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These lecture notes are partly based on:
• on the last year’s lecture slides from Fabio Luporini (CO332/2014-2015)
• the course text, Hennessy and Patterson’s Computer Architecture (5th ed.)
• the lecture slides from James Reinders (Intel) at ATPESC 2014 



Advanced Computer Architecture Chapter 7.1 

Arithmetic Intensity
Processor Type Peak  GFLOP/s Peak GB/s Ops/Byte Ops/Word

E5-2690 v3 SP CPU 416 68 ~6 ~24
E5-2690 v3 DP CPU 208 68 ~3 ~24

K40 SP GPU 4,290 288 ~15 ~60
K40 DP GPU 1,430 288 ~5 ~40

Without enough Ops/Word codes are likely to be bound by operand delivery

Arithmetic intensity: Ops/Byte of DRAM traffic

Hennessy and Patterson’s Computer Architecture (5th ed.)

N is the problem size 
O(N) = Big-O notation
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Roofline Model: Visual Performance Model

3

• Bound and bottleneck analysis (like Amdahl’s law) 
• Relates processor performance to off-chip memory 

traffic (bandwidth often the bottleneck)
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Roofline Model: Visual Performance Model

4 Hennessy and Patterson’s Computer Architecture (5th ed.)

Note that the ridge point offers insight into 
the computer’s overall performance
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Vector addition

5

[  3.2  |  1.1  |  2.2  |  4.5  |  9.0  |  6.7  |  3.4  |  4.2  ]  + 
[  1.2  |  3.1  |  2.5  |  3.6  |  0.5  |  3.2  |  2.2  |  3.5  ]  = 
[  4.4  |  4.2  |  4.7  |  8.1  |  9.5  |  9.9  |  5.6  |  7.7  ]

[   3.2  |  1.1  |  2.2  |   4.5  |  9.0  |   6.7   |  3.4  |  4.2   ]  x 
[   1.2  |  3.1  |  2.5  |   3.6  |  0.5  |   3.2   |  2.2  |  3.5   ]  = 
[  3.84 | 3.41 |  5.5  |  16.2 |  4.5  | 21.44 | 7.48 | 14.7  ]

Vector multiplication

Data-Level Parallelism
“A Single Instruction Multiple Data (SIMD) program 
is a sequential ordering of data parallel instructions”

citation source: M. Vanneschi (Prof. at University of Pisa)
“… also called vector instructions”
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c0 = a0 + b0
c1 = a1 + b1
c2 = a2 + b2
c3 = a3 + b3

ADD Rc0, Ra0, Rb0
ADD Rc1, Ra1, Rb1
ADD Rc2, Ra2, Rb2
ADD Rc3, Ra3, Rb3

“Scalar”

VADD Rc, Ra, Rb

“SIMD/Vectorised”

Data-Level Parallelism
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Single Instruction Multiple Data (SIMD)

7

• Vector processors
Predates the other two by more 
than 30 years.

 

• ISA extensions for multimedia 
e.g: Intel Pentium III, …, Haswell, 
AMD Jaguar, ARM Neon

• Graphics Processing Units (GPUs),  
aka vectorisation SIMT  
(Single Instructions Multiple Threads) 

https://en.wikipedia.org/wiki/Vector_processor

http://www.filipekberg.se/2013/09/25/perfect-developer-laptop/

http://www.nvidia.com/object/tesla-workstations.html

https://en.wikipedia.org/wiki/Vector_processor
http://www.filipekberg.se/2013/09/25/perfect-developer-laptop/
http://www.nvidia.com/object/tesla-workstations.html
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Example
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void add (float *c, float *a, float *b) 
{
    for (int i=0; i <= N; i++)
       c[i]=a[i]+b[i];
} 

Sequential
Loop:  
1.  LOAD a[i] -> Ra 
2.  LOAD b[i] -> Rb 
3.  ADD Ra, Rb -> Rc 
4.  STORE Rc -> c[i] 
5.  ADD i+1->i
6.  BNE i, N, Loop

Vector
Loop: 
1.  LOADv4 a[i:i+3] -> Rva 
2.  LOADv4 b[i:i+3] -> Rvb 
3.  ADDv4 Rva, Rvb -> Rvc 
4.  STOREv4 Rvc -> c[i:i+3] 
5.  ADD i+4->i
6.  BNE i, N, Loop 

Problem:
is not legal to automatically vectorise this loop in C/C++ (without more information)

So, using a compiler switch for auto-vectorisation won’t help
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Choice 2: give compiler hints
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void add (float *restrict c,  
          float *restrict a, 
          float *restrict b) 
{
    for (int i=0; i <= N; i++)
       c[i]=a[i]+b[i];
} 

