
Advanced Computer Architecture Chapter 7.1

Data-Level Parallelism
Architectures and Programs

February 2016
Luigi Nardi

332
Advanced Computer Architecture

Chapter 7

These lecture notes are partly based on:
• on the last year’s lecture slides from Fabio Luporini (CO332/2014-2015)
• the course text, Hennessy and Patterson’s Computer Architecture (5th ed.)
• the lecture slides from James Reinders (Intel) at ATPESC 2014

Advanced Computer Architecture Chapter 7.1

Arithmetic Intensity
Processor Type Peak GFLOP/s Peak GB/s Ops/Byte Ops/Word

E5-2690 v3 SP CPU 416 68 ~6 ~24
E5-2690 v3 DP CPU 208 68 ~3 ~24

K40 SP GPU 4,290 288 ~15 ~60
K40 DP GPU 1,430 288 ~5 ~40

Without enough Ops/Word codes are likely to be bound by operand delivery

Arithmetic intensity: Ops/Byte of DRAM traffic

Hennessy and Patterson’s Computer Architecture (5th ed.)

N is the problem size
O(N) = Big-O notation

2

Advanced Computer Architecture Chapter 7.1

Roofline Model: Visual Performance Model

3

• Bound and bottleneck analysis (like Amdahl’s law)
• Relates processor performance to off-chip memory

traffic (bandwidth often the bottleneck)

10�1 100 101 102

Arithmetic Intensity [FLOPs/Byte]

10
8

10
9

10
10

10
11

Pe
rfo

rm
an

ce
[F

LO
P

s/
se

c]

Peak FP 217.6 GFLOPs/sec

Memory Bandwidth 17.5 GB/sec
Sandy Bridge

Advanced Computer Architecture Chapter 7.1

Roofline Model: Visual Performance Model

3

• Bound and bottleneck analysis (like Amdahl’s law)
• Relates processor performance to off-chip memory

traffic (bandwidth often the bottleneck)

10�1 100 101 102

Arithmetic Intensity [FLOPs/Byte]

10
8

10
9

10
10

10
11

Pe
rfo

rm
an

ce
[F

LO
P

s/
se

c]

Peak FP 217.6 GFLOPs/sec

Memory Bandwidth 17.5 GB/sec
Sandy Bridge

Valid
region

Ridge
point

Advanced Computer Architecture Chapter 7.1

Roofline Model: Visual Performance Model

3

• Bound and bottleneck analysis (like Amdahl’s law)
• Relates processor performance to off-chip memory

traffic (bandwidth often the bottleneck)

10�1 100 101 102

Arithmetic Intensity [FLOPs/Byte]

10
8

10
9

10
10

10
11

Pe
rfo

rm
an

ce
[F

LO
P

s/
se

c]

Peak FP 217.6 GFLOPs/sec

Memory Bandwidth 17.5 GB/sec
Sandy Bridge

10�1 100 101 102

Arithmetic Intensity [FLOPs/Byte]

10
8

10
9

10
10

10
11

Pe
rfo

rm
an

ce
[F

LO
P

s/
se

c]

Peak FP 217.6 GFLOPs/sec

Memory Bandwidth 17.5 GB/sec

Monocore 3.4 GFLOPs/sec

TLP only 13.6 GFLOPs/sec

SIMD 108.8 GFLOPs/sec
FP balance

Sandy Bridge

Valid
region

Ridge
point

Advanced Computer Architecture Chapter 7.1

Roofline Model: Visual Performance Model

3

• Bound and bottleneck analysis (like Amdahl’s law)
• Relates processor performance to off-chip memory

traffic (bandwidth often the bottleneck)

10�1 100 101 102

Arithmetic Intensity [FLOPs/Byte]

10
8

10
9

10
10

10
11

Pe
rfo

rm
an

ce
[F

LO
P

s/
se

c]

Peak FP 217.6 GFLOPs/sec

Memory Bandwidth 17.5 GB/sec
Sandy Bridge

10�1 100 101 102

Arithmetic Intensity [FLOPs/Byte]

10
8

10
9

10
10

10
11

Pe
rfo

rm
an

ce
[F

LO
P

s/
se

c]

