
Advanced Computer Architecture Chapter 7.2 

Data-Level Parallelism 
Architectures and Programs

February 2016
Luigi Nardi

332
Advanced Computer Architecture 

Chapter 7

These lecture notes are partly based on:
• on the previous year's lecture slides from Paul H. J. Kelly (CO332/2013-2014) 
• on the last year’s lecture slides from Fabio Luporini (CO332/2014-2015)
• the course text, Hennessy and Patterson’s Computer Architecture (5th ed.)
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Papers mentioning parallel programming languages. 
Data according to Google Scholar (Feb. 2014)
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Flynn's Taxonomy

• SISD: single-instruction, single-data  
(single core CPU) 

• MIMD: multiple-instruction, multiple-data 
(multi core CPU) 

• SIMD: single-instruction, multiple-data 
(data-based parallelism) 

• MISD: multiple-instruction, single-data 
(fault-tolerant computers)
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Images source: http://www.cems.uwe.ac.uk/teaching/notes/PARALLEL/ARCHITEC

http://www.cems.uwe.ac.uk/teaching/notes/PARALLEL/ARCHITEC


Advanced Computer Architecture Chapter 7.2 
4

A glimpse of the performance (GFLOPS/s)

Source: http://docs.nvidia.com/cuda/cuda-c-programming-guide/

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n
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A glimpse of the performance (BW/s)

Source: http://docs.nvidia.com/cuda/cuda-c-programming-guide/

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n
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Graphics Processors (GPUs)
• Much of our attention so far has been devoted to making a single 

core run a single thread faster 
• If your workload consists of thousands of threads, everything 

looks different: 
– Never speculate: there is always another thread waiting with work 

you know you have to do 
– No speculative branch execution, perhaps even no branch 

prediction 
– Can use SMT to hide cache access latency, and maybe even main 

memory latency 

– Control is at a premium: 
• How to launch >10,000 threads? 
• What if they branch in different directions? 
• What if they access random memory blocks/banks? 

• This is the “manycore” world 
• Driven by the gaming market – but with many other applications

6
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A first comparison with CPUs
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• “Simpler” cores

• Many functional units (FUs) (implementing the SIMD model)

• No (or limited) caching; just thousands of threads and 
super-fast context switch

• Drop sophisticated branch prediction mechanisms

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3FRflIj1n
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NVIDIA G80 (2006) 
16 cores, each with 8 “SP” units 

16x8=128 threads execute in parallel 

Each core issues instructions in 
“warps” of 32 

Each core up to 24-way SMT

Sketchy 
information 
on graphics 

primitive 
processing

No L2 cache coherency problem, data can be in only one cache. Caches are small 

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm 
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

ROP performs colour and depth frame 
buffer operations directly on memory
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Raster operation processor (ROP)
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NVIDIA G80 (2006) 
16 cores, each with 8 SP units

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm 
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

Texture/Processor Cluster (TPC)

9

•SMC: Streaming 
Multiprocessor  controller 

•MT issue: multithreaded 
instruction fetch and issue 
unit 

•C cache: constant read-only 
cache 

• I cache: instruction cache 
•Geometry controller: 

directs all primitive and 
vertex attribute and 
topology flow in the TPC 

•SFU: Special-Function Unit, 
compute trascendental 
functions (sin, cos, log x, 
1/x) 

• Shared memory: scratchpad 
memory, i.e. user managed 
cache 

•Texture cache does 
interpolation

•SM: Streaming Multiprocessor 
• SP: Streaming Processor
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NVIDIA’s Tesla micro-architecture
• Designed to do rendering 
• Evolved to do general-purpose computing (GPGPU) 

– But to manage thousands of threads, a new programming model is 
needed, called CUDA (Compute Unified Device Architecture) 

– CUDA is proprietary, but the same model lies behind OpenCL, an 
open standard with implementations for multiple vendors’ GPUs 

• GPU evolved from hardware designed specifically around the 
OpenGL/DirectX rendering pipeline, with separate vertex- and 
pixel-shader stages 

• “Unified” architecture arose from increased sophistication of 
shader programs 

• Tesla still has some features specific to graphics: 
– Work distribution, load distribution 
– Texture cache, pixel interpolation 
– Z-buffering and alpha-blending (the ROP units, see diagram) 

• Tesla is also the NVIDIA brand name for server GPUs:  
– NVIDIA micro-architectures: Tesla, Fermi, Kepler and Maxwell 
– NVIDIA brands: Tegra, Quadro, GeForce, Tesla 10
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CUDA Execution Model
• CUDA is a C extension 

