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The	SLAMBench	benchmarking	framework
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Implementation languages
C++ OpenMP OpenCL CUDA

SLAM benchmarks

Semi-dense SLAM

…LSD-SLAM

Dense SLAM

KinectFusion …

Desktop to embedded platforms
ARM Intel NVIDIA …

…

Datasets
ICL-NUIM TUM RGB-D …

Performance evaluation
Frame rate Energy ATE

SYCL PENCIL

4Enabling	end-to-end	
quantitative	and	
reproducible	benchmarking	
of	SLAM	pipelines

4SLAM	as	a	multi-objective	
optimisation	problem
▪ Absolute	Trajectory	Error	(ATE)	
▪ Relative	Pose	Error	(RPE)
▪ Frame	rate
▪ Energy	per	frame
▪ Reconstruction	accuracy	

(coming…)



Datasets
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4ICL-NUIM	synthetic	indoor	scenes:
▪ Living	room	synthetic environment	
▪ Human	generated	trajectories
▪ Trajectory	and world	model	ground-truth
▪ A.	Handa et	al.	A	Benchmark	for	RGB-D	
Visual	Odometry,	3D	Reconstruction	and	
SLAM.	

4TUM	real	RGB-D	dataset:
▪ Handheld	camera	sequence	plus	
trajectory	ground-truth

▪ J.	Sturm	et	al.	A	benchmark	for	the	
evaluation	of	RGB-D	SLAM	systems	

ICL-NUIM	living	room	http://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html

Screenshot	from	TUM	fr2/desk	sequence



LSD-SLAM	pipeline	structure
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4 Semi-dense	tracking	and	mapping	front-end
▪ Track	new	images	against	high	gradient	patches	of	reference	key-frame
▪ Estimate	and	refine	depth	for	such	patches
▪ When	current	frame	too	far,	finalise	key-frame	and	initialise	a	new	one

4 Pose	graph	optimisation	on	back-end
▪ Loop	closure	detection
▪ Global	optimisation

SE3 Tracking /
Depth estimation

Global Pose 
Graph 

Optimisation
RGB Frame

New key-frames

Key-frames reactivation

Optimised pose

Visual odometry pose



LSD-SLAM	kernels
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Thread name Major kernels Description Pattern Percent

Tracking Calc. Residuals )
Calculate components of the Levenberg–Marquardt (LM) algorithm

Map 72%
(vectorized) Calc. Weights and Residuals Map 4%

Calc. Jacobians Map-Reduce 9%
Solve Evaluate the LM algorithm given the above calculations External 0%

Total 34 s

Depth Stereo Line Search Epipolar line search Map 43%
Fill Holes Increase density of depth map Stencil 20%
Regularize Depth Map Denoise the depth map Stencil 28%
Copy Depth Map to Frame Implementation specific overhead Map 6%

Total 48 s

Constraint Find Euclidean Overlaps Get neighbour frames from graph, to insert new constraints Search 6%
Search Filter and Sorting Remove less optimal frames from results Map 4%

Calc. Residuals )
Calculate components of the Levenberg—Marquardt (LM) algorithm
between keyframe and neighbour frames

Map 71%
Calc. Weights and Residuals Reduce 7%
Calc. Jacobian Matrix External 12%

Total 19 s

Optimization g2o Call Run iterations of global optimization External 99%
Update Graph Incorporate improvements from g2o into graph Map 1%

Total 3 s

TABLE IV: LSD-SLAM kernel classification and timings on desktop, TUM RGB-D fr2/desk
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Fig. 1: Varying the voxel resolution in KinectFusion with
default parameters on desktop, operating on the sequence:
(a) TUM RGB-D fr2/xyz, (b) ICL-NUIM Living Room
trajectory 1.

Further, we explore the effect of scene on accuracy and time.
We evaluate the impact of voxel grid resolution on the

ATE, by applying KinectFusion to two sequences: ICL-
NUIM Living Room Trajectory 1 and TUM RGB-D fr2/xyz
while sweeping the parameter volume resolution over the
settings 2563, 5123, 7683, 10243. We observe Figure 1(a)
agreeing with the expected relationship of reducing ATE
(going down from almost 4 cm to 2.5 cm) as volume
resolution increases. However we also see the surprising
result in Figure 1(b) that ATE can stay constant or even get
slightly worse upon increasing voxel grid resolution; more
than 0.2 cm in this case. We attribute this inconsistency to
the complex relationship of tracking with noise of the 3D re-
construction. While the reconstruction improves qualitatively
as seen in a visualization with higher resolution voxel grid,
the representation also becomes noisier as depth samples are
averaged into smaller voxels, implying a higher level of noise
per voxel. In the future, we plan to incorporate novel metrics
that evaluate reconstruction quality alongside ATE.

We further analyze the kernel timing distribution (as
percentage of the total time) varying the volume resolution
again in steps of 2563, 5123, 7683, 10243, plotted in Figure
2(a). We observe that the integrate stage in particular strongly
depends upon the resolution of reconstruction, increasing in

terms of compute load as the resolution increases. This is
because of the need to traverse each voxel in the grid in
the averaging step, whereas most other KinectFusion kernels
have a sub-linear dependence on the number of voxels.

Another input parameter that is part of KinectFusion in
the SLAMBench framework [10] is a threshold on error
residuals obtained from each iteration of ICP for the track
block. This threshold is used as an exit condition for ICP
for a given instance of track kernel execution, together with
a fixed number of maximum iterations. We found that the
ATE is insensitive (in fact practically independent) to the
ICP threshold chosen, despite sweeping this parameter over a
range of five orders of magnitude, from 1⇥10�6 to 1⇥10�1.

We also analyzed the kernel timing distribution (as per-
centage of the total time) vs. scene geometry and camera
trajectory: over two synthetic sequences (ICL-NUIM Living
Room trajectory 1 and 2) and one real sequence (TUM RGB-
D fr2/xyz), for fixed parameter settings. We find that the
distribution stays fixed and essentially similar to Figure 2(a).
We see that this is not the case with LSD-SLAM, where the
computation time significantly depends upon the scene (the
number of edge pixels).

