
University of Rome �La Sapienza�

Department of engineering

Specialization degree

Computer science,

Architecture and distributed systems

Modelling attack processes on the
Internet, based on honeypot

collected data

Development of a high-interaction honeypot

data processing system

Assistant supervisors Supervisor Candidate
Eric Alata Bruno Ciciani Luigi Nardi

Mohamed Kaâniche
Karama Kanoun Reviewer

Francesco Quaglia

1

Abstract

Honeypots are more and more used to collect data on malicious activities on
the internet and to better understand the strategies and techniques used by
attackers to compromise target systems. Analysis and modeling methodolo-
gies are needed to support the characterization of attack processes based on
the data collected from the honeypots.

This work is addressed to synthesize the attacks in order to better an-
alyze them. It is a help to the research activity to have more tools for
characterizing attack processes and scenarios, more details about what has
been achieved during the observed period.

Security results will be obtained forging the existing data with the new
retrieving application.

Acknowledgements

The work presented in this book has been realized during a six-months in-
ternship at LAAS-CNRS, �Laboratoire d'Analyse et d'Architecture des Sys-
tèmes du Centre National de la Recherche Scienti�que� of Toulouse, France,
in the group TSF, �Tolérance aux fautes et Sûreté de Fonctionnement Infor-
matique�.

A special thanks goes to my Italian supervisor professor Bruno Ciciani
and to all the TSF sta�, in particular to Mohamed Kaâniche and Karama
Kanoun, research directors, for giving me the valuable opportunity to make
this experience and take advantage of it.

All my gratitude is for Eric Alata, PhD Student at LAAS-CNRS, whose
work and advices have been precious for my internship.

2

Contents

1 Introduction 5
1.1 Research context . 5
1.2 High-interaction honeypot data processing system 7
1.3 Structure of the thesis . 9

2 Background and environment 11
2.1 LAAS CNRS . 11
2.2 TSF group: Dependable Computing and Fault Tolerance . . . 12
2.3 Background . 14

2.3.1 Introduction . 14
2.3.2 Related work . 16
2.3.3 Architecture of the honeypot 17
2.3.4 Experimental results 21
2.3.5 Behavior of attackers 26
2.3.6 Conclusion . 30

3 Honeypot data processing system 32
3.1 Architecture . 33
3.2 Use Case speci�cation . 35
3.3 Class diagram . 37

3.3.1 General . 37
3.3.2 Server side . 37
3.3.3 Client side . 40

4 Functionalities 50
4.1 Dictionary attack . 50

4.1.1 What is a dictionary attack? 50
4.1.2 Dictionary attack functionality 51
4.1.3 Table representation of the data 53
4.1.4 Graphic representation of the data 54

4.2 Terminal information . 57
4.2.1 What is a terminal? 57
4.2.2 Terminal information functionality 59

3

CONTENTS 4

5 Protocol communication 62
5.1 General . 62
5.2 Dictionary attack . 64
5.3 Terminal information . 65
5.4 Data testing . 67

6 SQL query processing 70
6.1 General . 70
6.2 Dictionary attack . 72
6.3 Example: test . 74

6.3.1 Special cases . 78
6.4 Implementation environment: JDBC driver 82

7 Conclusion and future work 84

A Database structure 86

B Dictionary attack query 88

C Terminal information �rst interaction 91

D Terminal information second interaction 94

E Event channel 95

F Example of dictionary 97

Bibliography 100

Chapter 1

Introduction

1.1 Research context

Computer security is the part of the computer science that deals with the
protection of the computer systems against malicious threats a�ecting their
availability, con�dentiality and integrity. The computer protection against
attacks is got acting on more levels: physical level, putting the servers in
most secure places, and logical level that obliges the authentication and the
authorization of the entity that represents the client of the system. There
are many possible techniques of attack, for this reason it is necessary to
use together di�erent defensive techniques to protect a computer system,
realizing more barriers between the attacker and the targeted host.