Peak FP 217.6 GFLOPs/sec

Memory Bandwidth 17.5 GB/sec

Monocore 3.4 GFLOPs/sec

TLP only 13.6 GFLOPs/sec

SIMD 108.8 GFLOPs/sec
FP balance

Sandy Bridge

Memory bound -
poor data locality

CPU freq. bound

Valid
region

Ridge
point

Advanced Computer Architecture Chapter 7.1

Roofline Model: Visual Performance Model

4 Hennessy and Patterson’s Computer Architecture (5th ed.)

Note that the ridge point offers insight into
the computer’s overall performance

Advanced Computer Architecture Chapter 7.1

Vector addition

5

[3.2 | 1.1 | 2.2 | 4.5 | 9.0 | 6.7 | 3.4 | 4.2] +
[1.2 | 3.1 | 2.5 | 3.6 | 0.5 | 3.2 | 2.2 | 3.5] =
[4.4 | 4.2 | 4.7 | 8.1 | 9.5 | 9.9 | 5.6 | 7.7]

[3.2 | 1.1 | 2.2 | 4.5 | 9.0 | 6.7 | 3.4 | 4.2] x
[1.2 | 3.1 | 2.5 | 3.6 | 0.5 | 3.2 | 2.2 | 3.5] =
[3.84 | 3.41 | 5.5 | 16.2 | 4.5 | 21.44 | 7.48 | 14.7]

Vector multiplication

Data-Level Parallelism
“A Single Instruction Multiple Data (SIMD) program
is a sequential ordering of data parallel instructions”

citation source: M. Vanneschi (Prof. at University of Pisa)
“… also called vector instructions”

Advanced Computer Architecture Chapter 7.1
6

c0 = a0 + b0
c1 = a1 + b1
c2 = a2 + b2
c3 = a3 + b3

ADD Rc0, Ra0, Rb0
ADD Rc1, Ra1, Rb1
ADD Rc2, Ra2, Rb2
ADD Rc3, Ra3, Rb3

“Scalar”

VADD Rc, Ra, Rb

“SIMD/Vectorised”

Data-Level Parallelism

Advanced Computer Architecture Chapter 7.1

Single Instruction Multiple Data (SIMD)

7

• Vector processors
Predates the other two by more
than 30 years.

 

• ISA extensions for multimedia 
e.g: Intel Pentium III, …, Haswell, 
AMD Jaguar, ARM Neon

• Graphics Processing Units (GPUs),  
aka vectorisation SIMT  
(Single Instructions Multiple Threads) 

https://en.wikipedia.org/wiki/Vector_processor

http://www.filipekberg.se/2013/09/25/perfect-developer-laptop/

http://www.nvidia.com/object/tesla-workstations.html

https://en.wikipedia.org/wiki/Vector_processor
http://www.filipekberg.se/2013/09/25/perfect-developer-laptop/
http://www.nvidia.com/object/tesla-workstations.html

Advanced Computer Architecture Chapter 7.1

Example

8

void add (float *c, float *a, float *b)
{
 for (int i=0; i <= N; i++)
 c[i]=a[i]+b[i];
}

Sequential
Loop:  
1. LOAD a[i] -> Ra
2. LOAD b[i] -> Rb
3. ADD Ra, Rb -> Rc
4. STORE Rc -> c[i]
5. ADD i+1->i
6. BNE i, N, Loop

Vector
Loop:
1. LOADv4 a[i:i+3] -> Rva
2. LOADv4 b[i:i+3] -> Rvb
3. ADDv4 Rva, Rvb -> Rvc
4. STOREv4 Rvc -> c[i:i+3]
5. ADD i+4->i
6. BNE i, N, Loop

Problem:
is not legal to automatically vectorise this loop in C/C++ (without more information)

So, using a compiler switch for auto-vectorisation won’t help

Advanced Computer Architecture Chapter 7.1

Choice 2: give compiler hints

9

void add (float *restrict c,  
 float *restrict a,
 float *restrict b)
{
 for (int i=0; i <= N; i++)
 c[i]=a[i]+b[i];
}