E. Analysis of LSD-SLAM parameters and metrics
We perform design space exploration for the algorithmic

parameters of LSD-SLAM, as well as an important hardware
parameter namely the processor clock frequency. We also
visualize the distribution of ATEs across different sequences.

We start by evaluating the minimum pixel gradient parame-
ter, which specifies a threshold on the gradient magnitude. In
LSD-SLAM, all pixels with an image gradient of magnitude
smaller than this threshold are discarded. Thus a higher
gradient threshold implies fewer edge pixels being used for
alignment and depth computation. Figure 2(b) plots this pa-
rameter against ATE and FPS for two sequences. The curves
terminate where the tracking fails for a single frame. As
this threshold is increased and each image is left with fewer
edge pixels, the frame rate increases from approximately
20 fps to 60 fps almost evenly for both sequences - with



KinectFusion pipeline
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4 Dense	geometry	estimation	encoded	in	a truncated	signed-distance	function	(TSDF)
4 Dense	tracking	via	frame-to-model	alignment:	synthetic	point	cloud	obtained	by	ray-

casting	the	TSDF

82 14.2. Building Blocks

Implementation Name Description

C++ Vanilla C++ implementation. Optimisations provided by
the compiler.

OpenMP The C++ version but with threading, using the OpenMP
API.

OpenCL A version utilising the OpenCL framework
CUDA A version utilising the CUDA framework

Table 14.1: KFusion implementations available in SLAMBench.

14.1.2 Tunable Parameters

Along with selecting an implementation, there are a variety of parameters, so that the
implementation can be turned for a particular scene, shown in Table 14.2. We use the
default settings, except where noted.

We modify the default parameters due to the ICL-NUIM Office scene and the TUM
RGB-D datasets being larger, we have to double the TSDF size (from 4.6m3 to 9.6m3)
and resolution (from 2563 to 5123). However compared to the original SLAMBench paper
each voxel represents the same volume: 0.01875m3.

The alternative to doing this is to minimise the size of the TSDF volume on a per
dataset basis. However, this will mean that simply changing the dataset, will mean a
possible change in a few parameters, which is not necessarily a fair test.

14.2 Building Blocks

We begin our characterisation of KFusion, with the building blocks. From Figure 14.1,
we can see it is a simple sequential pipeline.

Preprocess Track Integrate Raycast
Depth
Image Input Rendering

Figure 14.1: Building blocks of the KFusion implementation in SLAMBench.Dotted lines indicate
data dependences, forwarded without computation [16].

If we extend Figure 14.1 by drawing the interactions amongst multiple iterations,
shown in Figure 14.2, it is clear KFusion enforces a strict sequential behaviour due to to
the data forwarding from the ‘Raycast’ to ‘Tracking’ stage. The ‘Raycast’ result must be
available from the previous frame before the next frame can be tracked. Moreover, these
two blocks are and the end and beginning of the pipeline, therefore there no building

Truncated	signed-distance	function

The	red	line	shows	the	zero	iso-surface	
representing	the	best	estimate	of	the	
observed	surface



KinectFusion kernels
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Platform Seq. Time/frame (s) ATE (cm) Energy/frame (J)
KF LSD KF LSD KF LSD

Desktop Syn. 0.18 0.03 1.36 4.44 12.51 0.80
Desktop Real 0.15 0.03 2.62 0.99 10.62 1.21
ODROID Syn. 0.89 0.20 1.35 4.37 4.90 0.38
ODROID Real 0.93 0.20 2.62 1.14 4.99 0.50

TABLE I: Holistic comparison table.

Seq. Hardware Time/frame (s) ATE (cm) Energy/frame (J)
KF LSD KF LSD KF LSD

Syn. A7 + A15 0.88 0.20 2.04 4.37 4.94 0.38
A15 1.10 0.24 2.04 4.39 5.60 0.46
A7 2.27 0.28 2.04 4.39 1.91 0.17

Real A7 + A15 0.93 0.20 2.62 0.97 4.99 0.47
A15 0.84 0.26 2.61 1.02 4.80 0.55
A7 1.90 0.36 2.62 1.00 1.11 0.22

TABLE II: Hardware design space exploration.

of cores increases. On the other hand, since the energy
consumption of A7 cores is far smaller than on the A15
cores, distributing the workload between A7 and A15 cores
results in less energy consumption than turning off the A7
cores and doing all computation on A15 cores. In a similar
vein, we consistently notice that the relationship between
energy expenditure and speed is super-linear: while A15
cores execute KinectFusion twice as fast as A7 cores, they
require 2.9� 4.3x energy to achieve this speedup. Similarly,
A15 cores execute LSD-SLAM with a speedup of only
1.2 � 1.4x relative to A7 cores, but need 2.5 � 2.7x the
energy. The lesson learnt is that for both these algorithms, it
is better to have a larger number of low-power less-complex
computational cores like A7, than more expensive and
complex computational cores like A15. This insight should
be useful for a system designer choosing a computational
platform which will run a SLAM system. A SLAM-specific
observation is that KinectFusion scales better than LSD-
SLAM (with the number of cores). This is because while the
KinectFusion pipeline has very little task parallelism, which
means it is essentially a set of sequential modules, there is a
lot of data parallelism inside those modules. On the contrary,
LSD-SLAM is the opposite, having a certain degree of task
parallelism allowing to distribute its workload across four
parallel threads, but little data parallelism.

C. Kernel-level breakdown of KinectFusion and LSD-SLAM
As discussed in Sect. III-C, KinectFusion and LSD-SLAM

have a number of dissimilarities. These dissimilarities make
it difficult to compare the computational requirements of
the two pipelines at the block-level. Still an analysis of the
constituent kernels provides insights into the computational
behavior of the pipelines. Further, we classify the kernels
of LSD-SLAM into parallel patterns, as done in [10] for
KinectFusion (which we repeat here). This classification
coupled with the computational time taken by each kernel
should enable systems researchers to design accelerators
which work for a variety of SLAM pipelines.