Honeypot In computer science, a honeypot (literally: �the honey's pot�)
it is a system, hardware or software component, used as �trap� or �bait� with
goal of collecting data about malicious attacks against computer systems.
The term �honeypot� it is often connected to Winnie the Pooh, a rag bear
that it is often found in troubles because of his greediness toward the honey.
It usually consists of a computer or a site that seems to belong to the network
and to contain precious information, instead the reality is that it is well
isolated and it has not sensitive or critical data.

The importance of a honeypot is the information that it gives on the
nature and the frequency of the network attacks. The honeypots do not
contain real information and therefore they should not be involved in any
activity; surveys in opposite sense can reveal not authorized intrusions or
malevolent in progress.
These systems can bring some risks to the network, and it must be handled
with care. If they are not well protected an attacker could use them to access
other systems.

5

CHAPTER 1. INTRODUCTION 6

Types of honeypot The Low-Interaction Honeypot are usually programs
that emulate operating systems and services. These honeypots are simple
to be installed and secure, but they can capture few information. In general
these honeypots are daemons that create some virtual hosts on the network
and they can associate to a host a multiple IP address. The hosts can be
set in order to perform an arbitrary service, i.e., an operating system; a
fundamental aspect for the study of the security is that these systems hide
the real system between those virtual.

The High-Interaction Honeypot, instead, do not emulate anything: com-
puters, applications or services are real. These honeypots are more complexes
and they involve great risks, but they succeed in capturing more information.
These honeypots allow the attacker to take possession of the host but under
a strict control of the system administrator. All the operations performed
through a remote shell, logins, execution of programs, ingoing and outgoing
packets, local time, IP addresses, are carefully recorded in a central database
that is subsequently analyzed.
The freedom left to the attacker depends from system to system.

The di�usion of the high-interaction honeypots is more limited respect
to honeypot of low-interaction because of the risks. If the attacker takes
possession of a host, he can use this resource to attack other network re-
sources for example performing a botnet attack. This risk is avoid by the
low-interaction honeypots because they do not leave a lot of liberty to the
attackers.

The CADHo project The LAAS of Toulouse, France, is a national center
of scienti�c research that carry out research on various themes like robotic,
automatic, biotechnology, space, telecommunication, software technology
and energy.

The group TSF of the LAAS treat the topic of computer security from
twenty years through an international partnership with many centers of re-
search and being part of projects like ReSIST that also has partner the
university La Sapienza of Rome.

During the last decade, the clients of the Internet are facing a great
variety of malevolent threats like virus, worm, denial of service attacks, at-
tempts of phishing, etc. A lot of publications, o�er useful information on
the new vulnerabilities and on the security threats, with an indication of
their gravities and an evaluation on the potential damages that can cause.
These initiatives serve for studying the malwares and the propagation of the
attacks in Internet, therefore, they give some information about the identi-
�cation and the analysis of malevolent activity in Internet.

Nevertheless, such information are not enough to model the mechanisms
of attack and to analyze their impact on the safety of the attacked machine.
The project CADHo (Collection and Analysis of Dates from Honeypots)

CHAPTER 1. INTRODUCTION 7

inside ReSIST, in which we are involved, it is complementary to these ini-
tiatives and it is aimed to �ll the gap of the insu�ciency of the information.

The institute Eurécom at Nice is the in charged institute, on the project
CADHo, of the installation of the greatest part of the honeypots. Until
today around 40 honeypot platforms has been deployed in university and
enterprises, 30 countries have involved in the 5 continents.

The project CADHo has di�erent international partners and all the com-
ponents of this group have installed some honeypots inside their domains. A
second way for a honeypot installation is through organizations not directly
connected with the project CADHo whether to have more security informa-
tion on their system or for pure spirit of collaboration with the research, they
let to install some honeypots in their own network. Evidently in the second
case to install some high-interaction honeypots can involve some risks to the
organization because the attacker is not left impotent but he is able to act.
This is why the high-interaction honeypots do not have a big di�usion and
why Eurécom only treats low-interaction honeypot. The high-interaction
honeypots require more work and more constant attention.

Clearly the high-interaction honeypots are better to collect information
on the attack activities once that the attacker has taken the control of the
host and it tries to perform a intrusion process to increase his privilege level.
Both the two systems high and low-interaction can bring some advantages in
terms of research, both are studied in the project CADHo with the target of
building models that characterize the behavior of the attackers and a support
to the developing of new intrusion tolerant systems.