C99 "restrict" keyword

During each execution of a function body in which a restricted pointer P is 
declared, if some object that is accessible through P is modified, then all 
accesses to that object in that block must occur through P, otherwise the 
behaviour is undefined
The compiler is free to ignore all aliasing implications of uses of restrict

Source: http://en.cppreference.com/w/c/language/restrict

a b

a b

http://en.cppreference.com/w/c/language/restrict


Advanced Computer Architecture Chapter 7.1 

Choice 3: ignore vector dependencies

10

void add (float *c, float *a, float *b) 
{
 #pragma ivdep
    for (int i=0; i <= N; i++)
       c[i]=a[i]+b[i];
} 

ivdep pragma

IVDEP (Ignore Vector DEPendencies) compiler hint. 
Tells compiler “Assume there are no loop-carried dependencies”
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Choice 4: code explicitly for vectors
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void add (float *c, float *a, float *b) 
{
 #pragma omp simd
    for (int i=0; i <= N; i++)
       c[i]=a[i]+b[i];
} 

OpenMP 4.0 pragmas

#pragma omp declare simd
void add (float *c, float *a, float *b) 
{
      *c=*a+*b;
} 

Option 1: 

Option 2: 

Indicates that the loop can be transformed into a SIMD loop  
(i.e. the loop can be executed concurrently using SIMD instructions)

Source: http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

"declare simd" can be applied to a function to enable  
SIMD instructions at the function level from a SIMD loop

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
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Choice 5: SIMD intrinsics
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void add (float *c, float *a, float *b) 
{

__m128* pSrc1 = (__m128*) a; 
__m128* pSrc2 = (__m128*) b; 
__m128* pDest = (__m128*) c;

    for (int i=0; i <= N/4; i++)
       *pDest++ = _mm_add_ps(*pSrc1++, *pSrc2++);
} 

Lengths are hardcoded
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Choice 6: Vector Data Types with Overloading 
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OpenCL/CUDA vector data types: lengths are hardcoded
__kernel void add (__global float *c,  
                   __global float *a, 
                   __global float *b) 
{
     /* We have reduced the global work size (n) by a factor of 4 
        compared to the non vectorised OpenCL version. 
        Therefore, i will now be in the range [0, (n / 4) - 1].
     */

int id = get_global_id(0);
/* Load 4 integers into 'a4' and 'b4'.
   The offset calculation is implicit from the size of the vector load.
   For vloadN(i, p), the address of the first data loaded would be 
   p + i * N.
   Load from the address: a + i * 4 and b + i * 4.
*/
float4 a4 = vload4(i, a);
float4 b4 = vload4(i, b);
/* Do the vector addition. Store the result at the address: c + i * 4.
*/
vstore4(a4 + b4, i, c);

}

Source: http://malideveloper.arm.com/downloads/deved/tutorial/SDK/opencl/hello_world_vector_tutorial.html

http://malideveloper.arm.com/downloads/deved/tutorial/SDK/opencl/hello_world_vector_tutorial.html
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Summary Vectorisation Solutions
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1. Indirectly through high-level libraries/code generators
2. Auto-vectorisation (use “-O3 -mavx” and hope it vectorises):

•  sequential languages and practices gets in the way
• use -ftree-vectorizer-verbose to report on the vectorisation 

3. Give your compiler hints and hope it vectorises:
•  C99 "restrict" (implied in FORTRAN since 1956) 
•  #pragma ivdep 

4. Code explicitly:
•  In assembly language 
•  SIMD instruction intrinsics
•  OpenMP 4.0 #pragma omp simd
•  Kernel functions: 

 OpenMP 4.0: #pragma omp declare simd 
 OpenCL or CUDA: more later  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Vector Architecture

15Source: Hennessy and Patterson’s Computer Architecture (5th ed.)

- An array of parallel FUs
- Vector FUs can be pipelined
- Scalar registers and FUs needed
- Specialised vector memory system
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Execution model and Vector chaining 

16

Vector chaining is pipeline forwarding applied to SIMD architectures

VADD  cv, av, bv  # c = a + b
VMUL  dv, ev, cv  # d = e + c

IF

ID

Pipelined FU+

Pipelined FUx

clock cycles0 1 2 3 4

c0 c1 c2 c3
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Pipelined FU+

Pipelined FUx

VADD VMUL …

VADD VMUL …

VADD1 VADD2 …

clock cycles0 1 2 3 4

c0 c1 c2 c3



Advanced Computer Architecture Chapter 7.1 

Execution model and Vector chaining 

16

Vector chaining is pipeline forwarding applied to SIMD architectures

VADD  cv, av, bv  # c = a + b
VMUL  dv, ev, cv  # d = e + c

IF

ID

Pipelined FU+

Pipelined FUx

VADD VMUL …

VADD VMUL …

VADD1 VADD2 …

VMUL1 VMUL2 …

clock cycles0 1 2 3 4

In clock cycle 3, different 
elements of the same register 

(cv) are read and write

c0 c1 c2 c3
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History: 
Intel x86 ISA extended with SIMD
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ATPESC 2014, James Reinders: http://extremecomputingtraining.anl.gov/files/2014/08/20140804-1030-1115-ATPESC-Argonne-Reinders.2.pdf

http://extremecomputingtraining.anl.gov/files/2014/08/20140804-1030-1115-ATPESC-Argonne-Reinders.2.pdf
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History: 
Intel x86 ISA extended with SIMD• Wider registers  