We perform kernel-level profiling of KinectFusion running
on the desktop machine. The percentage of time required
by each kernel, together with classification into parallel

Major kernels Block Pattern Percent
Convert mm to meters Preprocess Gather 0%
Bilateral Filter Preprocess Stencil 4%
Half Sample Track Stencil 0%
Depth to Vertex Map 0%
Vertex to Normal Stencil 0%
Track Map/Gather 2%
Reduce Reduction 2%
Solve Sequential 0%
Integrate Integrate Map/Gather 73%
Raycast Raycast Search/Stencil 17%

TABLE III: KinectFusion kernel classification and timings
on desktop, TUM RGB-D fr2/xyz.

patterns [10] is listed in Table III. As mentioned earlier, the
blocks are executed in sequential order, but most kernels
use OpenMP pragmas to exploit multiple cores to operate
on parallel data. As opposed to the similar table in [10],
we disable the graphical visualization kernels, and use the
OpenMP implementation instead of the strictly sequential
C++ implementation as it is more relevant to the multi-core
case. The two most compute intensive kernels, by far, turn
out to be the integrate and raycast kernels which take 73%
and 17% of the computational time, respectively.

We further perform kernel-level profiling of LSD-SLAM
also running on desktop in Table IV. As opposed to Kinect-
Fusion, here the four blocks are running in parallel as
separate threads. We neglect the percentage of time spent in
the glue logic that lets these kernels communicate. However
we list the total time per thread for running the TUM RGB-
D fr2/desk sequence. We observe that the depth estimation
thread takes the greatest amount of total compute time (48
seconds), which can be seen as analogous to the integrate
block of KinectFusion which is also the most expensive.
It should be noted that within the depth block, we avoid
including the time required for creating new keyframes
because it is negligible. Specifically, over the whole sequence
the time required for creating a new keyframe is less than
4% (2 sec) of the time spent on updating the depth map.
The second most expensive thread is track (34 seconds),
which can be seen as doing the job of track plus raycast
in KinectFusion. Surprisingly, the global optimization thread
is the cheapest.

Together the Tables III and IV highlight that Map/Gather
is the most important parallel pattern for SLAM, followed by
Stencil, since kernels following this pattern of computation
take the greatest amount of processing time. While tradition-
ally domain-specific languages (DSLs) for image processing
[12] have focused on stencil and reduce patterns exclusively,
the observation from the preceding analysis indicates that
including native support for Map/Gather patterns together
with Stencil and Reduce in DSLs and/or hardware can enable
fast and low energy implementations of SLAM pipelines.

D. Analysis of KinectFusion parameters and metrics

We analyze the dependence of localization accuracy and
processing time on the voxel grid resolution into which the
3D data from individual frames is integrated, as well as the
impact of imposing a threshold on ICP residual for tracking.



LSD-SLAM	and	KinectFusion design-space	exploration	
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4LSD-SLAM:
▪ Number	of	key-frames	on	ATE	and	frame-rate
▪ Depth	map	density
▪ Hardware	characteristics	(frequency	+	number/type	of	cores)

4KinectFusion:
▪ ATE	versus	voxel	size
▪ Frame-rate	versus	voxel	size
▪ Hardware	characteristics	(frequency	+	number/type	of	cores)



LSD-SLAM	design	space	exploration	with	SLAMBench
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4 Impact	of	key-frames	number	on	
ATE	and	frame-rate.	

4Parametric	weights	that	dictate	
how	often	new	key-frames	are	
created:
▪ X	axis:	weight	assigned	to	

Euclidean	distance	between	
current	frame	and	reference	key-
frame

▪ Y	axis:	weight	assigned	to	current	
frame	and	reference	key-frame	
overlapping

4Higher	values	imply	more	key-
frames.

4Black	regions	represent	
configurations	that	make	the	
algorithm	lose	track
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Fig. 2: (a) KinectFusion kernel timings as a percentage of the total time vs. the number of voxels (otherwise default
parameters), running on desktop, on the ICL-NUIM Living Room Trajectory 1 (b) ATE and FPS using LSD-SLAM running
on TUM RGB-D fr2/xyz and fr2/desk sequences sweeping minimum gradient threshold, running on desktop, (c) FPS and
energy per frame of LSD-SLAM whilst changing CPU frequency, on desktop, using TUM RGB-D fr2/xyz.

TUM RGB-D fr2/desk terminating earlier because there are
not enough edge pixels left to allow reliable tracking. On
the other hand, the ATE varies far less over most of the
parameter sweep. The ATE however sharply improves for
very low values of the threshold (for fr2/desk), which can be
seen as the denoising effect of this parameter.

Two other important algorithmic parameters control which
frames become keyframes. The first one of these is the
keyframe to frame distance which defines how often new
keyframes are created, depending upon the Euclidean dis-
tance to the current keyframe; with larger value imply-
ing more keyframes. The second parameter is keyframe to
frame appearance similarity which defines how often new
keyframes are created based on the visual overlap with the
current keyframe; again large values imply more keyframes
Figure 3 visualizes the results of a two dimensional design
space exploration within the range of reasonable parameter
values [2]. Our first observation looking at the plots is that
both accuracy and speed are fairly insensitive to the choice
of these two parameters, with large regions of the plots
having essentially the same color. However on the top-right
of Figure 3(a) we start seeing slightly worse ATEs, as a result
of too many keyframes, since there are not enough frames
tracked against a given keyframe to propagate good estimates
of depth. Similarly in Figure 3(b) we notice that the frame
rate is relatively more affected by the appearance similarity
parameter, which causes it to change expectedly, i.e. become
slower for higher number of keyframes.

So far we have restricted ourselves to the process-every-
frame mode, as it allows us to (partially) decorrelate the re-
sults of the algorithm from the scene and hardware/software
implementation. However, it is still instructive to look at
the performance of the system when the rate of incoming
frames from the camera is fixed. This gives us insights into
what happens as the incoming video frame rate exceeds the
maximum processing frame rate. Figure 4 plots the ATE and
energy consumption per frame for both platforms. Since the
processing frame rate for desktop processor is greater than
30 FPS (Table I), no frames are dropped and essentially all
frames are processed for all the input frame rates, yielding a
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Fig. 3: 2D design space exploration of appearance similarity
and distance between frames in LSD-SLAM using TUM
RGB-D fr2/desk on Desktop with otherwise default param-
eters. The heatmap represents: (a) ATE (cm), (b) FPS.

fixed ATE. However, for the ODROID processor, which can
process at maximum 5 fps (Table I), we notice a dramatic
degradation of accuracy soon after 5 fps, with the ATE going
from 2 cm to 15 cm. Unsurprisingly, energy consumption
for ODROID also exhibits a linear dependency on the
input frame rate, whereas that for the relatively wasteful
desktop processor remains constant due to not reaching peak
performance for this architecture.