– Serial CPU code 
– Parallel GPU code (kernels) 

• GPU kernel is a C function 
– Each thread executes kernel 

code 
– A group of threads forms a 

thread block (1D, 2D or 3D) 
– Thread blocks are organised into 

a grid (1D, 2D or 3D) 

– Threads within the same thread 
block can synchronise execution, 
and share access to local 
scratchpad memory 

Key idea: hierarchy of parallelism, to 
handle thousands of threads

Source: CUDA programming guide
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NVIDIA G80 

NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm 
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)

Nested granularity levels

12

Cooperative Thread Array 
(CTA) =  
thread block

Different levels have 
corresponding memory-
sharing levels:  
• (a) thread 
• (b) thread block 
• (c) grid

CUDA thread

Note:  
CUDA thread is just a vertical 
cut of a thread of SIMD 
instructions, corresponding to 
one element executed by on 
SIMD lane.  
CUDA threads are very 
different from POSIX threads; 
you can’t make arbitrary 
system calls from a CUDA 
thread
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CUDA Memory Model
– Local memory – private to each 

thread (slow if off-chip, fast if 
register allocated) 

– Shared memory – shared between 
threads in a thread block (fast on-
chip) 

– Global memory – shared between 
thread blocks in a grid (off-chip 
DRAM but in the GPU card) 

– Constant memory (small, read-only) 
– Texture memory (read-only; cached, 

stored in Global memory) 
– Memory instructions load-global, 

store-global, load-shared, store-
shared, load-local, and store-local

! Diagram is misleading: logical association but not hardware locality
! “Local memory” is non-cached (in Tesla), stored in global DRAM
! Critical thing is that “shared” memory is shared among all threads in 

a block, since they all run on the same SM 13

Source: CUDA programming guide
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// Invoke DAXPY
daxpy(n, 2.0, x, y);
// DAXPY in C
void daxpy(int n, 
           double a, 
           double* x, 

  double* y) {
    for(int i=0; i < n; ++i)
       y[i] = a*x[i] + y[i];
} fully parallel loop

int main(){
// Kernel setup

  int N = 1024;
  int blockDim = 256; // These are the threads per block
  int gridDim = N / blockDim;// These are the number of blocks
  daxpy<<<gridDim, blockDim>>>(N, 2.0, x, y);// Kernel invocation
}

CUDA example: DAXPY

! Kernel invocation (“<<<…>>>”) corresponds to enclosing loop nest, managed by 
hardware 

! Explicitly split into 2-level hierarchy:  
blocks (which share “shared” memory), and grid

! Kernel commonly consists of just one iteration but could be a loop
! Multiple tuning parameters trade off register pressure, shared-memory capacity 

and parallelism
14

__global__ void daxpy(int N, 
                      double a, 
                      double* x, 
                      double* y) {
    int i = blockIdx.x * 
            blockDim.x + 
            threadIdx.x;
    if (i < N)
        y[i] = a*x[i] + y[i];
}
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Running DAXPY (N=1024) on a GPU

……..

DRAM

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

Host (via I/O bus, DMA)Observation: SIMD + MIMD
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Running DAXPY (N=1024) on a GPU

……..

DRAM

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

Host (via I/O bus, DMA)

BLOCK 1
(DAXPY 0-255)

BLOCK 2
(DAXPY 256-511)

BLOCK 3
(DAXPY 512-767)

BLOCK 4
(DAXPY 768-1023)

Observation: SIMD + MIMD
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Running DAXPY (N=1024) on a GPU

……..

DRAM

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

Multithreaded SIMD Processor (SM)

Host (via I/O bus, DMA)

BLOCK 1
(DAXPY 0-255)

BLOCK 2
(DAXPY 256-511)

BLOCK 3
(DAXPY 512-767)

BLOCK 4
(DAXPY 768-1023)

BLOCK x
(…)

BLOCK x+1 
(…)

BLOCK x+2 
(…)

Observation: SIMD + MIMD
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……..
Multithreaded SIMD Processor

Multithreaded SIMD Processor

Multithreaded SIMD Processor

WARPSWARPSWARPS FUFUFUFUFU
FUFUFUFUFUIF ID

A warp comprises of 32 CUDA threads

Running DAXPY on a GPU

DRAM

Host (via I/O bus, DMA)
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Mapping from CUDA to TESLA
• Array of streaming multiprocessors (SMs)  

