming

Guide for Mac NVIDIA OpenCL
Best Practices Guide

Altera SDK for OpenCL

Optimization Guide ARM Mali-T600 Series GPU OpenCL

Version 2.0

Optimizing with OpenCL on Intel® Xeon Developer Guide
Phi tutorials at CGO'13, IWOCL'13

Source: “OpenCL heterogeneous portability — theory and practice”, Ayal Zaks (Intel), PEGPUM 2014
38

Where to start

e CUDA programming guide: https://docs.nvidia.com/cuda/
cuda-c-programming-gquide/

e OpenCL http://www.nvidia.com/content/cudazone/download/
opencl/nvidia_opencl_programmingguide.pdf
http://developer.amd.com/tools-and-sdks/opencl-zone/

39

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.nvidia.com/content/cudazone/download/opencl/nvidia_opencl_programmingguide.pdf
http://www.nvidia.com/content/cudazone/download/opencl/nvidia_opencl_programmingguide.pdf
http://developer.amd.com/tools-and-sdks/opencl-zone/
http://developer.amd.com/tools-and-sdks/opencl-zone/