As an important hardware parameter we sweep the desktop
CPU frequency and explore the effect on energy consumption

(a)

0

2

4

6

8

10

5 10 15 20 25 30 35 40 45 500

10

20

30

40

50

60

70

AT
E

(c
m

)

Fr
am

es
Pe

r
Se

co
nd

Minimum pixel gradient

fr2/desk ATE
fr2/desk FPS
fr2/xyz ATE
fr2/xyz FPS

(b)

0

0.5

1

1.5

2

2.5

3

0.8
0G

hz

1.0
0G

Hz

1.2
0G

Hz

1.4
0G

Hz

1.5
0G

Hz

1.7
0G

Hz

1.9
0G

Hz

2.1
0G

Hz

2.3
0G

Hz

2.5
0G

Hz

2.7
0G

Hz

2.8
0G

Hz

3.0
0G

Hz

3.2
0G

Hz

3.4
0G

Hz5

10

15

20

25

30

35

40

En
er

gy
us

ag
e

pe
r

fr
am

e
(J

)

Fr
am

es
Pe

r
Se

co
nd

Desktop CPU Frequency (GHz)

Min Energy
Mean Energy

Max Energy
FPS

(c)

Fig. 2: (a) KinectFusion kernel timings as a percentage of the total time vs. the number of voxels (otherwise default
parameters), running on desktop, on the ICL-NUIM Living Room Trajectory 1 (b) ATE and FPS using LSD-SLAM running
on TUM RGB-D fr2/xyz and fr2/desk sequences sweeping minimum gradient threshold, running on desktop, (c) FPS and
energy per frame of LSD-SLAM whilst changing CPU frequency, on desktop, using TUM RGB-D fr2/xyz.

TUM RGB-D fr2/desk terminating earlier because there are
not enough edge pixels left to allow reliable tracking. On
the other hand, the ATE varies far less over most of the
parameter sweep. The ATE however sharply improves for
very low values of the threshold (for fr2/desk), which can be
seen as the denoising effect of this parameter.

Two other important algorithmic parameters control which
frames become keyframes. The first one of these is the
keyframe to frame distance which defines how often new
keyframes are created, depending upon the Euclidean dis-
tance to the current keyframe; with larger value imply-
ing more keyframes. The second parameter is keyframe to
frame appearance similarity which defines how often new
keyframes are created based on the visual overlap with the
current keyframe; again large values imply more keyframes
Figure 3 visualizes the results of a two dimensional design
space exploration within the range of reasonable parameter
values [2]. Our first observation looking at the plots is that
both accuracy and speed are fairly insensitive to the choice
of these two parameters, with large regions of the plots
having essentially the same color. However on the top-right
of Figure 3(a) we start seeing slightly worse ATEs, as a result
of too many keyframes, since there are not enough frames
tracked against a given keyframe to propagate good estimates
of depth. Similarly in Figure 3(b) we notice that the frame
rate is relatively more affected by the appearance similarity
parameter, which causes it to change expectedly, i.e. become
slower for higher number of keyframes.

So far we have restricted ourselves to the process-every-
frame mode, as it allows us to (partially) decorrelate the re-
sults of the algorithm from the scene and hardware/software
implementation. However, it is still instructive to look at
the performance of the system when the rate of incoming
frames from the camera is fixed. This gives us insights into
what happens as the incoming video frame rate exceeds the
maximum processing frame rate. Figure 4 plots the ATE and
energy consumption per frame for both platforms. Since the
processing frame rate for desktop processor is greater than
30 FPS (Table I), no frames are dropped and essentially all
frames are processed for all the input frame rates, yielding a
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Fig. 3: 2D design space exploration of appearance similarity
and distance between frames in LSD-SLAM using TUM
RGB-D fr2/desk on Desktop with otherwise default param-
eters. The heatmap represents: (a) ATE (cm), (b) FPS.

fixed ATE. However, for the ODROID processor, which can
process at maximum 5 fps (Table I), we notice a dramatic
degradation of accuracy soon after 5 fps, with the ATE going
from 2 cm to 15 cm. Unsurprisingly, energy consumption
for ODROID also exhibits a linear dependency on the
input frame rate, whereas that for the relatively wasteful
desktop processor remains constant due to not reaching peak
performance for this architecture.

As an important hardware parameter we sweep the desktop
CPU frequency and explore the effect on energy consumption
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Fig. 2: (a) KinectFusion kernel timings as a percentage of the total time vs. the number of voxels (otherwise default
parameters), running on desktop, on the ICL-NUIM Living Room Trajectory 1 (b) ATE and FPS using LSD-SLAM running
on TUM RGB-D fr2/xyz and fr2/desk sequences sweeping minimum gradient threshold, running on desktop, (c) FPS and
energy per frame of LSD-SLAM whilst changing CPU frequency, on desktop, using TUM RGB-D fr2/xyz.

TUM RGB-D fr2/desk terminating earlier because there are
not enough edge pixels left to allow reliable tracking. On
the other hand, the ATE varies far less over most of the
parameter sweep. The ATE however sharply improves for
very low values of the threshold (for fr2/desk), which can be
seen as the denoising effect of this parameter.

Two other important algorithmic parameters control which
frames become keyframes. The first one of these is the
keyframe to frame distance which defines how often new
keyframes are created, depending upon the Euclidean dis-
tance to the current keyframe; with larger value imply-
ing more keyframes. The second parameter is keyframe to
frame appearance similarity which defines how often new
keyframes are created based on the visual overlap with the
current keyframe; again large values imply more keyframes
Figure 3 visualizes the results of a two dimensional design
space exploration within the range of reasonable parameter
values [2]. Our first observation looking at the plots is that
both accuracy and speed are fairly insensitive to the choice
of these two parameters, with large regions of the plots
having essentially the same color. However on the top-right
of Figure 3(a) we start seeing slightly worse ATEs, as a result
of too many keyframes, since there are not enough frames
tracked against a given keyframe to propagate good estimates
of depth. Similarly in Figure 3(b) we notice that the frame
rate is relatively more affected by the appearance similarity
parameter, which causes it to change expectedly, i.e. become
slower for higher number of keyframes.

