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1. INTRODUCTION:  
THE THREE R’s OF COMPUTER VISION

4. METHOD:  
RANDOM FOREST AND ACTIVE LEARNING REGRESSION 
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2. BACKGROUND:  
SIMULTANEOUS LOCALISATION AND MAPPING (SLAM) 
We focus on the first “R”: Reconstruction; more precisely in SLAM. 
SLAM builds a coherent world representation and localises  
the camera in real-time. 
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SLAMBench FRAMEWORK 
Holistic approach to SLAM “performance”: SLAMBench.  
SLAMBench is a publicly-available benchmarking framework for 
quantitative, comparable and validatable experimental research to 
investigate trade-offs in performance, accuracy and energy 
consumption of a SLAM system.  
 
The accuracy is measured as Absolute Trajectory Error (ATE) in cm. 

3. GOAL:  
MULTI-OBJECTIVE CO-DESIGN SPACE EXPLORATION 
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  Architecture: 
• GPU frequency: 177/266/350/420/480/543/600/DVFS 
• # of active big cores: 0/1/2/3/4 
• # of active LITTLE cores: 1/2/3/4 

Decision tree

Random forest

5. RESULTS:  
PARETO SURFACE CONTAINING ALL OPTIMA FOUND
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Accuracy limit = 0.05m

Default configuration
Active learning
Random sampling

Constraint Runtime 
(FPS)

Max ATE 
(cm)

Power 
(Watts)

Default 6.03 4.41 2.77

Best runtime 39.85 4.47 1.47

Best 
accuracy

1.51 3.30 2.38

Best power 11.92 4.45 0.65

Power < 1W 29.09 4.47 0.98

Power < 2W 39.85 4.47 1.47

FPS > 10 11.92 4.45 0.65

FPS > 20 28.87 4.47 0.91

FPS > 30 32.38 4.47 1.01

SELECTED PARETO POINTS

6. CONCLUSION 
• Multi-objective machine learning driven optimisation framework on frame rate/power/accuracy brings us to 

find much better configurations than the default configuration. 

• Application accuracy check very powerful: non bit-wise and scope for aggressive approximate computing. 
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Algorithmic: 
• Application-specific parameters   
• Minimisation methods 
• Early exit condition values

Compilation: 
• opencl-params: -cl-mad-enable,-cl-fast-relaxed-math, etc. 
• LLVM flags: O1, O2, O3, vectorize-slp-aggressive, etc.  
• Local work group size: 16/32/64/96/112/128/256 
• Vectorisation: width (1/2/4/8), direction (x/y)
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