– (we might call them “cores”, when comparing to conventional multicore; each 
SM is an instruction-fetch-execution engine) 

• CUDA thread blocks get mapped to SMs 
• SMs have thread processors, private registers, 

shared memory, etc. 
• Each SM executes a pool of warps, with a separate 

instruction pointer for each warp.  Instructions are 
issued from each ready-to-run warp in turn (SMT, 
hyperthreading) 

• A warp is like a traditional thread (32 CUDA 
threads executed as 32 SIMD operations)

17

! Corollary: enough warps are needed to avoid stalls (i.e., enough threads per 
block). Also called GPU occupancy in CUDA

! But: high occupancy is not always a good solution to achieve good 
performance, i.e., memory bound applications may need a less busy bus to 
perform well. Reduce the number of in-flight loads/stores by reducing the 
number of blocks on a SM and improve cache trashing. How?

• If you are a ninja: use dynamic shared memory to reduce occupancy
• Or increase the number of registers in your kernel
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Single-instruction, multiple-thread (SIMT)
• A new parallel programming model: SIMT 
• The SM’s SIMT multithreaded instruction 

unit creates, manages, schedules, and 
executes threads in groups of warps  

• The term warp originates from weaving 
• Each SM manages a pool of 24 warps, 24 

ways SMT 
• Individual threads composing a SIMT warp 

start together at the same program 
address, but they are otherwise free to 
branch and execute independently 

• At instruction issue time, select ready-to-
run warp and issue the next instruction to 
that warp’s active threads

18NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm 
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)
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More on SIMT
• SIMT architecture is similar to SIMD 

design, which applies one instruction to 
multiple data lanes 

• The difference: SIMT applies one 
instruction to multiple independent 
threads in parallel, not just multiple data 
lanes. A SIMT instruction controls the 
execution and branching behaviour of one 
thread 

• For program correctness, programmers 
can ignore SIMT executions; but, they can 
achieve performance improvements if 
threads in a warp don’t diverge 

• Correctness/performance analogous to 
the role of cache lines in traditional 
architectures  

• The SIMT design shares the SM instruction 
fetch and issue unit efficiently across 32 
threads but requires a full warp of active 
threads for full performance efficiency

19NVIDIA TESLA: A UNIFIED GRAPHICS AND COMPUTING ARCHITECTURE; Erik Lindholm 
John Nickolls, Stuart Oberman, John Montrym (IEEE Micro, March-April 2008)
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Branch divergence
• In a warp threads all take the same path (good!) or diverge!
• A warp serially executes each path, disabling some of the 

threads
• When all paths complete, the threads reconverge

• Divergence only occurs within a warp - different warps execute 
independently

• This model of execution is called lockstep instructions are 
serialised on branch divergence

• Control-flow coherence: every thread goes the same way (a form 
of locality) Predicate bits: enable/disable each lane

: 
: 
if (x == 10) 
   c = c + 1; 
:

     : 
     LDR r5, X 
     p1 <- r5 eq 10 
<p1> LDR  r1 <- C 
<p1> ADD r1, r1, 1 
<p1> STR  r1 -> C 
     :
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Figure 4.14 Hennessy and Patterson’s Computer Architecture (5th ed.)

GPU SM or multithreaded SIMD processor
•Many parallel 

functional units instead 
of a few deeply 
pipelined 

•Thread block scheduler 
assigns a thread block 
to the SM 

•Scoreboard tells which 
warp (or thread of SIMD 
instruction) is ready to 
run 

•GPU has two level of 
hardware schedulers:  
•Threads blocks 
•Warps 

•Number of SIMD lanes 
varies across 
generations
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SIMT vs SIMD – GPUs without the hype
• GPUs combine many 

architectural 
techniques: 
– Multicore 
– Simultaneous 

multithreading (SMT) 
– Vector instructions 
– Predication

• So basically a GPU core 
is a lot like the 
processor architectures 
we have studied! 