So far we have restricted ourselves to the process-every-
frame mode, as it allows us to (partially) decorrelate the re-
sults of the algorithm from the scene and hardware/software
implementation. However, it is still instructive to look at
the performance of the system when the rate of incoming
frames from the camera is fixed. This gives us insights into
what happens as the incoming video frame rate exceeds the
maximum processing frame rate. Figure 4 plots the ATE and
energy consumption per frame for both platforms. Since the
processing frame rate for desktop processor is greater than
30 FPS (Table I), no frames are dropped and essentially all
frames are processed for all the input frame rates, yielding a
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Fig. 3: 2D design space exploration of appearance similarity
and distance between frames in LSD-SLAM using TUM
RGB-D fr2/desk on Desktop with otherwise default param-
eters. The heatmap represents: (a) ATE (cm), (b) FPS.

fixed ATE. However, for the ODROID processor, which can
process at maximum 5 fps (Table I), we notice a dramatic
degradation of accuracy soon after 5 fps, with the ATE going
from 2 cm to 15 cm. Unsurprisingly, energy consumption
for ODROID also exhibits a linear dependency on the
input frame rate, whereas that for the relatively wasteful
desktop processor remains constant due to not reaching peak
performance for this architecture.

As an important hardware parameter we sweep the desktop
CPU frequency and explore the effect on energy consumption
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Fig. 2: (a) KinectFusion kernel timings as a percentage of the total time vs. the number of voxels (otherwise default
parameters), running on desktop, on the ICL-NUIM Living Room Trajectory 1 (b) ATE and FPS using LSD-SLAM running
on TUM RGB-D fr2/xyz and fr2/desk sequences sweeping minimum gradient threshold, running on desktop, (c) FPS and
energy per frame of LSD-SLAM whilst changing CPU frequency, on desktop, using TUM RGB-D fr2/xyz.

TUM RGB-D fr2/desk terminating earlier because there are
not enough edge pixels left to allow reliable tracking. On
the other hand, the ATE varies far less over most of the
parameter sweep. The ATE however sharply improves for
very low values of the threshold (for fr2/desk), which can be
seen as the denoising effect of this parameter.

Two other important algorithmic parameters control which
frames become keyframes. The first one of these is the
keyframe to frame distance which defines how often new
keyframes are created, depending upon the Euclidean dis-
tance to the current keyframe; with larger value imply-
ing more keyframes. The second parameter is keyframe to
frame appearance similarity which defines how often new
keyframes are created based on the visual overlap with the
current keyframe; again large values imply more keyframes
Figure 3 visualizes the results of a two dimensional design
space exploration within the range of reasonable parameter
values [2]. Our first observation looking at the plots is that
both accuracy and speed are fairly insensitive to the choice
of these two parameters, with large regions of the plots
having essentially the same color. However on the top-right
of Figure 3(a) we start seeing slightly worse ATEs, as a result
of too many keyframes, since there are not enough frames
tracked against a given keyframe to propagate good estimates
of depth. Similarly in Figure 3(b) we notice that the frame
rate is relatively more affected by the appearance similarity
parameter, which causes it to change expectedly, i.e. become
slower for higher number of keyframes.

So far we have restricted ourselves to the process-every-
frame mode, as it allows us to (partially) decorrelate the re-
sults of the algorithm from the scene and hardware/software
implementation. However, it is still instructive to look at
the performance of the system when the rate of incoming
frames from the camera is fixed. This gives us insights into
what happens as the incoming video frame rate exceeds the
maximum processing frame rate. Figure 4 plots the ATE and
energy consumption per frame for both platforms. Since the
processing frame rate for desktop processor is greater than
30 FPS (Table I), no frames are dropped and essentially all
frames are processed for all the input frame rates, yielding a
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Fig. 3: 2D design space exploration of appearance similarity
and distance between frames in LSD-SLAM using TUM
RGB-D fr2/desk on Desktop with otherwise default param-
eters. The heatmap represents: (a) ATE (cm), (b) FPS.

fixed ATE. However, for the ODROID processor, which can
process at maximum 5 fps (Table I), we notice a dramatic
degradation of accuracy soon after 5 fps, with the ATE going
from 2 cm to 15 cm. Unsurprisingly, energy consumption
for ODROID also exhibits a linear dependency on the
input frame rate, whereas that for the relatively wasteful
desktop processor remains constant due to not reaching peak
performance for this architecture.

As an important hardware parameter we sweep the desktop
CPU frequency and explore the effect on energy consumption
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4Impact	of	key-frames	number	on	ATE	
and	frame-rate

4Parametric	weights:
▪ Euclidean	distance
▪ Frame	to	key-frame	overlapping

4Default	configuration	

Too	many,	poor	depth	
refinements	imply	bad	
ATE

Regions	were	you	attain	
best	ATE	and	frame-
rate		



LSD-SLAM	design-space	exploration	with	SLAMBench
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Fig. 2: (a) KinectFusion kernel timings as a percentage of the total time vs. the number of voxels (otherwise default
parameters), running on desktop, on the ICL-NUIM Living Room Trajectory 1 (b) ATE and FPS using LSD-SLAM running
on TUM RGB-D fr2/xyz and fr2/desk sequences sweeping minimum gradient threshold, running on desktop, (c) FPS and
energy per frame of LSD-SLAM whilst changing CPU frequency, on desktop, using TUM RGB-D fr2/xyz.

TUM RGB-D fr2/desk terminating earlier because there are
not enough edge pixels left to allow reliable tracking. On
the other hand, the ATE varies far less over most of the
parameter sweep. The ATE however sharply improves for
very low values of the threshold (for fr2/desk), which can be
seen as the denoising effect of this parameter.

