SLAMBench, a performance and accuracy benchmarking methodology for SLAM

Luigi Nardi, Imperial College London @La Sapienza, December 19th 2014

In collaboration with:

Bruno Bodin, M Zeeshan Zia, John Mawer, Andy Nisbet, Paul H J Kelly, Andrew J Davison, Mikel Luján, Michael F P O'Boyle, Graham Riley, Nigel Topham, Steve Furber

Outline

- SLAM application
- Holistically execution time/energy/accuracy: SLAMBench
- Experimental results
- Conclusion and opportunities

Outline

- SLAM application
- Holistically execution time/energy/accuracy: SLAMBench
- Experimental results
- Conclusion and opportunities

Simultaneous Localisation And Mapping (SLAM)

Build a coherent world representation and localise the camera in real-time

Scalable Real-time Volumetric Surface Reconstruction

Jiawen Chen Dennis Bautembach Shahram Izadi Microsoft Research, Cambridge, UK

ACM SIGGRAPH 2013
Technical Papers

(contains audio)

https://www.youtube.com/watch?v=quGhaggn3cQ#t=102 [Newcombe et al. ISMAR 2011]

[Whelan et al. 2012]

Simultaneous Localisation And Mapping (SLAM)

Build a coherent world representation and localise the camera in real-time

Scalable Real-time Volumetric Surface Reconstruction

Jiawen Chen Dennis Bautembach Shahram Izadi Microsoft Research, Cambridge, UK

ACM SIGGRAPH 2013
Technical Papers

(contains audio)

https://www.youtube.com/watch?v=quGhaggn3cQ#t=102 [Newcombe et al. ISMAR 2011]

[Whelan et al. 2012]

Dense SLAM implementation: KinectFusion

Fuses the stream depth frames into a 3D geometric map

Voxel grid: Truncated
Signed Distance Function (**TSDF**)
to represent 3D surfaces
[Curless and Levoy 1996]

3D surfaces recovered by raycasting at the **zero crossings** of the TSDF

Localisation: estimates the location and pose

[Newcombe et al. ICCV 2011]

ICP registration

[Rusinkiewicz and Levoy 2001]

- Iterative Closest Point (ICP):
 rigid body transform (6 DoF) from frame k-1 to frame k.
- Iterative algorithm computing an energy function minimisation

KinectFusion pipeline

- First dense monocular SLAM algorithm [Newcombe et al. ISMAR 2011]
- Adopted as a major building block in more recent SLAM systems
- Implementation based on [Reitmayr 2011] CUDA implementation

Outline

- SLAM application
- Holistically execution time/energy/accuracy: SLAMBench
- Experimental results
- Conclusion and opportunities

Benchmarks:

1. In computer vision targets **accuracy**

Benchmarks:

- 1. In computer vision targets **accuracy**
- 2. Other benchmarks target **execution time** however scarce in CV

Benchmarks:

- 1. In computer vision targets accuracy
- 2. Other benchmarks target execution time however scarce in CV
- 3. Is somebody targeting **energy**?

Benchmarks:

- 1. In computer vision targets accuracy
- 2. Other benchmarks target execution time however scarce in CV
- 3. Is somebody targeting **energy**?

More holistic approach to SLAM "performance": SLAMBench

- 1. Computation depends on:
 - Images acquired
 - Way the camera is moved
 - Processing frame rate (depends on the hardware capability)

- 1. Computation depends on:
 - Images acquired
 - Way the camera is moved
 - Processing frame rate (depends on the hardware capability)
- 2. Numerical approximations and iterative algorithms:
 - Small angle approximation
 - Early exit condition (rigid body transform)
 - Reduction of I2-norms (<u>non associative</u>)

- 1. Computation depends on:
 - Images acquired
 - Way the camera is moved
 - Processing frame rate (depends on the hardware capability)
- 2. Numerical approximations and iterative algorithms:
 - Small angle approximation
 - Early exit condition (rigid body transform)
 - Reduction of I2-norms (non associative)

Need for reproducibility:

- 1. Computation depends on:
 - Images acquired
 - Way the camera is moved
 - Processing frame rate (depends on the hardware capability)
- 2. Numerical approximations and iterative algorithms:
 - Small angle approximation
 - Early exit condition (rigid body transform)
 - Reduction of I2-norms (non associative)

Need for reproducibility:

Pre-recorded scenes

- 1. Computation depends on:
 - Images acquired
 - Way the camera is moved
 - Processing frame rate (depends on the hardware capability)
- 2. Numerical approximations and iterative algorithms:
 - Small angle approximation
 - Early exit condition (rigid body transform)
 - Reduction of I2-norms (non associative)

Need for reproducibility:

Pre-recorded scenes

Process-every-frame mode

- 1. Computation depends on:
 - Images acquired
 - Way the camera is moved
 - Processing frame rate (depends on the hardware capability)
- 2. Numerical approximations and iterative algorithms:
 - Small angle approximation
 - Early exit condition (rigid body transform)
 - Reduction of I2-norms (non associative)

Need for reproducibility:

Pre-recorded scenes

Process-every-frame mode

Need for accuracy check:

- 1. Computation depends on:
 - Images acquired
 - Way the camera is moved
 - Processing frame rate (depends on the hardware capability)
- 2. Numerical approximations and iterative algorithms:
 - Small angle approximation
 - Early exit condition (rigid body transform)
 - Reduction of I2-norms (non associative)

Need for reproducibility:

Pre-recorded scenes

Process-every-frame mode

Need for accuracy check:

ICL-NUIM dataset (frames and ground truth)

ICL-NUIM dataset

- ICL-NUIM synthetic dataset [Handa et al. 2014]
- RGB-D sequences
- Absolute Trajectory Error (ATE): ground truth and estimated trajectory error
- Microsoft's Kinect sensor modelled noise

high-level blocks

high-level blocks

3 metrics: execution time/energy/accuracy

high-level blocks

desktop, mobile, embedded: multi-core and many-core

3 metrics: execution time/energy/accuracy

3 metrics: execution time/energy/accuracy

SLAMBench GUI

RGB camera

(not used)