• But the SIMT 
programming model  
makes it look different

22

! Overloading the same architectural concept doesn’t help GPU 
beginners

! GPU learning curve is steep in part because of using terms such as 
“Streaming Multiprocessor” for the SIMD Processor, “Thread 
Processor” for the SIMD Lane, and “Shared Memory” for Local 
Memory - especially since Local Memory is not shared between SIMD 
Processor
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SIMT vs SIMD – GPUs without the hype

SIMT:  
• One thread per lane 
• Adjacent threads 

(“warp”/”wavefront”) 
execute in lockstep 

• SMT: multiple “warps” 
run on the same core, 
to hide memory latency 

SIMD: 
• Each thread may 

include SIMD vector 
instructions 

• SMT: a small number of 
threads run on the 
same core to hide 
memory latency 

Which one is easier for the programmer?
23
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SIMT vs SIMD – spatial locality
SIMT:  

• Spatial locality = adjacent 
threads access adjacent 
data 

• A load instruction can result 
in a completely different 
address being accessed by 
each lane 

• “Coalesced” loads, where 
accesses are (almost) 
adjacent, run much faster 

• Branch coherence = 
adjacent threads in a warp 
all usually branch the same 
way (spatial locality for 
branches, across threads)

SIMD: 
• Spatial locality = adjacent 

loop iterations access 
adjacent data 

• A SIMD vector load usually 
has to access adjacent 
locations 

• Some recent processors have 
“gather” instructions which 
can fetch from a different 
address per lane 

• But performance is often 
serialised 

• Branch predictability = each 
individual branch is mostly 
taken or not-taken (or is 
well-predicted by global 
history)

24
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NVIDIA GPU Instruction Set Architecture

• Unlike most system processors, the instruction set target of 
the NVIDIA compilers is an abstraction of the hardware 
instruction set 

• PTX (Parallel Thread Execution) assembler provides a stable 
instruction set for compilers as well as compatibility across 
generations of GPUs (PTX is an intermediate representation) 

• The hardware instruction set is hidden from the programmer 
• One PTX instruction can expand to many machine instructions 
• Similarity with x86 microarchitecture, both translate to an 

internal form (microinstructions for x86). But translation 
happens (look at the diagram in the next slide):  
• in hardware at runtime during execution on x86 
• in software and load time on a GPU 

• PTX uses virtual registers, the assignment to physical registers 
occurs at load time
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Source code -> virtual GPU -> real GPU
• NVCC is the NVIDIA compiler 
• cubin is the CUDA binary 
• Runtime generation may be costly (increased load time), but 

it is normally cached

Source: http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/

http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
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• Unlike vector architectures, GPUs don’t have separate instructions for 
sequential data transfers, stripped data transfers, and gather-scatter data 
transfers: all data transfers are gather-scatter 

• Special Address Coalescing hardware to recognise when the SIMD lanes 
within a thread of SIMD instructions are collectively issuing sequential 
addresses 

• No loop incrementing or branching code

shl.u32 R8, blockIdx, 9  ; Thread Block ID Block size (512 or 29)
add.u32 R8, R8, threadIdx; R8 = i = my CUDA thread ID
shl.u32 R8, R8, 3        ; byte offset
ld.global.f64 RD0, [X+R8]; RD0 = X[i]
ld.global.f64 RD2, [Y+R8]; RD0 = Y[i]
mul.f64 RD0, RD0, RD4    ; Product in RD0 = RD0 * RD4 (scalar a)
add.f64 RD0, RD0, RD2    ; Sum in RD0 = RD0 + RD2 (Y[i])
st.global.f64 [Y+R8], RD0; Y[i] = sum (X[i]*a + Y[i])

27

NVIDIA GPU ISA example

PTX instructions for one iteration of DAXPY

Hennessy and Patterson’s Computer Architecture (5th ed.)

__global__ void daxpy(int N, double a, double* x, double* y) {
    int i = blockIdx.x * 
            blockDim.x + 
            threadIdx.x;
    y[i] = a*x[i] + y[i];
}
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Shared memory bank conflicts
•Shared memory has 32 banks that are organised such that successive 
32-bit words map to successive banks  

•Each bank has a bandwidth of 32 bits per clock cycle
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-2-x
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Shared memory bank conflicts
•Shared memory has 32 banks that are organised such that successive 
32-bit words map to successive banks  

•Each bank has a bandwidth of 32 bits per clock cycle

two-way bank conflict
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Fermi GTX 480 (March 2010)

Fermi GTX 480:
32 FUs per processor
Peak (sp): 1340 GFLOPS/s
BW: 177 GB/s
Core clock: 700 MHz

So
ur

ce
: h

ttp
://

w
w

w.
te

ch
sp

ot
.c

om
/re

vi
ew

/2
63

-n
vi

di
a-

ge
fo

rc
e-

gt
x-

48
0/

pa
ge

2.
ht

m
l

http://www.techspot.com/review/263-nvidia-geforce-gtx-480/page2.html


Advanced Computer Architecture Chapter 7.2 
30

Kepler GTX Titan (February 2013)