Two other important algorithmic parameters control which
frames become keyframes. The first one of these is the
keyframe to frame distance which defines how often new
keyframes are created, depending upon the Euclidean dis-
tance to the current keyframe; with larger value imply-
ing more keyframes. The second parameter is keyframe to
frame appearance similarity which defines how often new
keyframes are created based on the visual overlap with the
current keyframe; again large values imply more keyframes
Figure 3 visualizes the results of a two dimensional design
space exploration within the range of reasonable parameter
values [2]. Our first observation looking at the plots is that
both accuracy and speed are fairly insensitive to the choice
of these two parameters, with large regions of the plots
having essentially the same color. However on the top-right
of Figure 3(a) we start seeing slightly worse ATEs, as a result
of too many keyframes, since there are not enough frames
tracked against a given keyframe to propagate good estimates
of depth. Similarly in Figure 3(b) we notice that the frame
rate is relatively more affected by the appearance similarity
parameter, which causes it to change expectedly, i.e. become
slower for higher number of keyframes.

So far we have restricted ourselves to the process-every-
frame mode, as it allows us to (partially) decorrelate the re-
sults of the algorithm from the scene and hardware/software
implementation. However, it is still instructive to look at
the performance of the system when the rate of incoming
frames from the camera is fixed. This gives us insights into
what happens as the incoming video frame rate exceeds the
maximum processing frame rate. Figure 4 plots the ATE and
energy consumption per frame for both platforms. Since the
processing frame rate for desktop processor is greater than
30 FPS (Table I), no frames are dropped and essentially all
frames are processed for all the input frame rates, yielding a
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Fig. 3: 2D design space exploration of appearance similarity
and distance between frames in LSD-SLAM using TUM
RGB-D fr2/desk on Desktop with otherwise default param-
eters. The heatmap represents: (a) ATE (cm), (b) FPS.

fixed ATE. However, for the ODROID processor, which can
process at maximum 5 fps (Table I), we notice a dramatic
degradation of accuracy soon after 5 fps, with the ATE going
from 2 cm to 15 cm. Unsurprisingly, energy consumption
for ODROID also exhibits a linear dependency on the
input frame rate, whereas that for the relatively wasteful
desktop processor remains constant due to not reaching peak
performance for this architecture.

As an important hardware parameter we sweep the desktop
CPU frequency and explore the effect on energy consumption

11

4LSD-SLAM	depth	estimation
▪ Higher	gradient	threshold	
implies	less	pixels	selected	
for	tracking	and	mapping

▪ Higher	frame-rate	given	
from	the	reduced	number	
of	epipolar searches

4Accuracy	heavily	depends	on	
sequence.



LSD-SLAM:	hardware	configuration	exploration

12

4 Hardware	configurations	exploration	on	the	ODROID	board
▪ ARM	big.LITTLE architecture:	4	A7	+	4	A15	cores
▪ Holistic	comparison	varying	the	number	of	cores

17.3. Hardware Parameters 135
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Figure 17.12: LSD-SLAM running on the ODROID, using default parameters on the TUM RGB-
D fr2/xyz dataset. We have varied the availability of processing cores within the big.LITTLE
architecture.
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Figure 17.13: KFusion running on the ODROID, using default parameters on the TUM RGB-
D fr2/xyz dataset. We have varied the availability of processing cores within the big.LITTLE
architecture.
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4Frequency	scaling	on	a	Haswell i7-4770	desktop	processor
▪ Mean	energy	per	frame	stays	constant,	frame	rate	increases	sub-linearly
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Fig. 2: (a) KinectFusion kernel timings as a percentage of the total time vs. the number of voxels (otherwise default
parameters), running on desktop, on the ICL-NUIM Living Room Trajectory 1 (b) ATE and FPS using LSD-SLAM running
on TUM RGB-D fr2/xyz and fr2/desk sequences sweeping minimum gradient threshold, running on desktop, (c) FPS and
energy per frame of LSD-SLAM whilst changing CPU frequency, on desktop, using TUM RGB-D fr2/xyz.

TUM RGB-D fr2/desk terminating earlier because there are
not enough edge pixels left to allow reliable tracking. On
the other hand, the ATE varies far less over most of the
parameter sweep. The ATE however sharply improves for
very low values of the threshold (for fr2/desk), which can be
seen as the denoising effect of this parameter.

Two other important algorithmic parameters control which
frames become keyframes. The first one of these is the
keyframe to frame distance which defines how often new
keyframes are created, depending upon the Euclidean dis-
tance to the current keyframe; with larger value imply-
ing more keyframes. The second parameter is keyframe to
frame appearance similarity which defines how often new
keyframes are created based on the visual overlap with the
current keyframe; again large values imply more keyframes
Figure 3 visualizes the results of a two dimensional design
space exploration within the range of reasonable parameter
values [2]. Our first observation looking at the plots is that
both accuracy and speed are fairly insensitive to the choice
of these two parameters, with large regions of the plots
having essentially the same color. However on the top-right
of Figure 3(a) we start seeing slightly worse ATEs, as a result
of too many keyframes, since there are not enough frames
tracked against a given keyframe to propagate good estimates
of depth. Similarly in Figure 3(b) we notice that the frame
rate is relatively more affected by the appearance similarity
parameter, which causes it to change expectedly, i.e. become
slower for higher number of keyframes.

So far we have restricted ourselves to the process-every-
frame mode, as it allows us to (partially) decorrelate the re-
sults of the algorithm from the scene and hardware/software
implementation. However, it is still instructive to look at
the performance of the system when the rate of incoming
frames from the camera is fixed. This gives us insights into
what happens as the incoming video frame rate exceeds the
maximum processing frame rate. Figure 4 plots the ATE and
energy consumption per frame for both platforms. Since the
processing frame rate for desktop processor is greater than
30 FPS (Table I), no frames are dropped and essentially all
frames are processed for all the input frame rates, yielding a
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Fig. 3: 2D design space exploration of appearance similarity
and distance between frames in LSD-SLAM using TUM
RGB-D fr2/desk on Desktop with otherwise default param-
eters. The heatmap represents: (a) ATE (cm), (b) FPS.

fixed ATE. However, for the ODROID processor, which can
process at maximum 5 fps (Table I), we notice a dramatic
degradation of accuracy soon after 5 fps, with the ATE going
from 2 cm to 15 cm. Unsurprisingly, energy consumption
for ODROID also exhibits a linear dependency on the
input frame rate, whereas that for the relatively wasteful
desktop processor remains constant due to not reaching peak
performance for this architecture.