Depth camera

Tracked

points

SLAMBench kernels

Kernels	Kernels Pipeline		In	Out	%
acquire	Acquire	n/a	pointer	2D	0.03
mm2meters	Preprocess	Gather	2D	2D	0.06
bilateralFilter	Preprocess	Stencil	2D	2D	33.68
halfSample	Track	Stencil	2D	2D	0.05
depth2vertex	Track	Map	2D	2D	0.11
vertex2normal	Track	Stencil	2D	2D	0.27
track	Track	Map/Gather	2D	2D	4.72
reduce	Track	Reduction	2D	6x6	2.99
solve	Track	Sequential	6x6	6x1	0.02
integrate	Integrate	Map/Gather	2D/3D	3D	12.85
raycast	Raycast	Search/Stencil	2D/3D	2D	35.87
renderDepth	Rendering	Map	2D	2D	0.12
renderTrack	Rendering	Map	2D	2D	0.06
renderVolume	Rendering	Search/Stencil	3D	2D	9.18

Outline

- SLAM application
- Holistically execution time/energy/accuracy: SLAMBench
- Experimental results
- Conclusion and opportunities

Machines	TITAN	GTX870M	TK1	ODROID	Arndale
CPU	Intel	Intel	ARM	ARM	ARM
CPU cores	4	4	4 + 1	4 + 4	2
GPU	NVIDIA TITAN	NVIDIA GTX 870M	NVIDIA Tegra K1	ARM Mali- T628	ARM Mali- T604
GPU FLOPS	2250	1260	330	60 + 30	60

Machines	TITAN	GTX870M	TK1	ODROID	Arndale
CPU	Intel	Intel	ARM	ARM	ARM
CPU cores	4	4	4 + 1	4 + 4	2
GPU	NVIDIA TITAN	NVIDIA GTX 870M	NVIDIA Tegra K1	ARM Mali- T628	ARM Mali- T604
GPU FLOPS	2250	1260	330	60 + 30	60

Machines	TITAN	GTX870M	TK1	ODROID	Arndale
CPU	Intel	Intel	ARM	ARM	ARM
CPU cores	4	4	4 + 1	4 + 4	2
GPU	NVIDIA TITAN	NVIDIA GTX 870M	NVIDIA Tegra K1	ARM Mali- T628	ARM Mali- T604
GPU FLOPS	2250	1260	330	60 + 30	60

Machines	TITAN	GTX870M	TK1	ODROID	Arndale
CPU	Intel	Intel	ARM	ARM	ARM
CPU cores	4	4	4 + 1	4 + 4	2
GPU	NVIDIA TITAN	NVIDIA GTX 870M	NVIDIA Tegra K1	ARM Mali- T628	ARM Mali- T604
GPU FLOPS	2250	1260	330	60 + 30	60

Machines	TITAN	GTX870M	TK1	ODROID	Arndale
CPU	Intel	Intel	ARM	ARM	ARM
CPU cores	4	4	4 + 1	4 + 4	2
GPU	NVIDIA TITAN	NVIDIA GTX 870M	NVIDIA Tegra K1	ARM Mali- T628	ARM Mali- T604
GPU FLOPS	2250	1260	330	60 + 30	60

Machines	TITAN	GTX870M	TK1	ODROID	Arndale
CPU	Intel	Intel	ARM	ARM	ARM
CPU cores	4	4	4 + 1	4 + 4	2
GPU	NVIDIA TITAN	NVIDIA GTX 870M	NVIDIA Tegra K1	ARM Mali- T628	ARM Mali- T604
GPU FLOPS	2250	1260	330	60 + 30	60

Platforms

Machines	TITAN	GTX870M	TK1	ODROID	Arndale
CPU	Intel	Intel	ARM	ARM	ARM
CPU cores	4	4	4 + 1	4 + 4	2
GPU	NVIDIA TITAN	NVIDIA GTX 870M	NVIDIA Tegra K1	ARM Mali- T628	ARM Mali- T604
GPU FLOPS	2250	1260	330	60 + 30	60

Application settings (default):

 $vol = 4.8 \times 4.8 \times 4.8 \text{ m}^3, \ res = 256 \times 256 \times 256 \times 256, \ \mu = 0.1 \text{cm}, \ CR = 320 \times 240, \ IR = 2, \ RR = 4, \ TR = 1, \ ICP = 1e-5 \times 10^{-2} \times 10$

Application settings (default):

vol=4.8x4.8x4.8 m³, res=256x256x256, μ=0.1cm, CR=320x240, IR=2, RR=4, TR=1, ICP=1e-5

Absolute Trajectory Error (ATE) in cm:																
	TI	TAN			GTX870M			TK1			ODROID			Arndale		
C++	OMP	OCL	CUDA	C++	OMP	OCL	CUDA	C++	OMP	CUDA	C++	OMP	OCL	C++	OMP	OCL
2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.06	2.06	2.07	2.06	2.06	2.01	2.06	2.06	2.07

Sanity check: similar error on all platforms

Application settings (default):

vol=4.8x4.8x4.8 m³, res=256x256x256, μ=0.1cm, CR=320x240, IR=2, RR=4, TR=1, ICP=1e-5

Absolute Trajectory Error (ATE) in cm:																
	TI	TAN			GTX	X870M			TK1			ODROII)		Arndale	
C++	OMP	OCL	CUDA	C++	OMP	OCL	CUDA	C++	OMP	CUDA	C++	OMP	OCL	C++	OMP	OCL
2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.06	2.06	2.07	2.06	2.06	2.01	2.06	2.06	2.07
											•					

Sanity check: similar error on all platforms

ATE enables aggressive design-space exploration: Algorithmic, compiler and hardware parameters

"Performance" power (ODROID-XU3)

On-board voltage/current sensors and split power rails: power measured individually on big (A15), LITTLE (A7), GPU and DRAM

"Performance" power (ODROID-XU3)

On-board voltage/current sensors and split power rails: power measured individually on big (A15), LITTLE (A7), GPU and DRAM

Power usage per frame rate as marked

Overview

- SLAM application
- Holistically execution time/energy/accuracy: SLAMBench
- Experimental results
- Conclusion and opportunities