(from 32 to 512 bits)  

• More registers  

• Richer instruction set 
(predication, FMAs, gather, 
scatter, …) 

• Easier exploitation 
(better compiler support, 
high-level functions, 
libraries…)

http://extremecomputingtraining.anl.gov/files/2014/08/20140804-1030-1115-ATPESC-Argonne-Reinders.2.pdf
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Growth in vector instructions on Intel
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Backwards compatibility accumulation
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ATPESC 2014, James Reinders:  
http://extremecomputingtraining.anl.gov/files/2014/08/20140804-1030-1115-ATPESC-Argonne-Reinders.2.pdf

Elena Demikhovsky (Intel): http://llvm.org/devmtg/2013-11/slides/Demikhovsky-Poster.pdf

http://extremecomputingtraining.anl.gov/files/2014/08/20140804-1030-1115-ATPESC-Argonne-Reinders.2.pdf
http://llvm.org/devmtg/2013-11/slides/Demikhovsky-Poster.pdf
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Issues inherent in the computational model
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Example 1

double A[N], B[N], C[N]
for i = 0 to N, i++

C[i] = sqrt(A[i] + B[i]) 

Notation: 
• :v indicates that the assembly 

operation is over v elements 
• subscript v indicates that the 

register is actually a vector 
register, hosting v elements

SIMD version

loop: VLOAD av, A[i:v]
      VLOAD bv, B[i:v]
      VADD cv, bv, av
      VSQRT cv, cv
      VSTORE C[i:v], cv
      INCR i
      IF i<N/v: loop

A[0] A[1] A[2] A[3]

E.g. v=4
B[0] B[1] B[2] B[3]
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Simple issues: bad array size
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loop: VLOAD av, A[i:v]
      VLOAD bv, B[i:v]
      VADD cv, bv, av
      VSQRT cv, cv
      VSTORE C[i:v], cv
      INCR i
      IF i<N/v: loop

Issue 1: N might not be a multiple of the vector length v
or 

N is known only at runtime 
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loop: VLOAD av, A[i:v]
      VLOAD bv, B[i:v]
      VADD cv, bv, av
      VSQRT cv, cv
      VSTORE C[i:v], cv
      INCR i
      IF i<N/v: loop
      IF N%v==0: exit
peel: LOAD a, A[v*i + 0]
      …
      …
exit: …

Issue 1: N could not be a multiple of the vector length v
or 

N is known only at runtime 

Simple issues: bad array size
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Medium issues: data alignment
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loop: VLOAD av, A[i:v]
      VLOAD bv, B[i:v]
      …
      VSTORE C[i:v], cv

Issue 2: Memory accesses should be aligned to page and  
cache boundaries

Cache line Cache line Cache line

E.g.: AVX on Sandy Bridge: Cache line: 64B, vector length: 32B, double: 8B
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Medium issues: data alignment
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loop: VLOAD av, A[i:v]
      VLOAD bv, B[i:v]
      …
      VSTORE C[i:v], cv

Issue 2: Memory accesses should be aligned to page and  
cache boundaries

Cache line Cache line Cache line

E.g.: AVX on Sandy Bridge: Cache line: 64B, vector length: 32B, double: 8B

Base address 
of array A



Advanced Computer Architecture Chapter 7.1 
24

loop: VLOAD av, A[i:v]
      VLOAD bv, B[i:v]
      …
      VSTORE C[i:v], cv

Cache line Cache line Cache line

E.g.: AVX on Sandy Bridge: Cache line: 64B, vector length: 32B, double: 8B

Base address 
of array A

Solution: change the allocation point of A  
•Use of special mallocs or special array qualifiers  
•Global transformation: might affect alignment 

in another loop 

Issue 2: Memory accesses should be aligned to page and  
cache boundaries (tricky with stencils)

Medium issues: data alignment
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Example 2

double A[N], B[N], C[N], D[N]
for i = 0 to N, i++
    C[i] = A[2*i] + B[D[i]] 

loop: VLOAD av, A[i], stride=2
      VGATHER bv, B, D[i:v]
      VADD cv, bv, av
      VSTORE C[i:v], cv
incr: INCR i
      IF i<N/v: loop

Advanced issues: bad access patterns

SIMD version
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B[D[i]]  ===>  VGATHER bv, B, D[i:v]

Advanced issues: bad access patterns

Issue 3: regardless of the ISA the (micro-)interpretation 
of these instructions is expensive

VGATHERv=4: VLOAD dv, D[i:v]
           UNPACK_0 d0, dv
           UNPACK_1 d1, dv
           UNPACK_2 d2, dv
           UNPACK_3 d3, dv 
           LOAD b0, B[d0]
           LOAD b1, B[d1]
           LOAD b2, B[d2]
           LOAD b3, B[d3]
           PACK_0 bv, b0
           PACK_1 bv, b1
           PACK_2 bv, b2
           PACK_3 bv, b3 

d0 d1 d2 d3
D[0] D[1] D[2] D[3]

d0 d1 d2 d3

b0 b1 b2 b3
B[0] B[1] B[2] B[3]

b0 b1 b2 b3
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Example 3

double A[N], B[N], C[N]
for i = 0 to N, i++
   if f(C[i]) > 0
      C[i] = A[i] + B[i] 

loop: VLOAD av, A[i:v]
      VLOAD bv, B[i:v]
      VLOAD cv, C[i:v]
      IF f(cv) <= 0: incr
      VADD cv, bv, av
      VSTORE C[i:v], cv
incr: INCR i
      IF i<N/v: loop

Advanced issues: branch divergence

SIMD version
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loop: VLOAD av, A[i:v]
      VLOAD bv, B[i:v]
      VLOAD cv, C[i:v]
      IF f(cv) <= 0: incr
      VADD cv, bv, av
      VSTORE C[i:v], cv
incr: INCR i
      IF i<N/v: loop

Issue 4: Need architectural support to handle branches

Advanced issues: branch divergence

Solution: Predication through masking
Add a new boolean vector register (the vector mask register)

- Operates on elements whose corresponding bit in the mask is 1
- Requires ISA extension to set the mask register 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for i = 0 to 63, i++
   if A[i] > 0
      B[i] = A[i]*4

source: http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf

VLOAD    av, A[i:v]
VCMP_P   Rmask, av, R0
VMUL_P   bv{Rmask}, av, R4
VSTORE_P B[i:v]{Rmask}, bv
VRESET_P Rmask
INCR     Ri
CMP      Ri < 64/v: loop

loop:

Advanced issues: branch divergence

http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf
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Interesting examples in real programs
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double s, A[64];

for i = 0 to N-1, i++
A[i] = A[i] + s

for i = 0 to 63, i+=k
   A[i] = A[i] + s

for i = 0 to 63, i++
A[i] += B[C[i]] * s

for i = 0 to 63, i++
   if A[i] > 0
      s += A[i]

Statically unknown loop size 

k-strided memory accesses 
(k can be known or not)

Divergence

Irregular and statically unknown 
memory access pattern
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double s, A[64], B[64];

for i = 0 to 63, i++
   s += A[i]

for i = 0 to 62, i++
   A[i+1] = A[i] * s

for i = 0 to 63, i++
   tmp = A[i] * s
   B[i] = tmp * tmp

for i = 0 to 63, i++
   tmp = foo(A[i])
   B[i] = A[i] + tmp

Loop-carried dependency

Read-after-write dependency

Function calls in the loop body

Global reductions

Interesting examples in real programs
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Common pitfalls of compiler’s autovectorisation
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for i = 0 to N, i++
   if (A[i] > 0 &&
      B[i] < ths)
      s += A[i]
   else
     if (A[i] < M)
         s -= A[i]

Complex, possibly
nested branches

for i = 0 to 63, i++
A[i] += FOO(A[i], b, c) Non-trivial function calls

for i = 0 to 63, i++
A[B[i]] += C[i] * s

Gather/scatter access pattern,
even with ISA support
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Pros of SIMD Architectures
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• Increase arithmetic operations execution (multiple FUs) 

• Reduced pressure on instruction fetch and issue
- Fewer instructions are necessary to specify the same 

amount of work
- Much simpler hardware for checking dependences

• Generally more power efficient than MIMD architectures
- Multiple Instructions Multiple Data (MIMD)
- MIMD fetches one instruction per data operation

• Programmer continues to think sequentially
- Not so easy though, unfortunately

source: http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf

http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf


Advanced Computer Architecture Chapter 7.1 

Cons of SIMD Architectures
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• Still requires integer and FP scalar units for the non-vector 
operations (Turing tax - space on chip) 

• Compiler or programmer has to vectorise programs  

• Not suitable for many classes of applications  

• May require a specialised high-bandwidth memory system
- Usually built around heavily banked memory with data 

interleaving

• In some cases, ISA explosion

source: http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf

http://www.inf.ed.ac.uk/teaching/courses/pa/Notes/lecture11-vector.pdf