C99 "restrict" keyword

During each execution of a function body in which a restricted pointer P is
declared, if some object that is accessible through P is modified, then all
accesses to that object in that block must occur through P, otherwise the
behaviour is undefined
The compiler is free to ignore all aliasing implications of uses of restrict

Source: http://en.cppreference.com/w/c/language/restrict

a b

a b

http://en.cppreference.com/w/c/language/restrict

Advanced Computer Architecture Chapter 7.1

Choice 3: ignore vector dependencies

10

void add (float *c, float *a, float *b)
{
 #pragma ivdep
 for (int i=0; i <= N; i++)
 c[i]=a[i]+b[i];
}

ivdep pragma

IVDEP (Ignore Vector DEPendencies) compiler hint.
Tells compiler “Assume there are no loop-carried dependencies”

Advanced Computer Architecture Chapter 7.1

Choice 4: code explicitly for vectors

11

void add (float *c, float *a, float *b)
{
 #pragma omp simd
 for (int i=0; i <= N; i++)
 c[i]=a[i]+b[i];
}

OpenMP 4.0 pragmas

#pragma omp declare simd
void add (float *c, float *a, float *b)
{
 *c=*a+*b;
}

Option 1:

Option 2:

Indicates that the loop can be transformed into a SIMD loop  
(i.e. the loop can be executed concurrently using SIMD instructions)

Source: http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

"declare simd" can be applied to a function to enable  
SIMD instructions at the function level from a SIMD loop

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

Advanced Computer Architecture Chapter 7.1

Choice 5: SIMD intrinsics

12

void add (float *c, float *a, float *b)
{

__m128* pSrc1 = (__m128*) a;
__m128* pSrc2 = (__m128*) b;
__m128* pDest = (__m128*) c;

 for (int i=0; i <= N/4; i++)
 *pDest++ = _mm_add_ps(*pSrc1++, *pSrc2++);
}

Lengths are hardcoded

Advanced Computer Architecture Chapter 7.1

Choice 6: Vector Data Types with Overloading

13

OpenCL/CUDA vector data types: lengths are hardcoded
__kernel void add (__global float *c,  
 __global float *a,
 __global float *b)
{
 /* We have reduced the global work size (n) by a factor of 4
 compared to the non vectorised OpenCL version.
 Therefore, i will now be in the range [0, (n / 4) - 1].
 */

int id = get_global_id(0);
/* Load 4 integers into 'a4' and 'b4'.
 The offset calculation is implicit from the size of the vector load.
 For vloadN(i, p), the address of the first data loaded would be
 p + i * N.
 Load from the address: a + i * 4 and b + i * 4.
*/
float4 a4 = vload4(i, a);
float4 b4 = vload4(i, b);
/* Do the vector addition. Store the result at the address: c + i * 4.
*/
vstore4(a4 + b4, i, c);

}

Source: http://malideveloper.arm.com/downloads/deved/tutorial/SDK/opencl/hello_world_vector_tutorial.html

http://malideveloper.arm.com/downloads/deved/tutorial/SDK/opencl/hello_world_vector_tutorial.html

Advanced Computer Architecture Chapter 7.1

Summary Vectorisation Solutions

14

1. Indirectly through high-level libraries/code generators
2. Auto-vectorisation (use “-O3 -mavx” and hope it vectorises):

• sequential languages and practices gets in the way
• use -ftree-vectorizer-verbose to report on the vectorisation

3. Give your compiler hints and hope it vectorises:
• C99 "restrict" (implied in FORTRAN since 1956)
• #pragma ivdep

4. Code explicitly:
• In assembly language
• SIMD instruction intrinsics
• OpenMP 4.0 #pragma omp simd
• Kernel functions:

 OpenMP 4.0: #pragma omp declare simd
 OpenCL or CUDA: more later  

Advanced Computer Architecture Chapter 7.1

Vector Architecture

15Source: Hennessy and Patterson’s Computer Architecture (5th ed.)

