

Comparative design space exploration of dense and semi-dense SLAM

Imperial College London

Z. Zia, L. Nardi, A. Jack, E. Vespa, B. Bodin, P. H. J. Kelly, A. J. Davison

The SLAMBench benchmarking framework

- Enabling end-to-end quantitative and reproducible benchmarking of SLAM pipelines
- SLAM as a multi-objective optimisation problem
 - Absolute Trajectory Error (ATE)
 - Relative Pose Error (RPE)
 - Frame rate
 - Energy per frame
 - Reconstruction accuracy (coming...)

Datasets

- ▶ ICL-NUIM synthetic indoor scenes:
 - Living room <u>synthetic</u> environment
 - Human generated trajectories
 - Trajectory <u>and</u> world model ground-truth
 - A. Handa et al. A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and SLAM.

ICL-NUIM living room http://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html

- ▶ TUM real RGB-D dataset:
- Handheld camera sequence plus trajectory ground-truth
- J. Sturm et al. A benchmark for the evaluation of RGB-D SLAM systems

Screenshot from TUM fr2/desk sequence

LSD-SLAM pipeline structure

- Semi-dense tracking and mapping front-end
 - Track new images against high gradient patches of reference key-frame
 - Estimate and refine depth for such patches
 - When current frame too far, finalise key-frame and initialise a new one
- Pose graph optimisation on back-end
 - Loop closure detection
 - Global optimisation

LSD-SLAM kernels

Thread name	Major kernels	Description	Pattern	Percent
Tracking	Calc. Residuals)	Map	72%
(vectorized)	Calc. Weights and Residuals	Calculate components of the Levenberg–Marquardt (LM) algorithm	Map	4%
	Calc. Jacobians	J	Map-Reduce	9%
	Solve	Evaluate the LM algorithm given the above calculations	External	0%
Total				34 s
Depth	Stereo Line Search	Epipolar line search	Map	43%
-	Fill Holes	Increase density of depth map	Stencil	20%
	Regularize Depth Map	Denoise the depth map	Stencil	28%
	Copy Depth Map to Frame	Implementation specific overhead	Map	6%
Total				48 s
Constraint	Find Euclidean Overlaps	Get neighbour frames from graph, to insert new constraints	Search	6%
Search	Filter and Sorting	Remove less optimal frames from results	Map	4%
	Calc. Residuals	Colculate components of the Levenberg Marguardt (LM) election	Map	71%
	Calc. Weights and Residuals	Calculate components of the Levenberg—Marquardt (LM) algorithm between keyframe and neighbour frames	Reduce	7%
	Calc. Jacobian Matrix	between keyframe and neighbour frames	External	12%
Total				19 s
Optimization	g2o Call	Run iterations of global optimization	External	99%
•	Update Graph	Incorporate improvements from g2o into graph	Map	1%
Total			•	3 s

KinectFusion pipeline

- Dense geometry estimation encoded in a truncated signed-distance function (TSDF)
- Dense tracking via frame-to-model alignment: synthetic point cloud obtained by raycasting the TSDF

0.8 0.5 0.1 -0.1 -0.5 -0.9 1

1 | 0.9 | 0.5 | 0.1 | 0.0 | -0.3 | -0.5

1 | 1 | 0.8 | 0.4 | 0.0 | -0.3 | -0.7 | 1

Truncated signed-distance function

The red line shows the zero iso-surface representing the best estimate of the observed surface

KinectFusion kernels

Major kernels	Block	Pattern	Percent
Convert mm to meters	Preprocess	Gather	0%
Bilateral Filter	Preprocess	Stencil	4%
Half Sample	Track	Stencil	0%
Depth to Vertex		Map	0%
Vertex to Normal		Stencil	0%
Track		Map/Gather	2%
Reduce		Reduction	2%
Solve		Sequential	0%
Integrate	Integrate	Map/Gather	73%
Raycast	Raycast	Search/Stencil	17%

LSD-SLAM and KinectFusion design-space exploration London

- LSD-SLAM:
 - Number of key-frames on ATE and frame-rate
 - Depth map density
 - Hardware characteristics (frequency + number/type of cores)
- KinectFusion:
- ATE versus voxel size
- Frame-rate versus voxel size
- Hardware characteristics (frequency + number/type of cores)

LSD-SLAM design space exploration with SLAMBench

Imperial College London

- Impact of key-frames number on ATE and frame-rate.
- Parametric weights that dictate how often new key-frames are created:
 - X axis: weight assigned to Euclidean distance between current frame and reference keyframe
 - Y axis: weight assigned to current frame and reference key-frame overlapping
- ► Higher values imply more keyframes.
- Black regions represent configurations that make the algorithm lose track

LSD-SLAM design space exploration with SLAMBench

refinements imply bad

Imperial College London

Impact of key-frames number on ATE and frame-rate

Too many, poor depth

Parametric weights:

Euclidean distance

Frame to key-frame overlapping

▶ Default configuration ■

Regions were you attain best ATE and frame-rate

ATE

- LSD-SLAM depth estimation
- Higher gradient threshold implies less pixels selected for tracking and mapping
- Higher frame-rate given from the reduced number of epipolar searches
- Accuracy heavily depends on sequence.

LSD-SLAM: hardware configuration exploration

- Hardware configurations exploration on the ODROID board
 - ARM big.LITTLE architecture: 4 A7 + 4 A15 cores
 - Holistic comparison varying the number of cores

LSD-SLAM: hardware configuration exploration

- Frequency scaling on a Haswell i7-4770 desktop processor
 - Mean energy per frame stays constant, frame rate increases sub-linearly

LSD-SLAM: frame-rate impact on tracking accuracy

- Removing the constraing of process every-frame mode
 - Fix frame rate frames can be dropped
- Test platforms:
 - ODROID board (A7 + A15 ARM cores)
 - Desktop: Intel Haswell i7 4770
- Interesting impact of frame-rate on LSD-SLAM accuracy on the ODROID board
 - Frame dropping considerably impacts tracking accuracy

KinectFusion: accuracy versus resolution

- Scaling up the resolution does not always imply a better accuracy
 - Coarser voxels might have a noise smoothing effect leading to better tracking

Comparing LSD-SLAM and KinectFusion

- Comparing KinectFusion and LSD-SLAM
 - Absolute trajectory error distribution over entire trajectory
 - Real scene vs synthetic scene
 - LSD-SLAM possibly affected by lack of realism in synthetic RGB data

A note on result reproducibility

- In this work we enforced *process-every-frame* mode for reproducibility purposes
- ▶ LSD-SLAM exposed significant fluctuations across repeated executions

Acknowledgements

- ▶ We would like to thank EPSRC for funding this research, PAMELA grant EP/K008730.
- ▶ Jacob Engel for useful discussion and feedback on LSD-SLAM
- Andy Nisbet and John Mawyer of University of Manchester for their contributions to the SLAMBench framework