SLAMBench today

- Publicly released 13/11/2014: http://apt.cs.manchester.ac.uk/projects/PAMELA/tools/SLAMBench/
- Early adopters: ARM, IBM Watson, LSU, SUTD, ...
- Number of downloads: 120
- Submitted paper [Nardi et al. 2015]:

"Introducing SLAMBench, a performance and accuracy benchmarking methodology for SLAM"

• First vision benchmark for accuracy, computational performance and energy consumption

- First vision benchmark for accuracy, computational performance and energy consumption
- Fair comparison of accelerators, software tools and novel algorithms in dense SLAM

- First vision benchmark for accuracy, computational performance and energy consumption
- Fair comparison of accelerators, software tools and novel algorithms in dense SLAM
- "Performance" results on state-of-the-art desktop, laptop and embedded devices:
 - 4 configurations super real-time FPS (135 FPS peak performance on TITAN)
 - Tegra K1 achieves 22 FPS
 - ODROID-XU3 achieves **5.5 FPS** for **2.1 Watts** dissipation. Suitable for robotics
 - GPGPU for SLAM leads to high-efficiency

- First vision benchmark for accuracy, computational performance and energy consumption
- Fair comparison of accelerators, software tools and novel algorithms in dense SLAM
- "Performance" results on state-of-the-art desktop, laptop and embedded devices:
 - 4 configurations super real-time FPS (135 FPS peak performance on TITAN)
 - Tegra K1 achieves 22 FPS
 - ODROID-XU3 achieves **5.5 FPS** for **2.1 Watts** dissipation. Suitable for robotics
 - GPGPU for SLAM leads to high-efficiency
- SLAMBench kernels characterisation: i.e. parallel patterns and weights

- First vision benchmark for accuracy, computational performance and energy consumption
- Fair comparison of accelerators, software tools and novel algorithms in dense SLAM
- "Performance" results on state-of-the-art desktop, laptop and embedded devices:
 - 4 configurations super real-time FPS (135 FPS peak performance on TITAN)
 - Tegra K1 achieves 22 FPS
 - ODROID-XU3 achieves **5.5 FPS** for **2.1 Watts** dissipation. Suitable for robotics
 - GPGPU for SLAM leads to high-efficiency
- SLAMBench kernels characterisation: i.e. parallel patterns and weights
- This research paves the way for systematic holistic evaluation using SLAMBench

Chip design and simulation tools, e.g. GEM5

Chip design and simulation tools, e.g. GEM5

SLAMBench evolution:

- point-based fusion
- octrees
- voxel hashing-based
- moving volumes

Kernels can be improved individually

Chip design and simulation tools, e.g. GEM5

SLAMBench evolution:

- point-based fusion
- octrees
- voxel hashing-based
- moving volumes

Kernels can be improved individually

Chip design and simulation tools, e.g. GEM5

SLAMBench evolution:

- point-based fusion
- octrees
- voxel hashing-based
- moving volumes

Kernels can be improved individually

Domain-specific language targeting high performance, low-power dense SLAM

Design-space exploration, e.g. algorithmic, compiler and hardware parameters

SLAMBench kernels tuning, e.g. vectorisation, GPU occupancy, auto-tuning

Chip design and simulation tools, e.g. GEM5

Domain-specific language targeting high performance, low-power dense SLAM

Design-space exploration, e.g. algorithmic, compiler and hardware parameters

SLAMBench kernels tuning, e.g. vectorisation, GPU occupancy, auto-tuning

SLAMBench evolution:

- point-based fusion
- octrees
- voxel hashing-based
- moving volumes

Kernels can be improved individually

Chip design and simulation tools, e.g. GEM5

Domain-specific language targeting high performance, low-power dense SLAM

Design-space exploration, e.g. algorithmic, compiler and hardware parameters

SLAMBench kernels tuning, e.g. vectorisation, GPU occupancy, auto-tuning

SLAMBench evolution:

- point-based fusion
- octrees
- voxel hashing-based
- moving volumes
 Kernels can be improved individually

Chip design and simulation tools, e.g. GEM5

Domain-specific language targeting high performance, low-power dense SLAM

Design-space exploration, e.g. algorithmic, compiler and hardware parameters

SLAMBench kernels tuning, e.g. vectorisation, GPU occupancy, auto-tuning

SLAMBench evolution:

- point-based fusion
- octrees
- voxel hashing-based
- moving volumes
 Kernels can be improved individually

- CPU/GPU mapping/partitioning
- Just-in-time compilation

References

- 1. [Nardi et al. 2015] L. Nardi, B. Bodin, M. Z. Zia, J. Mawer, A. Nisbet, P. H. J. Kelly, A. J. Davison, M. Luján, M. F. P. O'Boyle, G. Riley, N. Topham, and S. Furber. "Introducing SLAMBench, a performance and accuracy benchmarking methodology for SLAM." Submitted, arXiv:1410.2167, 2015.
- 2. [Newcombe et al. ICCV 2011] R. A. Newcombe, S. J. Lovegrove and A. J. Davison. "DTAM: Dense tracking and mapping in real-time." Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011.
- 3. [Rusinkiewicz and Levoy 2001] S. Rusinkiewicz, and M. Levoy. "Efficient variants of the ICP algorithm." 3-D Digital Imaging and Modeling, 2001. Proceedings. Third International Conference on. IEEE, 2001.
- 4. [Chen et al. 2013] J. Chen, D. Bautembach, and S. Izadi, Scalable real-time volumetric surface reconstruction, in ACM Trans. Graph., 2013.
- 5. [Newcombe et al. ISMAR 2011] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. "KinectFusion: Real-time dense surface mapping and tracking." 10th IEEE Int. Symp. on Mixed and augmented reality (ISMAR), 2011.
- 6. [Handa et al. 2014] A. Handa, T. Whelan, J. McDonald, and A. J. Davison. A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and SLAM. IEEE Int. Conf. on Robotics and Automation, ICRA 2014.
- 7. [Reitmayr] G. Reitmayr. KFusion github 2011. https://github.com/GerhardR/kfusion
- 8. [Curless and Levoy 1996] B. Curless and M. Levoy. A volumetric method for building complex models from range images. In Proc. Computer graphics and interactive technique. ACM, 1996.
- 9. [Whelan et al. 2012] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J. McDonald. Kintinuous: Spatially extended kinectfusion. 2012.