- An array of parallel FUs
- Vector FUs can be pipelined
- Scalar registers and FUs needed
- Specialised vector memory system

Advanced Computer Architecture Chapter 7.1

Execution model and Vector chaining

16

Vector chaining is pipeline forwarding applied to SIMD architectures

VADD cv, av, bv # c = a + b
VMUL dv, ev, cv # d = e + c

IF

ID

Pipelined FU+

Pipelined FUx

clock cycles0 1 2 3 4

c0 c1 c2 c3

Advanced Computer Architecture Chapter 7.1

Execution model and Vector chaining

16

Vector chaining is pipeline forwarding applied to SIMD architectures

VADD cv, av, bv # c = a + b
VMUL dv, ev, cv # d = e + c

IF

ID

Pipelined FU+

Pipelined FUx

VADD VMUL …

clock cycles0 1 2 3 4

c0 c1 c2 c3

Advanced Computer Architecture Chapter 7.1

Execution model and Vector chaining

16

Vector chaining is pipeline forwarding applied to SIMD architectures

VADD cv, av, bv # c = a + b
VMUL dv, ev, cv # d = e + c

IF

ID

Pipelined FU+

Pipelined FUx

VADD VMUL …

VADD VMUL …

clock cycles0 1 2 3 4

c0 c1 c2 c3

Advanced Computer Architecture Chapter 7.1

Execution model and Vector chaining

16

Vector chaining is pipeline forwarding applied to SIMD architectures

VADD cv, av, bv # c = a + b
VMUL dv, ev, cv # d = e + c

IF

ID

Pipelined FU+

Pipelined FUx

VADD VMUL …

VADD VMUL …

VADD1 VADD2 …

clock cycles0 1 2 3 4

c0 c1 c2 c3

Advanced Computer Architecture Chapter 7.1

Execution model and Vector chaining

16

Vector chaining is pipeline forwarding applied to SIMD architectures

VADD cv, av, bv # c = a + b
VMUL dv, ev, cv # d = e + c

IF

ID

Pipelined FU+

Pipelined FUx

VADD VMUL …

VADD VMUL …

VADD1 VADD2 …

VMUL1 VMUL2 …

clock cycles0 1 2 3 4

In clock cycle 3, different
elements of the same register

(cv) are read and write

c0 c1 c2 c3

Advanced Computer Architecture Chapter 7.1

History:
Intel x86 ISA extended with SIMD

17

ATPESC 2014, James Reinders: http://extremecomputingtraining.anl.gov/files/2014/08/20140804-1030-1115-ATPESC-Argonne-Reinders.2.pdf

http://extremecomputingtraining.anl.gov/files/2014/08/20140804-1030-1115-ATPESC-Argonne-Reinders.2.pdf

Advanced Computer Architecture Chapter 7.1

ATPESC 2014, James Reinders: http://extremecomputingtraining.anl.gov/files/2014/08/20140804-1030-1115-ATPESC-Argonne-Reinders.2.pdf

18

History:
Intel x86 ISA extended with SIMD• Wider registers  

(from 32 to 512 bits)  

• More registers  

• Richer instruction set 
(predication, FMAs, gather,
scatter, …) 

• Easier exploitation 
(better compiler support,
high-level functions,
libraries…)

http://extremecomputingtraining.anl.gov/files/2014/08/20140804-1030-1115-ATPESC-Argonne-Reinders.2.pdf

Advanced Computer Architecture Chapter 7.1

Growth in vector instructions on Intel

19

Backwards compatibility accumulation

N
um

be
r o

f i
ns

tru
ct

io
ns

 in
 th

e
IS

A

ATPESC 2014, James Reinders:
http://extremecomputingtraining.anl.gov/files/2014/08/20140804-1030-1115-ATPESC-Argonne-Reinders.2.pdf

Elena Demikhovsky (Intel): http://llvm.org/devmtg/2013-11/slides/Demikhovsky-Poster.pdf

http://extremecomputingtraining.anl.gov/files/2014/08/20140804-1030-1115-ATPESC-Argonne-Reinders.2.pdf
http://llvm.org/devmtg/2013-11/slides/Demikhovsky-Poster.pdf

Advanced Computer Architecture Chapter 7.1

Issues inherent in the computational model

20

Example 1

double A[N], B[N], C[N]
for i = 0 to N, i++

C[i] = sqrt(A[i] + B[i])