Kepler GTX Titan:
192 FUs per SMX
Peak (sp): 4.5 TFLOPS
BW: 290 GB/s
Core clock: 830 MHz
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Maxwell GTX 980 Ti:
128 FUs per SMM
Peak (sp):  5.6 TFLOPS
BW: 336 GB/s
Core clock: 1 GHz

Source: http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3

Maxwell GTX 980 Ti (June 2015)

http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3
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Maxwell GTX 980 Ti:
128 FUs per SMM
Peak (sp):  5.6 TFLOPS
BW: 336 GB/s
Core clock: 1 GHz

http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/2
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It is a heterogeneous world 

33

TITAN 
4998 GFLOPS 

< 400 W

GTX 870M 
2827 GFLOPS 

< 100 W

TK1
404 GFLOPS 

< 20 W

ODROID 
170 GFLOPS 

< 10 W

Arndale  
87 GFLOPS 

< 5 W
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Source: http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2

http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2
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ARM MALI GPU: Midgard microarchitecture

So
ur

ce
: h

ttp
://

w
w

w.
an

an
dt

ec
h.

co
m

/s
ho

w
/8

23
4/

ar
m

s-
m

al
i-m

id
ga

rd
-a

rc
hi

te
ct

ur
e-

ex
pl

or
ed

/4

• Variable number of Arithmetic Pipelines (uncommon 
feature with respect to other GPUs) 

• Fixed number of Load/Store and Texturing Pipelines 
• In-order scheduling 
• This diagram shows only the Shader Core, there is much 

more supporting hardware to make a complete GPU, i.e. 
tiling unit, memory management unit, L2 cache, etc.

http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/4
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Midgard arithmetic Pipe

36

•ARM Midgard is a VLIW design with SIMD characteristics (power efficient) 
•So, at a high level ARM is feeding multiple ALUs, including SIMD units, with a 
single long word of instructions (ILP)  

•Support a wide range of data types, integer and FP: I8, I16, I32, I64, FP16, 
FP32, FP64 

•17 SP GFLOPS per core at 500 MHz (if you count also the SFUs)
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•Very flexible SIMD 
•Simply fill the SIMD with 
as many (identical) 
operations as will fit, and 
the SIMD will handle it

http://www.anandtech.com/show/8234/arms-mali-midgard-architecture-explored/5
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Optimising for MALI GPUs
How to run optimally OpenCL code on Mali GPUs means mainly to 
locate and remove optimisations for alternative compute devices: 
•Use of local or private memory: Mali GPUs use caches instead of 
local memories. There is therefore no performance advantage using 
these memories on a Mali  

•Barriers: data transfers to or from local or private memories are 
typically synchronised with barriers. If you remove copy operations 
to or from these memories, also remove the associated barriers 

•Use of scalars: some GPUs work with scalars whereas Mali GPUs can 
also use vectors. Do vectorise your code 

•Optimisations for divergent threads: threads on a Mali are 
independent and can diverge without any performance impact. If 
your code contains optimisations for divergent threads in warps, 
remove them 

•Modifications for memory bank conflicts: some GPUs include per-
warp memory banks. If the code includes optimisations to avoid 
conflicts in these memory banks, remove them 

•No host-device copies: Mali shares the same memory with the CPU
Source: http://infocenter.arm.com/help/topic/com.arm.doc.dui0538f/DUI0538F_mali_t600_opencl_dg.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.dui0538f/DUI0538F_mali_t600_opencl_dg.pdf
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Portability: code vs performance

Source: “OpenCL heterogeneous portability – theory and practice”, Ayal Zaks (Intel), PEGPUM 2014 

OpenCL performance depends on how the code is written
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• CUDA programming guide: https://docs.nvidia.com/cuda/
cuda-c-programming-guide/ 

• OpenCL http://www.nvidia.com/content/cudazone/download/
opencl/nvidia_opencl_programmingguide.pdf  
http://developer.amd.com/tools-and-sdks/opencl-zone/
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Where to start

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.nvidia.com/content/cudazone/download/opencl/nvidia_opencl_programmingguide.pdf
http://www.nvidia.com/content/cudazone/download/opencl/nvidia_opencl_programmingguide.pdf
http://developer.amd.com/tools-and-sdks/opencl-zone/
http://developer.amd.com/tools-and-sdks/opencl-zone/