Backup slides

PAMELA project

Panoramic Approach to the Many-corE LAndscape - from application to end-device: a holistic approach

5-year EPSRC grant: Imperial, Manchester and Edinburgh

SLAMBench kernels

Kernels	Pipeline	Pattern	In	Out	%
acquire	Acquire	n/a	pointer	2D	0.03
mm2meters	Preprocess	Gather	2D	2D	0.06
bilateralFilter	Preprocess	Stencil	2D	2D	33.68
halfSample	Track	Stencil	2D	2D	0.05
depth2vertex	Track	Map	2D	2D	0.11
vertex2normal	Track	Stencil	2D	2D	0.27
track	Track	Map/Gather	2D	2D	4.72
reduce	Track	Reduction	2D	6x6	2.99
solve	Track	Sequential	6x6	6x1	0.02
integrate	Integrate	Map/Gather	2D/3D	3D	12.85
raycast	Raycast	Search/Stencil	2D/3D	2D	35.87
renderDepth	Rendering	Map	2D	2D	0.12
renderTrack	Rendering	Map	2D	2D	0.06
renderVolume	Rendering	Search/Stencil	3D	2D	9.18

Platforms

Machine names TITAN		GTX870M	TK1	ODROID (XU3)	Arndale	
Machine type	Desktop	Laptop	Embedded	Embedded	Embedded	
CPU	i7 Haswell	i7 Haswell	NVIDIA 4-Plus-1	Exynos 5422	Exynos 5250	
CPU cores	4	4	4 (Cortex-A15) + 1	4 (Cortex-A15) + 4 (Cortex-A7)	2 (Cortex-A15)	
CPU GHz	3.5	2.4	2.3	1.8	1.7	
GPU	NVIDIA TITAN	NVIDIA GTX 870M	NVIDIA Tegra K1	ARM Mali-T628-MP6	ARM Mali-T604-MP4	
GPU architecture	Kepler	Kepler	Kepler	Midgard 2nd gen.	Midgard 1st gen.	
GPU FPU32s	2688	1344	192	60	40	
GPU MHz	837	941	852	600	533	
GPU GFLOPS (SP)	2250	1260	330	60+30 (72+36)	60 (71)	
Language	CUDA/OpenCL/C++	CUDA/OpenCL/C++	CUDA/C++	OpenCL/C++	OpenCL/C++	
OpenCL version	1.1	1.1	n/a	1.1	1.1	
Toolkit version	CUDA 5.5	CUDA 5.5	CUDA 6.0	Mali SDK1.1.	Mali SDK1.1	
Ubuntu OS (kernel)	13.04 (3.8.0)	14.04 (3.13.0)	14.04 (3.10.24)	14.04 (3.10.53)	12.04 (3.11.0)	

Platforms

Machine names TITAN		GTX870M	TK1	ODROID (XU3)	Arndale	
Machine type	Desktop	Laptop	Embedded	Embedded	Embedded	
CPU	i7 Haswell	i7 Haswell	NVIDIA 4-Plus-1	Exynos 5422	Exynos 5250	
CPU cores	4	4	4 (Cortex-A15) + 1	4 (Cortex-A15) + 4 (Cortex-A7)	2 (Cortex-A15)	
CPU GHz	3.5	2.4	2.3	1.8	1.7	
GPU	NVIDIA TITAN	NVIDIA GTX 870M	NVIDIA Tegra K1	ARM Mali-T628-MP6	ARM Mali-T604-MP4	
GPU architecture	Kepler	Kepler	Kepler	Midgard 2nd gen.	Midgard 1st gen.	
GPU FPU32s	2688	1344	192	60	40	
GPU MHz	837	941	852	600	533	
GPU GFLOPS (SP)	2250	1260	330	60+30 (72+36)	60 (71)	
Language	CUDA/OpenCL/C++	CUDA/OpenCL/C++	CUDA/C++	OpenCL/C++	OpenCL/C++	
OpenCL version	1.1	1.1	n/a	1.1	1.1	
Toolkit version	CUDA 5.5	CUDA 5.5	CUDA 6.0	Mali SDK1.1.	Mali SDK1.1	
Ubuntu OS (kernel)	13.04 (3.8.0)	14.04 (3.13.0)	14.04 (3.10.24)	14.04 (3.10.53)	12.04 (3.11.0)	


```
hickory% make 2.opencl.log
LD_PRELO D=./build/kfusion/thirdparty/liboclwrapper.so ./build/kfusion/kfusion-benchmark-opencl -s 4.8 -p 0.34,0.5,0.24 -z 4 -c 2 -r 2 -k 481.2,480,320,240 -i living_room_traj2_tencl.log 2> oclwrapper.2.opencl.log
End of file(garbage found).
cat oclwrapper.2.opencl.log | grep -E ".+ [0-9]+ [0-9]+" | cut -d" " -f1,4 > kernels.2.opencl.log
./kfusion/thirdparty/checkPos.py benchmark.2.opencl.log livingRoom2.gt.freiburg > resume.2.opencl.log
./kfusion/thirdparty/checkKernels.py kernels.2.opencl.log >> resume.2.opencl.log
```

For benchmarking purposes, SSH and post-processing tools friendly

Easy

run

make 2.opencl.log

encl.log 2> oclwrapper.2.opencl.log

End of file(garbage found).

```
cat oclwrapper.2.opencl.log |grep -E ".+ [0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     run
./kfusion/thirdparty/checkPos.py benchmark.2.opencl.log livingRoom2.gt.freiburg > resume.2.opencl.log
./kfusion/thirdparty/checkKernels.py kernels.2.opencl.log >> resume.2.opencl.log
hickory%
                               acquisition
                                                                                                                                                 tracking
                                                                                                                                                                                                                                                                                                                                                                                                                                              total
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 tracked
                                                                                          preprocessing
                                                                                                                                                                                                           integration
                                                                                                                                                                                                                                                                    raycasting
                                                                                                                                                                                                                                                                                                                             rendering
                                                                                                                                                                                                                                                                                                                                                                                      computation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          inte
  grated
                                0.003564
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.000000
                                                                                         0.000451
                                                                                                                                                 0.001622
                                                                                                                                                                                                          0.000461
                                                                                                                                                                                                                                                                    0.000002
                                                                                                                                                                                                                                                                                                                            0.001124
                                                                                                                                                                                                                                                                                                                                                                                     0.002536
                                                                                                                                                                                                                                                                                                                                                                                                                                             0.007223
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.0000
                                0.002724
                                                                                         0.000352
                                                                                                                                                 0.000903
                                                                                                                                                                                                          0.000467
                                                                                                                                                                                                                                                                    0.000001
                                                                                                                                                                                                                                                                                                                            0.000212
                                                                                                                                                                                                                                                                                                                                                                                    0.001722
                                                                                                                                                                                                                                                                                                                                                                                                                                             0.004658
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.000000
                                0.002697
                                                                                         0.000336
                                                                                                                                                 0.000904
                                                                                                                                                                                                          0.000459
                                                                                                                                                                                                                                                                    0.000001
                                                                                                                                                                                                                                                                                                                            0.000212
                                                                                                                                                                                                                                                                                                                                                                                    0.001701
                                                                                                                                                                                                                                                                                                                                                                                                                                             0.004611
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Raw
                                0.002663
                                                                                         0.000335
                                                                                                                                                 0.000905
                                                                                                                                                                                                          0.000467
                                                                                                                                                                                                                                                                    0.000604
                                                                                                                                                                                                                                                                                                                            0.000219
                                                                                                                                                                                                                                                                                                                                                                                     0.002311
                                                                                                                                                                                                                                                                                                                                                                                                                                             0.005193
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.000000
```

LD_PRELOAD=./build/kfusion/thirdparty/liboclwrapper.so ./build/kfusion/kfusion-benchmark-opencl -s 4.8 -p 0.34,0.5,0.24 -z 4 -c 2 -r 2 -k 481.2,480,320,240 -i living_room_traj2_

For benchmarking purposes, SSH and post-processing tools friendly

data

Easy

```
hickory% make 2.opencl.log

LD_PRELO_ND=./build/kfusion/thirdparty/liboclwrapper.so ./build/kfusion/kfusion-benchmark-opencl -s 4.8 -p 0.34,0.5,0.24 -z 4 -c 2 -r 2 -k 481.2,480,320,240 -i living_room_traj2_c EASY encl.log 2> oclwrapper.2.opencl.log

End of file(garbage found).

cat oclwrapper.2.opencl.log |grep -E ".+ [0-9]+ [0-9]+ [0-9]+" |cut -d" " -f1,4 > kernels.2.opencl.log
./kfusion/thirdparty/checkPos.py benchmark.2.opencl.log livingRoom2.gt.freiburg > resume.2.opencl.log
./kfusion/thirdparty/checkKernels.py kernels.2.opencl.log >> resume.2.opencl.log
hickory%
```

frame	acquisition	preprocessing	tracking	integration	raycasting	rendering	computation	total	X	Υ	Z	tracked	inte
grated	0.003564	0.000451	0.001622	0.000461	0.000002	0.001124	0.002536	0.007223	0.0000	0.00000	0.000000	a	1
1	0.002724	0.000352	0.000903	0.000467	0.000001	▲0.000212	0.001722	0.004658	0.0000	0.000000	0.000000	0	1
2	0.002697	0.000336	0.000904	0.000459	0.000001	0.000212	0.001701	0.004611			0.000000	0	1
3	0.002663	0.000335	0.000905	0.000467	0.000604	.000219	0.002311	0.005193	Ray	///	0.000000	0	1

```
Get kfusion output data.
2 Skip kfusion line:
3 Skip nuim line:
                                                                               Sum
4 kfusion file: Valid frames 882 dropped frames: 0
5 kfusion result
                        : 882 positions.
6 NUIM result
                      : 880 positions.
                                                                                 up
7 Working position is: 880
8 Untracked frames: 0
9 Shift kfusion trajectory...
11 A detailed statistical analysis is provided.
12 All durations are in seconds and the absolute trajectory error (ATE) is
                                                                           ₁ centimeters.
                          Min: 0.000000 Max: 0.049309 Mean: 0.020662
                                                                                  Total: 18.18239335
                   ATE
           acquisition
                          Min: 0.000056 Max: 0.009033 Mean: 0.002044
                                                                                  Total: 1.80289800
15
                                                                                  Total: 5.19872500
           computation
                          Min : 0.001701
                                          Max : 0.009234
16
                                                                                  Total: 0.22773500
           integration
                          Min : 0.000001
                                          Max : 0.000821
17
         preprocessing
                          Min : 0.000284
                                          Max : 0.001884
                                                          Mean : 0.000441
                                                                                  Total: 0.38904600
18
                                                                                  Total: 1.18644400
             raycasting
                          Min : 0.000001
                                          Max : 0.003313
                                                          Mean : 0.001345
19
                                                                                  Total: 0.50420900
                          Min : 0.000201
                                          Max : 0.003452
             rendering
                                                          Mean : 0.000572
20
             total
                          Min : 0.003882
                                          Max : 0.020054
                                                          Mean
                                                               : 0.008510
                                                                                  Total: 7.50584700
              tracking
                          Min : 0.000903
                                          Max: 0.006743
                                                          Mean
                                                               : 0.003850
                                                                                  Total: 3.39543600
22 Get SlamBench data.
           ResetVolume
                          Count: 1
                                                : 401056
                                                                : 401056
                                                                                : 401056.000000
      bilateral_filter
                          Count : 882
                                                : 139520
                                                                : 205632
                                                                                : 159880.199546
                                                                                                  Total: 141014336
25
                                                : 5440
                                                                : 48384
                                                                                                  Total: 28008352
          depth2vertex
                          Count : 2646
                                                                                : 10585.167045
26
                                                : 6624
                                                                                                  Total: 16840128
      halfSampleRobust
                          Count : 1764
                                                                : 328480
                                                                                : 9546.557823
27
                                                : 270880 Max
                                                                : 793664
                          Count : 443
                                                                                : 485648.469526
                                                                                                  Total: 215142272
             integrate
                                          Min
28
                          Count : 882
                                          Min
                                                : 6912
                                                                : 13632
                                                                                : 8977.306122
                                                                                                  Total: 7917984
             mm2meters
29
                          Count : 879
                                          Min
                                                : 435584
                                                                : 3284768
                                                                                  Mean : 1323028.423208 Total : 1162941984
               raycast
30
                                                : 31488
                reduce
                          Count: 12117
                                          Min
                                                                : 523488
                                                                               : 138305.687546
                                                                                                  Total: 1675850016
                                                                          Mean
                                                : 9568
                                                                : 39904
           renderDepth
                          Count : 882
                                          Min
                                                                                : 12002.975057
                                                                                                  Total: 10586624
           renderTrack
                          Count : 882
                                                : 16608
                                                                : 33088
                                                                               : 18716.081633
                                                                                                  Total: 16507584
                                          Min
           renderVolume
                          Count : 221
                                                : 479840
                                                                : 3143200
                                                                                  Mean : 1338055.819005 Total : 295710336
                 track
                          Count: 12117
                                          Min
                                                : 13472
                                                                : 129344
                                                                               : 51505.231988
                                                                                                  Total: 624088896
         vertex2normal
                          Count : 2646
                                                : 8544
                                                                : 73504
                                                                               : 22275.362056
                                                                                                  Total: 58940608
```

For benchmarking purposes, SSH and post-processing tools friendly

data


```
make 2.opencl.log
                                                                                                                                                                                                                                                                                                         Easy
LD_PRELOAD=./build/kfusion/thirdparty/liboclwrapper.so ./build/kfusion/kfusion-benchmark-opencl -s 4.8 -p 0.34,0.5,0.24 -z 4 -c 2 -r 2 -k 481.2,480,320,240 -i living_room_traj2_v
encl.log 2> oclwrapper.2.opencl.log
End of file(garbage found).
cat oclwrapper.2.opencl.log |grep -E ".+ [0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]
                                                                                                                                                                                                                                                                                                           run
./kfusion/thirdparty/checkPos.py benchmark.2.opencl.log livingRoom2.gt.freiburg > resume.2.opencl.log
./kfusion/thirdparty/checkKernels.py kernels.2.opencl.log >> resume.2.opencl.log
              acquisition
                                                                tracking
                                                                                                                                                                                              total
                                                                                                                                                                                                                                                                                                   tracked
                                       preprocessing
                                                                                         integration
                                                                                                                   raycasting
                                                                                                                                            rendering
                                                                                                                                                                     computation
                                                                                                                                                                                                                                                                                                                            inte
              0.003564
                                                                0.001622
                                                                                                                                                                     0.002536
                                                                                                                                                                                                                       0.0000
                                                                                                                                                                                                                                                0.000000
                                                                                                                                                                                                                                                                          0.000000
                                       0.000451
                                                                                         0.000461
                                                                                                                   0.000002
                                                                                                                                            0.001124
                                                                                                                                                                                              0.007223
                                                                                                                                                                                                                       0.0000
              0.002724
                                       0.000352
                                                                0.000903
                                                                                         0.000467
                                                                                                                   0.000001
                                                                                                                                          ▲0.000212
                                                                                                                                                                    0.001722
                                                                                                                                                                                              0.004658
                                                                                                                                                                                                                                               0.000000
                                                                                                                                                                                                                                                                         0.000000
                                                                                                                                                                                                                                                                                                                            1
              0.002697
                                       0.000336
                                                                0.000904
                                                                                         0.000459
                                                                                                                   0.000001
                                                                                                                                           0.000212
                                                                                                                                                                    0.001701
                                                                                                                                                                                              0.004611
                                                                                                                                                                                                                                                                         0.000000
                                                                                                                                                                                                                                                                                                                            1
                                                                                                                                                                                                                               Raw
              0.002663
                                       0.000335
                                                                0.000905
                                                                                         0.000467
                                                                                                                   0.000604
                                                                                                                                              .000219
                                                                                                                                                                     0.002311
                                                                                                                                                                                              0.005193
                                                                                                                                                                                                                                                                         0.000000
                                                                                                                                                                                                                               data
      Get kfusion output data.
   2 Skip kfusion line:
   3 Skip nuim line:
                                                                                                                                   Sum
   4 kfusion file: Valid frames 882 dropped frames: 0
   5 kfusion result
                                          : 882 positions.
   6 NUIM result
                                      : 880 positions.
                                                                                                                                      up
   7 Working position is: 880
   8 Untracked frames: 0
   9 Shift kfusion trajectory...
      All durations are in seconds and the absolute trajectory error (ATE) is
                                                                                                                             centimeters.
                                            Min: 0.000000 Max: 0.049309 Mean: 0.020662
                                                                                                                                       Total: 18.18239335
                                  ATE
                     acquisition
                                             Min : 0.000056
                                                                      Max: 0.009033 Mean: 0.002044
                                                                                                                                       Total: 1.80289800
                                                                                                                                       Total: 5.19872500
                     computation
                                             Min : 0.001701
                                                                      Max : 0.009234
                                                                                                                                       Total: 0.22773500
                     integration
                                            Min : 0.000001
                                                                      Max : 0.000821
                                                                                                Mean: 0.000258
                                                                                                                                                                                                          High-level blocks statistics
                 preprocessing
                                            Min : 0.000284
                                                                      Max : 0.001884
                                                                                                Mean : 0.000441
                                                                                                                                       Total: 0.38904600
                                                                                                                                       Total: 1.18644400
                                             Min : 0.000001
                                                                      Max : 0.003313
                                                                                                Mean : 0.001345
                       raycasting
                                                                                                                                       Total: 0.50420900
                                             Min : 0.000201
                                                                      Max : 0.003452
                                                                                                Mean : 0.000572
                        rendering
                        total
                                             Min : 0.003882
                                                                      Max : 0.020054
                                                                                                Mean
                                                                                                        : 0.008510
                                                                                                                                       Total: 7.50584700
                         tracking
                                             Min : 0.000903
                                                                      Max: 0.006743
                                                                                                Mean
                                                                                                        : 0.003850
                                                                                                                                       Total: 3.39543600
                     ResetVolume
                                             Count: 1
                                                                                : 401056
                                                                                                          : 401056
                                                                                                                                    : 401056.000000
                                                                                                                                                                 Total: 401056
             bilateral_filter
                                             Count : 882
                                                                                : 139520
                                                                                                          : 205632
                                                                                                                                    : 159880.199546
                                                                                                                                                                 Total: 141014336
 25
                                                                                : 5440
                                                                                                          : 48384
                                                                                                                                    : 10585.167045
                                                                                                                                                                 Total: 28008352
                   depth2vertex
                                             Count : 2646
 26
                                                                                : 6624
                                                                                                          : 328480
                                                                                                                                    : 9546.557823
                                                                                                                                                                 Total: 16840128
             halfSampleRobust
                                             Count : 1764
                                                                      Min
 27
                                             Count : 443
                                                                                : 270880
                                                                                                          : 793664
                                                                                                                                    : 485648.469526
                                                                                                                                                                 Total: 215142272
                        integrate
                                                                      Min
 28
                                             Count : 882
                                                                      Min
                                                                                : 6912
                                                                                                          : 13632
                                                                                                                                    : 8977.306122
                                                                                                                                                                 Total: 7917984
                        mm2meters
  29
                                             Count : 879
                                                                       Min
                                                                                : 435584
                                                                                                          : 3284768
                                                                                                                                       Mean : 1323028.423208 Total : 1162941984
                           raycast
  30
                                                                                : 31488
                             reduce
                                             Count: 12117
                                                                      Min
                                                                                                Max
                                                                                                          : 523488
                                                                                                                                    : 138305.687546
                                                                                                                                                                 Total : 1675850016
                                                                                                                          Mean
                                                                                : 9568
                                                                                                          : 39904
                                                                                                                                    : 12002.975057
                                                                                                                                                                 Total: 10586624
                     renderDepth
                                             Count : 882
                                                                       Min
                                                                                                 Max
                     renderTrack
                                             Count : 882
                                                                                : 16608
                                                                                                          : 33088
                                                                                                                                   : 18716.081633
                                                                                                                                                                 Total: 16507584
                                                                       Min
                   renderVolume
                                             Count : 221
                                                                       Min
                                                                                : 479840
                                                                                                          : 3143200
                                                                                                                                       Mean : 1338055.819005 Total : 295710336
                               track
                                             Count: 12117
                                                                      Min
                                                                                : 13472
                                                                                                Max
                                                                                                          : 129344
                                                                                                                                   : 51505.231988
                                                                                                                                                                 Total: 624088896
                                                                                                                                                                 Total: 58940608
                 vertex2normal
                                             Count : 2646
                                                                      Min
                                                                                : 8544
                                                                                                          : 73504
                                                                                                                          Mean
                                                                                                                                   : 22275.362056
```

```
make 2.opencl.log
LD_PRELOAD=./build/kfusion/thirdparty/liboclwrapper.so ./build/kfusion/kfusion-benchmark-opencl -s 4.8 -p 0.34,0.5,0.24 -z 4 -c 2 -r 2 -k 481.2,480,320,240 -i living_room_traj2_v
                                                                                                                                                                                                                                                                                                                                   Easy
encl.log 2> oclwrapper.2.opencl.log
End of file(garbage found).
cat oclwrapper.2.opencl.log |grep -E ".+ [0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]+[0-9]
                                                                                                                                                                                                                                                                                                                                     run
./kfusion/thirdparty/checkPos.py benchmark.2.opencl.log livingRoom2.gt.freiburg > resume.2.opencl.log
./kfusion/thirdparty/checkKernels.py kernels.2.opencl.log >> resume.2.opencl.log
               acquisition
                                                                     tracking
                                                                                                                                                                                                               total
                                                                                                                                                                                                                                                                                                                            tracked
                                           preprocessing
                                                                                                 integration
                                                                                                                             raycasting
                                                                                                                                                        rendering
                                                                                                                                                                                    computation
                                                                                                                                                                                                                                                                                                                                                       inte
               0.003564
                                                                      0.001622
                                                                                                                                                                                   0.002536
                                                                                                                                                                                                                                          0.0000
                                                                                                                                                                                                                                                                      0.000000
                                                                                                                                                                                                                                                                                                 0.000000
                                           0.000451
                                                                                                 0.000461
                                                                                                                             0.000002
                                                                                                                                                        0.001124
                                                                                                                                                                                                              0.007223
                                                                                                                                                                                                                                          0.0000
                                                                                                                                                                                                                                                                                                 0.000000
               0.002724
                                           0.000352
                                                                      0.000903
                                                                                                 0.000467
                                                                                                                             0.000001
                                                                                                                                                      ▲0.000212
                                                                                                                                                                                   0.001722
                                                                                                                                                                                                              0.004658
                                                                                                                                                                                                                                                                    0.000000
                                                                                                                                                                                                                                                                                                                                                       1
               0.002697
                                           0.000336
                                                                      0.000904
                                                                                                 0.000459
                                                                                                                             0.000001
                                                                                                                                                        0.000212
                                                                                                                                                                                   0.001701
                                                                                                                                                                                                              0.004611
                                                                                                                                                                                                                                                                                                0.000000
                                                                                                                                                                                                                                                                                                                                                       1
                                                                                                                                                                                                                                                   Raw
               0.002663
                                           0.000335
                                                                      0.000905
                                                                                                 0.000467
                                                                                                                             0.000604
                                                                                                                                                          .000219
                                                                                                                                                                                   0.002311
                                                                                                                                                                                                              0.005193
                                                                                                                                                                                                                                                                                                 0.000000
                                                                                                                                                                                                                                                   data
      Get kfusion output data.
   2 Skip kfusion line:
   3 Skip nuim line:
                                                                                                                                              Sum
   4 kfusion file: Valid frames 882 dropped frames: 0
   5 kfusion result
                                             : 882 positions.
   6 NUIM result
                                          : 880 positions.
                                                                                                                                                  up
   7 Working position is: 880
   8 Untracked frames: 0
   9 Shift kfusion trajectory...
       All durations are in seconds and the absolute trajectory error (ATE) is
                                                                                                                                        centimeters.
                                                                                                                                                                                                                                                                                                                                                ses,
                                                 Min: 0.000000 Max: 0.049309 Mean: 0.020662
                                                                                                                                                   Total: 18.18239335
                                    ATE
                      acquisition
                                                 Min : 0.000056
                                                                            Max : 0.009033
                                                                                                                                                   Total: 1.80289800
                                                                                                                                                   Total: 5.19872500
                      computation
                                                 Min : 0.001701
                                                                            Max : 0.009234
                                                                                                                                                   Total: 0.22773500
                      integration
                                                 Min : 0.000001
                                                                            Max : 0.000821
                                                                                                        Mean: 0.000258
                                                                                                                                                                                                                            High-level blocks statistics
                   preprocessing
                                                 Min : 0.000284
                                                                            Max: 0.001884
                                                                                                        Mean : 0.000441
                                                                                                                                                   Total: 0.38904600
                                                                                                                                                   Total: 1.18644400
                                                 Min : 0.000001
                                                                            Max : 0.003313
                                                                                                        Mean : 0.001345
                         raycasting
                                                                                                                                                   Total: 0.50420900
                                                 Min : 0.000201
                                                                            Max : 0.003452
                                                                                                                 : 0.000572
                          rendering
                                                                                                         Mean
                          total
                                                 Min : 0.003882
                                                                            Max : 0.020054
                                                                                                         Mean
                                                                                                                 : 0.008510
                                                                                                                                                   Total: 7.50584700
                            tracking
                                                 Min : 0.000903
                                                                            Max: 0.006743
                                                                                                         Mean
                                                                                                                 : 0.003850
                                                                                                                                                   Total: 3.39543600
                                                                                                                                                                               Total : 401056
                      ResetVolume
                                                 Count: 1
                                                                                       : 401056
                                                                                                                    : 401056
                                                                                                                                               : 401056.000000
              bilateral_filter
                                                 Count : 882
                                                                                       : 139520
                                                                                                                   : 205632
                                                                                                                                                : 159880.199546
                                                                                                                                                                               Total: 141014336
  25
                     depth2vertex
                                                 Count : 2646
                                                                                       : 5440
                                                                                                                   : 48384
                                                                                                                                               : 10585.167045
                                                                                                                                                                               Total: 28008352
                                                                                       : 6624
                                                                                                                   : 328480
                                                                                                                                               : 9546.557823
                                                                                                                                                                               Total: 16840128
  26
              halfSampleRobust
                                                 Count : 1764
                                                                                       : 270880
                                                                                                                   : 793664
                                                                                                                                               : 485648.469526
  27
                                                 Count : 443
                                                                                                                                                                               Total: 215142272
                          integrate
  28
                                                 Count : 882
                                                                            Min
                                                                                       : 6912
                                                                                                                   : 13632
                                                                                                                                               : 8977.306122
                                                                                                                                                                               Total: 7917984
                          mm2meters
```