Notation:
• :v indicates that the assembly

operation is over v elements
• subscript v indicates that the

register is actually a vector
register, hosting v elements

SIMD version

loop: VLOAD av, A[i:v]
 VLOAD bv, B[i:v]
 VADD cv, bv, av
 VSQRT cv, cv
 VSTORE C[i:v], cv
 INCR i
 IF i<N/v: loop

A[0] A[1] A[2] A[3]

E.g. v=4
B[0] B[1] B[2] B[3]

Advanced Computer Architecture Chapter 7.1

Simple issues: bad array size

21

loop: VLOAD av, A[i:v]
 VLOAD bv, B[i:v]
 VADD cv, bv, av
 VSQRT cv, cv
 VSTORE C[i:v], cv
 INCR i
 IF i<N/v: loop

Issue 1: N might not be a multiple of the vector length v
or

N is known only at runtime

Advanced Computer Architecture Chapter 7.1
22

loop: VLOAD av, A[i:v]
 VLOAD bv, B[i:v]
 VADD cv, bv, av
 VSQRT cv, cv
 VSTORE C[i:v], cv
 INCR i
 IF i<N/v: loop
 IF N%v==0: exit
peel: LOAD a, A[v*i + 0]
 …
 …
exit: …

Issue 1: N could not be a multiple of the vector length v
or

N is known only at runtime

Simple issues: bad array size

Advanced Computer Architecture Chapter 7.1

Medium issues: data alignment

23

loop: VLOAD av, A[i:v]
 VLOAD bv, B[i:v]
 …
 VSTORE C[i:v], cv

Issue 2: Memory accesses should be aligned to page and
cache boundaries

Cache line Cache line Cache line

E.g.: AVX on Sandy Bridge: Cache line: 64B, vector length: 32B, double: 8B

Advanced Computer Architecture Chapter 7.1

Medium issues: data alignment

23

loop: VLOAD av, A[i:v]
 VLOAD bv, B[i:v]
 …
 VSTORE C[i:v], cv

Issue 2: Memory accesses should be aligned to page and
cache boundaries

Cache line Cache line Cache line

E.g.: AVX on Sandy Bridge: Cache line: 64B, vector length: 32B, double: 8B

Base address
of array A

Advanced Computer Architecture Chapter 7.1
24

loop: VLOAD av, A[i:v]
 VLOAD bv, B[i:v]
 …
 VSTORE C[i:v], cv

Cache line Cache line Cache line

E.g.: AVX on Sandy Bridge: Cache line: 64B, vector length: 32B, double: 8B

Base address
of array A

Solution: change the allocation point of A
•Use of special mallocs or special array qualifiers
•Global transformation: might affect alignment

in another loop

Issue 2: Memory accesses should be aligned to page and
cache boundaries (tricky with stencils)

Medium issues: data alignment

Advanced Computer Architecture Chapter 7.1
25

Example 2

double A[N], B[N], C[N], D[N]
for i = 0 to N, i++
 C[i] = A[2*i] + B[D[i]]

loop: VLOAD av, A[i], stride=2
 VGATHER bv, B, D[i:v]
 VADD cv, bv, av
 VSTORE C[i:v], cv
incr: INCR i
 IF i<N/v: loop

Advanced issues: bad access patterns

SIMD version

Advanced Computer Architecture Chapter 7.1
26

B[D[i]] ===> VGATHER bv, B, D[i:v]

Advanced issues: bad access patterns

Issue 3: regardless of the ISA the (micro-)interpretation
of these instructions is expensive

VGATHERv=4: VLOAD dv, D[i:v]
 UNPACK_0 d0, dv
 UNPACK_1 d1, dv
 UNPACK_2 d2, dv
 UNPACK_3 d3, dv
 LOAD b0, B[d0]
 LOAD b1, B[d1]
 LOAD b2, B[d2]
 LOAD b3, B[d3]
 PACK_0 bv, b0
 PACK_1 bv, b1
 PACK_2 bv, b2
 PACK_3 bv, b3

d0 d1 d2 d3
D[0] D[1] D[2] D[3]

d0 d1 d2 d3

b0 b1 b2 b3
B[0] B[1] B[2] B[3]

b0 b1 b2 b3

Advanced Computer Architecture Chapter 7.1
27

Example 3

double A[N], B[N], C[N]
for i = 0 to N, i++
 if f(C[i]) > 0
 C[i] = A[i] + B[i]

loop: VLOAD av, A[i:v]
 VLOAD bv, B[i:v]
 VLOAD cv, C[i:v]
 IF f(cv) <= 0: incr
 VADD cv, bv, av
 VSTORE C[i:v], cv
incr: INCR i
 IF i<N/v: loop