As an important hardware parameter we sweep the desktop
CPU frequency and explore the effect on energy consumption



LSD-SLAM:	frame-rate	impact	on	tracking	accuracy
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4 Removing	the	
constraing of	process	–
every-frame	mode
▪ Fix	frame	rate	-

frames	can	be	
dropped

4 Test	platforms:
▪ ODROID	board	(A7	

+	A15	ARM	cores)
▪ Desktop:	Intel	

Haswell i7	4770
4 Interesting	impact	of	

frame-rate	on	LSD-
SLAM	accuracy	on	the	
ODROID	board
▪ Frame	dropping	

considerably	
impacts	tracking	
accuracy 0
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Fig. 4: Varying the input frame-rate in LSD-SLAM under the
TUM RGB-D fr2/xyz dataset without using process-every-
frame mode. Shows ATE and energy under Desktop and
ODROID.
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Fig. 5: Distribution of ATEs using KinectFusion and LSD-
SLAM, run with default parameters on Desktop. MAE is
highlighted. (a) TUM RGB-D fr2/xyz (b) ICL-NUIM Living
Room Trajectory

per frame and frame rate in Figure 2(c). As in the previous
experiment, we notice that the energy consumption remains
fixed. However we also observe the frame rate to have a
linear relationship with CPU frequency. This means that,
for LSD-SLAM, running desktop-grade processors at the
maximum clock frequency yields best performance (speed)
while requiring the same energy.

F. Dataset issues in SLAM

We encounter inconsistent behavior of both the pipelines
over the synthetic and the real datasets in terms of accuracy.
Tables I and II already showed KinectFusion performing
better than LSD-SLAM on the synthetic dataset; and opposite
results on the real dataset. Looking at these results in finer
detail, we plot the distribution of ATEs for both pipelines on
a synthetic sequence in Figure 5(a) and on a real sequence
5(b). We observe KinectFusion not only outperforming LSD-
SLAM on the synthetic sequence (in terms of mean error),
but also the distribution of ATE across frames is tighter
- which implies that fewer frames nearly fail tracking.
On the real sequence we get the exact opposite behavior,
with KinectFusion having a worse accuracy and greater
variance. We attribute these contrasting observations to the
shortcomings of the synthetic dataset, particularly the lack
of realistic texture in the RGB images. Unfortunately, so
far only synthetic datasets provide ground truth geometry
together with camera trajectory. Laser scanning or other
offline reconstruction method have not been used to provide
that functionality in realistic datasets.

VI. CONCLUSION

We exploit our extensions to SLAMBench [10] to ana-
lyze and contrast two state-of-the-art SLAM pipelines. We
perform holistic comparison of the two pipelines along
energy, accuracy, and speed across two hardware platforms:
a desktop processor from Intel and a high-end embedded
device from ARM. Further, we profile the kernel-level
computational characteristics and classify the kernels into
parallel design patterns. We also explore the algorithmic and
hardware design spaces, and gain further insights into the
behavior of these pipelines. This analysis should be of im-
mense value for system-level design and integration, and the
software would prove a valuable tool enabling performance
optimization analysis for building high-performance SLAM
systems. We plan to work on a more systematic exploration
of motion and scenes with a new dataset [4].
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4Scaling	up	the	resolution	does	not	always	imply	a	better	accuracy
▪ Coarser	voxels	might	have	a	noise	smoothing	effect	leading	to	better	
tracking	

Thread name Major kernels Description Pattern Percent

Tracking Calc. Residuals )
Calculate components of the Levenberg–Marquardt (LM) algorithm

Map 72%
(vectorized) Calc. Weights and Residuals Map 4%

Calc. Jacobians Map-Reduce 9%
Solve Evaluate the LM algorithm given the above calculations External 0%

Total 34 s

Depth Stereo Line Search Epipolar line search Map 43%
Fill Holes Increase density of depth map Stencil 20%
Regularize Depth Map Denoise the depth map Stencil 28%
Copy Depth Map to Frame Implementation specific overhead Map 6%

Total 48 s

Constraint Find Euclidean Overlaps Get neighbour frames from graph, to insert new constraints Search 6%
Search Filter and Sorting Remove less optimal frames from results Map 4%

Calc. Residuals )
Calculate components of the Levenberg—Marquardt (LM) algorithm
between keyframe and neighbour frames

Map 71%
Calc. Weights and Residuals Reduce 7%
Calc. Jacobian Matrix External 12%

Total 19 s

Optimization g2o Call Run iterations of global optimization External 99%
Update Graph Incorporate improvements from g2o into graph Map 1%

Total 3 s

TABLE IV: LSD-SLAM kernel classification and timings on desktop, TUM RGB-D fr2/desk
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Fig. 1: Varying the voxel resolution in KinectFusion with
default parameters on desktop, operating on the sequence:
(a) TUM RGB-D fr2/xyz, (b) ICL-NUIM Living Room
trajectory 1.

Further, we explore the effect of scene on accuracy and time.
We evaluate the impact of voxel grid resolution on the

ATE, by applying KinectFusion to two sequences: ICL-
NUIM Living Room Trajectory 1 and TUM RGB-D fr2/xyz
while sweeping the parameter volume resolution over the
settings 2563, 5123, 7683, 10243. We observe Figure 1(a)
agreeing with the expected relationship of reducing ATE
(going down from almost 4 cm to 2.5 cm) as volume
resolution increases. However we also see the surprising
result in Figure 1(b) that ATE can stay constant or even get
slightly worse upon increasing voxel grid resolution; more
than 0.2 cm in this case. We attribute this inconsistency to
the complex relationship of tracking with noise of the 3D re-
construction. While the reconstruction improves qualitatively
as seen in a visualization with higher resolution voxel grid,
the representation also becomes noisier as depth samples are
averaged into smaller voxels, implying a higher level of noise
per voxel. In the future, we plan to incorporate novel metrics
that evaluate reconstruction quality alongside ATE.

We further analyze the kernel timing distribution (as
percentage of the total time) varying the volume resolution
again in steps of 2563, 5123, 7683, 10243, plotted in Figure
2(a). We observe that the integrate stage in particular strongly
depends upon the resolution of reconstruction, increasing in

terms of compute load as the resolution increases. This is
because of the need to traverse each voxel in the grid in
the averaging step, whereas most other KinectFusion kernels
have a sub-linear dependence on the number of voxels.

Another input parameter that is part of KinectFusion in
the SLAMBench framework [10] is a threshold on error
residuals obtained from each iteration of ICP for the track
block. This threshold is used as an exit condition for ICP
for a given instance of track kernel execution, together with
a fixed number of maximum iterations. We found that the
ATE is insensitive (in fact practically independent) to the
ICP threshold chosen, despite sweeping this parameter over a
range of five orders of magnitude, from 1⇥10�6 to 1⇥10�1.

We also analyzed the kernel timing distribution (as per-
centage of the total time) vs. scene geometry and camera
trajectory: over two synthetic sequences (ICL-NUIM Living
Room trajectory 1 and 2) and one real sequence (TUM RGB-
D fr2/xyz), for fixed parameter settings. We find that the
distribution stays fixed and essentially similar to Figure 2(a).
We see that this is not the case with LSD-SLAM, where the
computation time significantly depends upon the scene (the
number of edge pixels).

E. Analysis of LSD-SLAM parameters and metrics
We perform design space exploration for the algorithmic

parameters of LSD-SLAM, as well as an important hardware
parameter namely the processor clock frequency. We also
visualize the distribution of ATEs across different sequences.

We start by evaluating the minimum pixel gradient parame-
ter, which specifies a threshold on the gradient magnitude. In
LSD-SLAM, all pixels with an image gradient of magnitude
smaller than this threshold are discarded. Thus a higher
gradient threshold implies fewer edge pixels being used for
alignment and depth computation. Figure 2(b) plots this pa-
rameter against ATE and FPS for two sequences. The curves
terminate where the tracking fails for a single frame. As
this threshold is increased and each image is left with fewer
edge pixels, the frame rate increases from approximately
20 fps to 60 fps almost evenly for both sequences - with
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4Comparing	KinectFusion and	LSD-SLAM
▪ Absolute	trajectory	error	distribution	over	entire	trajectory	
▪ Real	scene	vs	synthetic	scene
▪ LSD-SLAM	possibly	affected	by	lack	of	realism	in	synthetic	RGB	data
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frame mode. Shows ATE and energy under Desktop and
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Fig. 5: Distribution of ATEs using KinectFusion and LSD-
SLAM, run with default parameters on Desktop. MAE is
highlighted. (a) TUM RGB-D fr2/xyz (b) ICL-NUIM Living
Room Trajectory

per frame and frame rate in Figure 2(c). As in the previous
experiment, we notice that the energy consumption remains
fixed. However we also observe the frame rate to have a
linear relationship with CPU frequency. This means that,
for LSD-SLAM, running desktop-grade processors at the
maximum clock frequency yields best performance (speed)
while requiring the same energy.

F. Dataset issues in SLAM

We encounter inconsistent behavior of both the pipelines
over the synthetic and the real datasets in terms of accuracy.
Tables I and II already showed KinectFusion performing
better than LSD-SLAM on the synthetic dataset; and opposite
results on the real dataset. Looking at these results in finer
detail, we plot the distribution of ATEs for both pipelines on
a synthetic sequence in Figure 5(a) and on a real sequence
5(b). We observe KinectFusion not only outperforming LSD-
SLAM on the synthetic sequence (in terms of mean error),
but also the distribution of ATE across frames is tighter
- which implies that fewer frames nearly fail tracking.
On the real sequence we get the exact opposite behavior,
with KinectFusion having a worse accuracy and greater
variance. We attribute these contrasting observations to the
shortcomings of the synthetic dataset, particularly the lack
of realistic texture in the RGB images. Unfortunately, so
far only synthetic datasets provide ground truth geometry
together with camera trajectory. Laser scanning or other
offline reconstruction method have not been used to provide
that functionality in realistic datasets.

VI. CONCLUSION

We exploit our extensions to SLAMBench [10] to ana-
lyze and contrast two state-of-the-art SLAM pipelines. We
perform holistic comparison of the two pipelines along
energy, accuracy, and speed across two hardware platforms:
a desktop processor from Intel and a high-end embedded
device from ARM. Further, we profile the kernel-level
computational characteristics and classify the kernels into
parallel design patterns. We also explore the algorithmic and
hardware design spaces, and gain further insights into the
behavior of these pipelines. This analysis should be of im-
mense value for system-level design and integration, and the
software would prove a valuable tool enabling performance
optimization analysis for building high-performance SLAM
systems. We plan to work on a more systematic exploration
of motion and scenes with a new dataset [4].
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4In	this	work	we	enforced	process-every-framemode	for	reproducibility	
purposes

4LSD-SLAM	exposed	significant	fluctuations	across	repeated	executions

10.4. Process-Every-Frame and Deterministic Behaviour 65

The solution is three fold. Firstly, within the constraint-search thread loop, we only
consider adding constraints when a new key-frame is added. (Before LSD-SLAM reports
the poses of all frames, a final constraint search and optimisation is made, for each frame,
therefore we do not miss out on constraints). Secondly, we only perform an optimisation
when the constraints have been added from part one. Thirdly, we sort the constraints
before adding them to the g2o pose graph. Our updated version is displayed in Figure
10.4.
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Figure 10.4: Multiple runs of LSD-SLAM using TUM RGB-D fr2/desk dataset showing the
difference between first and final attempt at a deterministic process-every-frame mode. (Run on
Seyward (x86 machine))

10.4.4 Critique of the Solution

We have created a deterministic setup, which is necessary for full integration into SLAM-
Bench. However, this is limits how LSD-SLAM can behave. Firstly, this has caused
LSD-SLAM to run slower, as we are enforcing an ordering in processing on the otherwise
asynchronous pipeline. (But is still operates above 30 FPS, therefore it is not serious. )

More importantly, we have limited the real-life behaviour, like dropping frames be-
tween the tracking and mapping stages, if the mapping stage cannot cope with the
input frequency. We address this criticism, by disabling this process-every-frame mode
in Chapter 18.
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