Only the group TSF of the project CADHo has deployed a high-interaction
honeypot and shares with the whole group of research the obtained results.
For the problems already mentioned it is not easy to �nd other organizations
that want to deploy the high-interaction honeypots and overall that give the
availability of some human resources1.

A lot of analyses have already been done and a lot of interesting conclu-
sions are already been published these last years regarding the low-interaction
honeypots. The high-interaction honeypots are a second stage inside the
project CADHo and they are intensely working on them in these last months.

1.2 High-interaction honeypot data processing sys-

tem

As already said, a honeypot is a machine connected to a network but that
no one is supposed to use. If a connection occurs, it must be, at best an
accidental error or, more likely, an attempt to attack the machine. The

1We do not speak here only of hardware resources, as in the case of low-interaction
honeypot, because there is the need of a rigorous and constant checking of the attacker
activities.

CHAPTER 1. INTRODUCTION 8

design of the high-interaction honeypot devloped at LAAS in the context of
the CADHo project is described in chapter 2.

Every new attempt targeting the honeypot is saved within a database
that from some months is recording a huge quantity of raw data. To retrieve
the information from this system, the team has written scripts. These scripts
are written in shell programming and the visualization is on the console. In
the current version of the prototype the analysis of the attack data, which is
the core of the CADHo project, is not very easy. An operator must execute
scripts and read the results without any possibility to have these data for-
matted in any other way he wants. The objective of our study is to develop
a data processing system that is aimed to facilitate the interaction with the
user and the analysis of the data recorded on the high-interaction honeypots.

More concretely, the aim of the project is to build a wrapper that al-
lows to retrieve these information in a more e�cient and e�ective way. The
wrapper is the high-interaction honeypot data processing system, see �gure
1.1, and it will have tools to synthesize data retrieved in a graphical way.
The legacy system is the old program, composed of scripts, that allowed to

Figure 1.1: Honeypot data processing system

retrieve the information. The legacy system will continue to work normally
without any additional constraints. Moreover we would like to develop an
application that can be used from less skilled users. An application with
graphic interface, that performs the complicated commands that an experi-
enced operator performs on a shell, makes the system more usable.

CHAPTER 1. INTRODUCTION 9

The project is oriented to the develop of two modules that allow to re-
trieve database information in two di�erent sets of data. In the future there
will be an upgrade of the software, developing more modules beginning from
the existing high-interaction honeypot data processing system.

Another important problem that the application should resolve is the
performance on the server side. We need to develop powerful SQL scripts
to get good performance2 for each functionality, as always in an optic of
improving the system usability.

The goal of this application is to help the research activity on high-
interaction honeypots, providing a tool that allows to better analyze the
recorded data.

1.3 Structure of the thesis

The chapters are structured in the following way:

• Chapter 2, Background and environment, contains a description of
the organizational structures that have welcomed my job, the LAAS
and more particularly the group TSF and a resume of the state of art
on the honeypots at the begin of the high-interaction honeypot data
processing system;

• Chapter 3, High-interaction honeypot data processing system, treats
the analysis of the application developed, the architecture, layer and
tier, the UML diagrams;

• Chapter 4, Functionalities, analyzes in detail the implemented func-
tionalities and a global vision of the application;

• Chapter 5, Protocol communication, describes in detail the communi-
cation protocol, the data exchanged for each interaction between client
and server. Here we also describe the data testing.

• Chapter 6, SQL query processing, shows all concerning the database
part of the application and the dynamic mechanism to retrieve the
SQL query scripts. Here we describe particularly the query of the
functionality called Dictionary attack with an example on a �ctitious
database.

• Appendix A, Database structure, brings the structure of the honeypot
database;

• Appendixes B, C, D, bring the scripts SQL for all the implemented
functionalities;

2The results must be get with performance in the order of the second.

CHAPTER 1. INTRODUCTION 10

• Appendix E, Event channel, shows the implementation of a key part
in the realization of the client side class diagram;

• Appendix F, Example of dictionary, represents an example of dictio-
nary used by the attackers to perform a dictionary attack.