Advanced issues: branch divergence

SIMD version

Advanced Computer Architecture Chapter 7.1
28

loop: VLOAD av, A[i:v]
 VLOAD bv, B[i:v]
 VLOAD cv, C[i:v]
 IF f(cv) <= 0: incr
 VADD cv, bv, av
 VSTORE C[i:v], cv
incr: INCR i
 IF i<N/v: loop

Issue 4: Need architectural support to handle branches

Advanced issues: branch divergence

Solution: Predication through masking
Add a new boolean vector register (the vector mask register)

- Operates on elements whose corresponding bit in the mask is 1
- Requires ISA extension to set the mask register 

Advanced Computer Architecture Chapter 7.1
29

for i = 0 to 63, i++
 if A[i] > 0
 B[i] = A[i]*4

source: http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf

VLOAD av, A[i:v]
VCMP_P Rmask, av, R0
VMUL_P bv{Rmask}, av, R4
VSTORE_P B[i:v]{Rmask}, bv
VRESET_P Rmask
INCR Ri
CMP Ri < 64/v: loop

loop:

Advanced issues: branch divergence

http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf

Advanced Computer Architecture Chapter 7.1

Interesting examples in real programs

30

double s, A[64];

for i = 0 to N-1, i++
A[i] = A[i] + s

for i = 0 to 63, i+=k
 A[i] = A[i] + s

for i = 0 to 63, i++
A[i] += B[C[i]] * s

for i = 0 to 63, i++
 if A[i] > 0
 s += A[i]

Statically unknown loop size

k-strided memory accesses
(k can be known or not)

Divergence

Irregular and statically unknown
memory access pattern

Advanced Computer Architecture Chapter 7.1
31

double s, A[64], B[64];

for i = 0 to 63, i++
 s += A[i]

for i = 0 to 62, i++
 A[i+1] = A[i] * s

for i = 0 to 63, i++
 tmp = A[i] * s
 B[i] = tmp * tmp

for i = 0 to 63, i++
 tmp = foo(A[i])
 B[i] = A[i] + tmp

Loop-carried dependency

Read-after-write dependency

Function calls in the loop body

Global reductions

Interesting examples in real programs

Advanced Computer Architecture Chapter 7.1

Common pitfalls of compiler’s autovectorisation

32

for i = 0 to N, i++
 if (A[i] > 0 &&
 B[i] < ths)
 s += A[i]
 else
 if (A[i] < M)
 s -= A[i]

Complex, possibly
nested branches

for i = 0 to 63, i++
A[i] += FOO(A[i], b, c) Non-trivial function calls

for i = 0 to 63, i++
A[B[i]] += C[i] * s

Gather/scatter access pattern,
even with ISA support

Advanced Computer Architecture Chapter 7.1

Pros of SIMD Architectures

33

• Increase arithmetic operations execution (multiple FUs) 

• Reduced pressure on instruction fetch and issue
- Fewer instructions are necessary to specify the same

amount of work
- Much simpler hardware for checking dependences

• Generally more power efficient than MIMD architectures
- Multiple Instructions Multiple Data (MIMD)
- MIMD fetches one instruction per data operation

• Programmer continues to think sequentially
- Not so easy though, unfortunately

source: http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf

http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf

Advanced Computer Architecture Chapter 7.1

Cons of SIMD Architectures

34

• Still requires integer and FP scalar units for the non-vector
operations (Turing tax - space on chip) 

• Compiler or programmer has to vectorise programs  

• Not suitable for many classes of applications  

• May require a specialised high-bandwidth memory system
- Usually built around heavily banked memory with data

interleaving

• In some cases, ISA explosion

source: http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf

http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf

