
SLAMBench, a performance and 
accuracy benchmarking 
methodology for SLAM

Luigi Nardi, Imperial College London 
@La Sapienza, December 19th 2014

1

In collaboration with:  
Bruno Bodin, M Zeeshan Zia, John Mawer, Andy Nisbet, Paul H J Kelly, Andrew J 

Davison, Mikel Luján, Michael F P O’Boyle, Graham Riley, Nigel Topham, Steve Furber



Luigi Nardi - Imperial College London

Outline

• SLAM application 
• Holistically execution time/energy/accuracy: SLAMBench
• Experimental results 
• Conclusion and opportunities

2



Luigi Nardi - Imperial College London

Outline

• SLAM application
• Holistically execution time/energy/accuracy: SLAMBench
• Experimental results 
• Conclusion and opportunities

3



Luigi Nardi - Imperial College London

Simultaneous Localisation 
And Mapping (SLAM)
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Dense SLAM implementation:  
KinectFusion

[Newcombe et al. ICCV 2011]
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Localisation:  
estimates the location and pose

Fuses the stream depth frames 
into a 3D geometric map

Voxel grid: Truncated  
Signed Distance Function (TSDF)  

to represent 3D surfaces  
[Curless and Levoy 1996]

 3D surfaces recovered by raycasting  
at the zero crossings of the TSDF
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ICP registration

[Rusinkiewicz and Levoy 2001]

• Iterative Closest Point (ICP):  
rigid body transform (6 DoF) from frame k-1 to frame k. 

• Iterative algorithm computing an energy function minimisation
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KinectFusion pipeline
• First dense monocular SLAM algorithm [Newcombe et al. ISMAR 2011] 

• Adopted as a major building block in more recent SLAM systems  

• Implementation based on [Reitmayr 2011] CUDA implementation
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Kernels 

Compiler/Runtime Hardware 

Architectures Correctness Performance Metrics 

bilateralFilter (..) 
halfSampleRobust (..) 
renderVolume (..) 
integrate (..) 

: 
: 

Frame rate 

Accuracy 

Energy 

Computer  
Vision 

ICL-NUIM Dataset 

More holistic approach to SLAM “performance”: SLAMBench
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How to measure SLAM “Performance”?
1. Computation depends on: 

• Images acquired  

• Way the camera is moved  

• Processing frame rate  
(depends on the hardware capability)

2. Numerical approximations and iterative 
algorithms:  

• Small angle approximation 

• Early exit condition (rigid body transform) 

• Reduction of l2−norms (non associative)
10

Need for reproducibility:

Pre-recorded scenes 

Process-every-frame mode

Need for accuracy check:
ICL-NUIM dataset  

(frames and ground truth) 
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ICL-NUIM dataset

• ICL-NUIM synthetic dataset  
[Handa et al. 2014]  

• RGB-D sequences  
• Absolute Trajectory Error (ATE):  

ground truth and estimated trajectory error 
• Microsoft’s Kinect sensor modelled noise

11
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SLAMBench framework
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SLAMBench GUI
Camera input Restart Pause Step 

Reset 
volume 

Toggle 
viewpoint 
of 3D model  

RGB camera
(not used)

Depth camera

Tracked 
points

3D model

Performance
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SLAMBench kernels
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• Sanity check: similar error on all platforms

Application settings (default):  
vol=4.8x4.8x4.8 m3, res=256x256x256, µ=0.1cm, CR=320x240, IR=2, RR=4, TR=1, ICP=1e-5

Absolute Trajectory Error (ATE) in cm:
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“Performance”: accuracy
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• Sanity check: similar error on all platforms

Application settings (default):  
vol=4.8x4.8x4.8 m3, res=256x256x256, µ=0.1cm, CR=320x240, IR=2, RR=4, TR=1, ICP=1e-5

Absolute Trajectory Error (ATE) in cm:

ATE enables aggressive design-space exploration: 
Algorithmic, compiler and hardware parameters
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“Performance”: execution time
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On-board voltage/current sensors and split power rails:  
power measured individually on big (A15), LITTLE (A7), GPU and DRAM
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“Performance” power (ODROID-XU3)
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On-board voltage/current sensors and split power rails:  
power measured individually on big (A15), LITTLE (A7), GPU and DRAM
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Overview

• SLAM application 
• Holistically execution time/energy/accuracy: SLAMBench 
• Experimental results  
• Conclusion and opportunities
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SLAMBench today

• Publicly released 13/11/2014:  
http://apt.cs.manchester.ac.uk/projects/PAMELA/tools/SLAMBench/ 

• Early adopters: ARM, IBM Watson, LSU, SUTD, … 

• Number of downloads: 120 

• Submitted paper [Nardi et al. 2015]:  
"Introducing SLAMBench, a performance and accuracy benchmarking methodology for SLAM"  
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• Fair comparison of accelerators, software tools and novel algorithms in dense SLAM

• "Performance" results on state-of-the-art desktop, laptop and embedded devices:  

• 4 configurations super real-time FPS (135 FPS peak performance on TITAN) 

• Tegra K1 achieves 22 FPS 

• ODROID-XU3 achieves 5.5 FPS for 2.1 Watts dissipation. Suitable for robotics  

• GPGPU for SLAM leads to high-efficiency

• SLAMBench kernels characterisation: i.e. parallel patterns and weights

• This research paves the way for systematic holistic evaluation using SLAMBench 
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Chip design and simulation 
tools, e.g. GEM5

SLAMBench evolution:
• point-based fusion 
• octrees
• voxel hashing-based
• moving volumes
Kernels can be improved individually

Domain-specific language targeting  
high performance, low-power dense SLAM

Design-space exploration, e.g. algorithmic, 
compiler and hardware  parameters

SLAMBench kernels tuning,  e.g. 
vectorisation, GPU occupancy, auto-tuning

• CPU/GPU mapping/partitioning
• Just-in-time compilation
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PAMELA project
Panoramic Approach to the Many-corE LAndscape -  
from application to end-device: a holistic approach
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Textual User Interface

For benchmarking purposes,  
SSH and post-processing  
tools friendly

Easy 
run

Raw 
data

Sum 
up

High-level blocks statistics

Kernels statistics
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