Chapter 2

Background and environment

2.1 LAAS CNRS

History of the Laboratory for Analysis and Architecture of Systems
LAAS-CNRS has been founded in July 1967 by Professor Jean Lagasse. It
is one of the laboratories of CNRS, the French National Center for Scienti�c
Research.

LAAS is closely associated to three universities in Toulouse, Université
Paul Sabatier, Institut National Polytechnique, and Institut National des
Sciences Appliquées. The members of LAAS are : research scientists at
CNRS, faculty members, graduate and PhD students from these three uni-
versities, as well as engineers, technicians and administrative clerks at CNRS
and the universities.

LAAS originated from a scienti�c background in electrical engineering.
It has developed a wide international status in micro-electronics, in control
theory, computer science and robotics. More generally, it has played an
active role in the growth of Information and Communication Science and
Technology in France. LAAS has contributed to the development of Toulouse
as a well known international capital of aeronautics and space technologies.

Originally, the acronym LAAS meant Laboratory for Automation and
its Applications to Space. It has become now the Laboratory for Analysis
and Architecture of Systems. Its research topics, fundamental or applied,
are focused on the study of complex systems, within multidisciplinary ap-
proaches. Its has contributed to a variety of technological �elds, from space
and transport systems, to biotechnologies and health technologies, through
telecommunications, software technology and energy.

11

CHAPTER 2. BACKGROUND AND ENVIRONMENT 12

2.2 TSF group: Dependable Computing and Fault

Tolerance

TSF is the acronym of �Tolérance aux fautes et Sûreté de Fonctionnement
informatique�. The research activities conducted by this group concern the
dependability of computerized systems, which is the property allowing users
of a system to justi�ably trust the service it delivers. They take place in the
context of a continuum between work aimed at advancement of knowledge
and work in partnership with the socio-economic sector, meant at producing
new services and products.

Dependability includes various properties, i.e., availability, reliability, in-
tegrity, con�dentiality, maintainability, safety (against catastrophic failures)
and security (against non-authorized access to information). Research deals
with fault prevention, fault tolerance, fault removal and fault forecasting,
and on the formulation of the basic concepts of dependability.

Fault prevention Fault prevention aims to avoid the occurrence or intro-
duction of faults. It consists in avoiding design or manufacturing faults and
preventing faults during operation. In this context, are developed methods
for de�ning security policies, based on the identi�cation of what properties
should be implemented and what rules applications and organizations should
abide by. These properties may be con�icting (for example, con�dentiality
and availability); the suggested policy should try to solve such con�icts in
the best possible way.

Current work concerns medical and healthcare applications, which char-
acteristics are their strong need for con�dentiality, integrity and availability,
and also accountability and privacy. The methods being developed are aimed
at the de�nition of security policies adapted to the wide variety of organiza-
tions in which such applications will be implemented (hospitals, consulting
rooms, health insurance o�ces, etc.).

Fault Tolerance Fault tolerance refers to a series of techniques used to
allow a system to deliver correct service in spite of faults. Studies are centered
on distributed software techniques for tolerating physical faults, design faults
and deliberately malicious faults.

They deal with four main working areas:

• Protection of distributed applications on the Internet: servers toler-
ating both accidental and intentional faults are developed using, to
the extent that it is possible, diversi�cation of hardware platforms,
operating systems and software;

• Use of the re�ection principle for a transparent implementation of fault

CHAPTER 2. BACKGROUND AND ENVIRONMENT 13

tolerance: a multi-level approach has been de�ned and a platform de-
veloped using standard re�exive mechanisms;

• Wrapping of software executives to provide on-line checking of depend-
ability properties. The latter are speci�ed using a temporal logic mod-
eling of the target software executives. This principle has been used
for real-time microkernels and CORBA middleware.

• Protection of communications in a network of actuators: this study
concerns the future real-time control systems for civil airplanes, and
is carried out in collaboration with Airbus. Speci�c protection means
based on error detecting codes have been proposed.