Mean : 1323028.423208 Total : 1162941984

Mean : 1338055.819005 Total : 295710336

Total: 1675850016

Total: 10586624

Total: 16507584

Total: 624088896

Total: 58940608

: 138305.687546

: 12002.975057

: 18716.081633

: 51505.231988

: 22275.362056

29

30

31

33

Count : 879

Count : 882

Count : 882

Count : 221

Count: 12117

Count : 2646

Count: 12117

raycast

renderDepth

renderTrack

renderVolume

vertex2normal

reduce

track

Min

Min

Min

Min

Min

Min

: 435584

: 31488

: 16608

: 479840

: 13472

: 8544

Max

: 9568

: 3284768

: 523488

: 39904

: 33088

: 3143200

: 129344

: 73504

Mean

Mean

Kernels statistics

"Performance": energy (ODROID)

On-board voltage/current sensors and split power rails: power measured individually on big (A15), LITTLE (A7), GPU and DRAM

"Performance": energy (ODROID)

On-board voltage/current sensors and split power rails: power measured individually on big (A15), LITTLE (A7), GPU and DRAM

Energy usage per frame, mean time as marked

Copyrights

- Author: unknown. Microsoft Kinect camera. [Image]. Retrieved from http://channel9.msdn.com/Series/KinectSDKQuickstarts/
 Understanding-Kinect-Hardware
- Author: Dyson Ltd. Dyson 360 Eye. [Photograph]. Retrieved from http://www.blessthisstuff.com/stuff/technology/misc-gadgets/dyson-360-eye/
- Author: Google Inc. Google Tango project. [Image]. Retrieved from http://blogthinkbig.com/en/project-tango-googles-mobile-kinect/
- Author: unknown. Audi autonomous car. [Photograph]. Retrieved from http://www.wired.com/2010/06/audis-robotic-car-looks-hot-in-old-school-livery/
- Author: ExtremeTech. Google Shaft robot. [Photograph]. Retrieved from http://www.extremetech.com/extreme/173318-google-wins-darpas-robotics-challenge-wonders-if-it-was-a-good-idea-to-turn-down-future-military-contracts
- Author: HardKernel. ODROID-XU3 board. [Photograph]. Retrieved from http://www.hardkernel.com/main/products/prdt_info.php?
 q code=G135235611947
- Author: PC Specialist Ltd. Vortex series laptop. [Photograph]. Retrieved from https://www.pcspecialist.co.uk/forums/showthread.php?23366-My-new-beast-15-6-quot-Vortex-III
- Author: Arndale.org. Arndale board. [Photograph]. Retrieved from http://www.arndaleboard.org/wiki/index.php/Main_Page
- Author: Unknown. Chip. [Image]. Retrieved from https://cajalesygalileos.wordpress.com/2013/06/23/un-chip-ultrasensible-identifica-15-cepas-de-gripe/
- Author: Unknown. Eye. [Image]. Retrieved from http://gallery.digitalculture.asu.edu/?/interactive-environments/computer-vision/
- Author: Unknown. Compiler. [Image]. Retrieved from http://d3q6qq2zt8nhwv.cloudfront.net/107/large-icon.png