Fault Removal Fault removal aims to reduce the number and severity of
faults. Research is focused on software testing. Recent studies have allowed
an extension of the domain of application of statistical testing, which is
a method for probabilistic generation of test inputs successfully applied in
earlier work.

They concern three main areas:

• Test of re�exive software: a strategy of generic and incremental tests,
based on decomposition of re�exive properties (rei�cation, intercession
and introspection), has been suggested in the context of a project with
France Telecom;

• Study of the complementarity between test and proof: a method has
been implemented for de�ning and carrying out tests using information
obtained through formal proof;

• Tests with respect to safety properties: optimization heuristics are used
to design test scenarios focused on dangerous faults.

• Testing of mobile-based applications and systems.

Fault Forecasting Fault forecasting aims at estimating the creation, exis-
tence and consequences of faults. Studies are concerned with forecasting the
consequences of physical faults, design faults and malicious faults on system
dependability. They cover both analytical and experimental evaluation.

Present work on analytical modeling is focused on developing hierarchi-
cal and compositional modeling approaches based on stochastic Petri nets,
Markov chains and their extensions, in order to support the comparative
evaluation of fault tolerant systems architectures during the design stage.

As far as experimental evaluation is concerned, two di�erent aspects are
studied: failure data analysis and controlled experiments. For the �rst one,
work focuses on developing algorithms and procedures enabling us to use
error logs from interconnected Unix and Windows systems to evaluate their

CHAPTER 2. BACKGROUND AND ENVIRONMENT 14

dependability. This study has been focused on the network of computers
available at LAAS.

Controlled experiments concern: (a) characterization of failure modes of
operating systems (Linux andWindows) and of CORBAmiddleware, and (b)
the benchmarking of the dependability of computer systems. A conceptual
framework for de�ning dependability benchmarks and benchmark prototypes
have been achieved.

As regards malicious faults, research is focused on the development of an-
alytical modeling approaches for the quantitative evaluation of security and
experimental measurement approaches based on honeypots for the collection
and analysis of real attacks on the Internet.

2.3 Background

This section presents the results obtained during this last months on the
high-interaction honeypot from the CADHo project. All these results are
discussed in the paper [1] and this is the beginning point for the development
of the data processing system.

This section is organized as follows. Subsection 2.3.1 is just an introduc-
tion to the main concept. Subsection 2.3.2 discusses some existing techniques
for developing high-interaction honeypots and the design rationales for the
solution utilized in the paper. Subsection 2.3.3 describes the proposed solu-
tion. The lessons learned from the attacks observed over a period of almost
4.5 months are discussed in subsection 2.3.4. Finally, subsection 2.3.6 o�ers
some conclusions as well as some ideas for future work.

2.3.1 Introduction

During the last decade, the Internet users have been facing a large variety
of malicious threats and activities including viruses, worms, denial of service
attacks, phishing attempts, etc. Several surveys and indicators, published
at a regular basis, provide useful information about new vulnerabilities and
security threats, with an indication of their estimated severities with respect
to the potential damage that they might cause. On the other hand, several
initiatives have been developed to monitor real world data related to malware
and attacks propagation on the Internet. Among them, can be mentioned
the Internet Motion Sensor project [2], CAIDA [3] and DShield [4]. These
projects provide valuable information for the identi�cation and analysis of
malicious activities on the Internet. Nevertheless, such information is not
su�cient to model attack processes and analyze their impact on the security
of the targeted machines. The CADHo project [5] in which we are involved
is complementary to these initiatives and is aimed at �lling such a gap by
carrying out the following activities:

CHAPTER 2. BACKGROUND AND ENVIRONMENT 15

• deploying and sharing with the scienti�c community a distributed plat-
form of honeypots [6] that gathers data suitable to analyze the attack
processes targeting a large number of machines connected to the Inter-
net;

• validating the usefulness of this platform by carrying out various anal-
ysis, based on the collected data, to characterize the observed attacks
and model their impact on security.

A honeypot is a machine connected to a network but that no one is sup-
posed to use. In theory, no connection to or from that machine should be
observed. If a connection occurs, it must be, at best an accidental error
or, more likely, an attempt to attack the machine. Two types of honeypots
can be distinguished depending on the level of interactivity that they o�er
to the attackers. Low-interaction honeypots do not implement real func-
tional services. They emulate simple services which cannot be compromised.
Therefore, these machines cannot be used as stepping stones to carry out
further attacks against third parties. On the other hand, high-interaction
honeypots o�er real services to the attackers to interact with which makes
them more risky than low-interaction honeypots. As a matter a fact, they
o�er a more suitable environment to collect information on attackers ac-
tivities once they manage to get the control of a target machine and try
to progress in the intrusion process to get additional privileges. It is note-
worthy that recently, hybrid honeypots combining the advantages of low
and high-interaction honeypots have been also proposed [7][8]. Both types
of honeypots are investigated in the CADHo project to collect information
about the malicious activities on the Internet and to build models that can
be used to characterize attackers behaviors and to support the de�nition and
the validation of the fault assumptions considered in the design of secure and
intrusion tolerant systems.

During the �rst stage of the project, the partner of the CADHo project
have focused on the deployment of a data collection environment (called
Leurré.com [9]) based on low-interaction honeypots. As of today, around
40 honeypot platforms have been deployed at various sites from academia
and industry in almost 30 di�erent countries over the �ve continents. Each
platform emulates three computers running Linux RedHat, Windows 98
and Windows NT, respectively, and various services such as ftp, http, etc.
The data gathered by each platform are securely uploaded to a centralized
database with the complete content, including payload of all packets sent to
or from these honeypots, and additional information to facilitate its analysis,
such as the IP geographical localization of packets' source addresses, the OS
of the attacking machine, the local time of the source, etc.

Several analysis carried out on the data collected so far have revealed that
very interesting observations and conclusions can be derived with respect to

CHAPTER 2. BACKGROUND AND ENVIRONMENT 16

the attack activities observed on the Internet [5][10][11][12][6]. Nevertheless,
with such honeypots, hackers can only scan ports and send requests to fake
servers without ever succeeding in taking control over them. The second
stage of the CADHo project is aimed at setting up and deploying high-
interaction honeypots to allow us to analyze and model the behavior of
malicious attackers once they have managed to compromise and get access
to a new host, under strict control and monitoring. The main interest is
oriented in observing the progress of real attack processes and the activities
carried out by the attackers in a controlled environment.

In this section, is described the preliminary lessons learned from the
development and deployment of such a honeypot.

The main contributions of this section are threefold. First, the con�rma-
tion of the �ndings discussed in [12] showing that di�erent sets of compro-
mised machines are used to carry out the various stages of planned attacks.
Second, it is outlined the fact that, despite this apparent sophistication, the
actors behind those actions do not seem to be extremely skillful, to say the
least. Last, the geographical location of the machines involved in the last
step of the attacks as well as the link with some phishing activities shed a
geopolitical and socio-economical light on the results of the analysis.

2.3.2 Related work

The most obvious approach for setting up a high-interaction honeypot con-
sists in the use of a physical machine and to dedicate it to record and monitor
attackers activities. The installation of this machine is as easy as a normal
machine. Nevertheless, probes must be added to store the activities. Oper-
ating in the kernel is by far the most frequent manner to do it. Sebek[13] and
Uberlogger[14] operate in that way by using Linux Kernel Module (LKM) on
Linux. More precisely, they launch a homemade module to intercept interest-
ing system calls in order to capture the activities of attackers. Data collected
in the kernel are stored on a server through the network. Communications
with the server are hidden on all installed honeypots.

Another approach consists in using a virtual operating system [15]. User
Mode Linux (UML) is a Linux compiled kernel which can be executed as
other programs on a Linux operating system. Thanks to this technique, it
is possible to have several virtual operating systems running together on a
single machine. Thanks to probes, activities on virtual operating systems
are logged into the machine. In [16], an architecture of a honeypot using
UML is presented. Uberlogger[14] can also be implemented in such an envi-
ronment. VMware is also a tool used for emulation, but it emulates a whole
machine instead of an operating system. Various operating systems (Win-
dows, Gnu/Linux, etc) can be installed and executed together. It can also
be used to deploy honeypots [17].

The problem with virtual honeypots is the possibility for the intruder to

CHAPTER 2. BACKGROUND AND ENVIRONMENT 17

detect the presence of this virtual operating system [18]. Some well-known
methods, available on Internet, allow the intruder to �ngerprint VMware
for example. Some solutions have been developed to hide the presence of
VMware (see e.g. [19]).

Compared to honeypot-solutions based on physical machines, virtual
honeypots provide a cost e�ective and �exible solution that is well suited
for running experiments to observe attacks. In particular, the number of
emulated systems and their con�guration can be easily changed if needed.

2.3.3 Architecture of the honeypot

In the implementation, is used the VMware software and to install virtual op-
erating system upon VMware. The objective is to setup a high-interaction
honeypot that can be easily con�gured and upgraded for di�erent experi-
mental studies. In particular, the intention is to emulate in the initial setup
a limited number of machines, and then increase the number of emulated
machines at a later stage of the project to have a more realistic target for
attack that is representative of a real network.

As explained in the previous subsection, VMware workstation software
[20] allows multiple operating systems to be run simultaneously on a single
real host. With virtual operating systems, the cloning, the recon�guration
and the modi�cation of the operating system is very simple. Furthermore,
if the attacker succeeds in destroying some part of the operating system he
has broken into, the recovery procedure is simpli�ed compared to the case
of a real operating system.

In the following, there is the description of:

1. the con�guration of the honeypot;

2. the mechanism of the data capture;

3. the memory organization.

Con�guration The objective of the experiment is to analyze the behavior
of the attackers who succeed in breaking into a machine (a virtual host in
the experiment). The vulnerability that he exploits is not as crucial as the
activity he carries out once he has broken into the host. That's why they
chose to use a simple vulnerability: weak passwords for ssh user accounts.
In this way, the honeypot is not particularly hardened but this is intentional
for two reasons. First, the interest in analyzing the behavior of the attackers
even when, once logged in, they exploit a bu�er over�ow and become root.
So, if they use some kernel patch such as Pax [21] for instance, the system will
be more secure but it will be impossible to observe some behavior. Secondly,
if the system is too hardened, the intruders may suspect something abnormal
and then give up.

CHAPTER 2. BACKGROUND AND ENVIRONMENT 18

virtual hosts

Internet

Vmware host

outgoing connection refused

SSH connection only

firewall

Catalyst
Workgroup Switch

CiscoSystems

Figure 2.1: Topology of the honeypot

In the setup, only ssh connections to the virtual host are authorized so
that the attacker can exploit this vulnerability. A �rewall blocks all con-
nection attempts, but those to port 22 (ssh), from the Internet (see Figure
2.1).

In order to prevent that intruders attack remote machines form the hon-
eypot, a �rewall blocks any connection from the virtual host to the outside.
This does not prevent the intruder from downloading code, because he can
use the ssh connection for that.1

This being said, as discussed later on, the lack of connectivity to the rest
of the world by means of another protocol than ssh may look suspicious
to a malicious user. They discuss the in�uence of this design choice in the
subsection devoted to the analysis of the results of the experiments. It is
showed that, instead of being a nuisance, it helps us discriminating between
the various types of malicious users.

The honeypot is a standard Gnu/Linux installation, with kernel 2.6, with
the usual binary tools (compiler, usual commands, etc). No additional soft-
ware was installed except the http apache server. This kernel was modi�ed
as explained in the next paragraph. The real host is of course never used
by regular users. The real operating system executing VMware is also a
Gnu/Linux distribution with kernel 2.6.

Attackers activity logging The �rst objective is to log the activity of the
intruders (the commands they use once they have broken into the honeypot)
in a stealthy way. In order to log what the intruders do on the honeypot,
they chose to modify some drivers functions tty_read and tty_write as

1As many intruders use outgoing http connections, the team has sometimes authorized
http connections in the experiments for a short time under a strict control by checking
constantly that the attackers were not trying to attack other remote hosts.

CHAPTER 2. BACKGROUND AND ENVIRONMENT 19

well as the exec system call in the Linux kernel. The modi�cations of the
functions tty_read and tty_write enable us to intercept the activity on
all the terminals and pseudo-terminals of the system. The modi�cation of
the exec system call enables us to record the list of the system calls used
by the intruder. These functions are modi�ed in such a way that the cap-
tured information is logged directly into a bu�er of the kernel memory. This
means that the activity of the attacker is logged on the kernel memory of the
honeypot itself. This approach is not common: in most of the approaches
studied, the information collected is directly sent to a remote host through
the network. The advantage of the approach is that logging into the kernel
memory is di�cult to detect by the intruder (more di�cult at least than
detecting a network connection).

1

1

memory

Magic word

...

...

...

...

...
data collected

virtual host 1

memory

Magic word

...

...

...

...

...

virtual host 2

data collected

from kernel and SSH server

from kernel and SSH server

storage of collected data
on Vmware host hard disk

2

storage of collected data
3

database server

memory

real host running VMwareinto MySQL database

Figure 2.2: Data collection

The kernel memory of the virtual host is in fact an area of the whole
memory of the real host. So, from the real host, an automatic script regu-
larly inspects the area of the memory used by the virtual host, looking for a
magic word indicating the beginning of the information logged into the ker-
nel. This information is then recorded on the hard disk of the real host and
then transferred to a database server (see Figure 2.2). This logging activity
is executed on the real host, not on the virtual host, thus it is not easily de-
tectable by the intruder (he cannot �nd anything suspicious in the list of the
processes for example). Furthermore, they also decided to log this activity
in such a way that it is not directly readable, even if the intruder succeeds
in parsing the kernel memory of the honeypot. This activity information
is compressed using the algorithm LZRW1 [22] before being logged into the
kernel memory. This makes it even more di�cult for an intruder to detect
that he is observed.

The second objective is to record all the logins and passwords tried by the
di�erent attackers to break into the honeypot. For that purpose, they chose
to add a new system call into the kernel of the virtual operating system and

CHAPTER 2. BACKGROUND AND ENVIRONMENT 20

they have modi�ed the source code of the ssh server so that it uses this new
system call. The logins and passwords are then logged in the kernel memory,
in the same bu�er as the information related to the commands used by the
attackers. As the whole bu�er is regularly stored on the hard disk of the real
host, it is not needed to add other mechanisms to record these logins and
passwords.

The activities of the intruder logged by the honeypot are preprocessed
and then stored into an SQL database. The raw data are automatically
processed to extract relevant information for further analysis, mainly:

• the IP address of the attacking machine;

• the login and the password tested;

• the date of the connection;

• the terminal associated (tty) to each connection;

• each command used by the attacker .

The analysis they have made are presented in the following subsections
but we look �rst to the memory organization of the honeypot.

Memory organization high-interaction honeypot With the high-in-
teraction honeypot is allowed the intruder to attack the system only at the
port 22 with SSH connection (Secure Shell). What they want to do is mon-
itoring the intruder when he is logged in for seeing what is his behavior.
They modify same system calls to save the data to a kernel memory space
allocated before. They do not allocate this space with kmalloc() because it
is di�cult retrieve the information managing with the virtual operating sys-
tem. So they allocate at boot time same data structure. When an intruder
login he utilizes same system call. He opens a tty so, since the tty is managed
by the kernel like a �le, the system call open, read and write will be called
and, since it is a tty, read and write will call the kernel functions tty_read
and tty_write. Every time the intruder launches a command there is an ex-
ecution of exec. So they modify the exec system call in order to record each
operation performed by the attacker. They modify the drivers tty_read and
tty_write in order to catch all the information of the terminal and, if any,
the code of the malware introduced by the attacker.

The structure is, as table 2.1 shows, composed by:

• MW: Magic Word, it is a special known word that permits to un-
derstand where the data registered in the kernel space of the virtual
machine begins;

• # op: the number of operations performed;

CHAPTER 2. BACKGROUND AND ENVIRONMENT 21

• Pointer of large bu�er: it is an integer value used to remember how
many items have been recorded into the large bu�er;

• Large bu�er: it is a bu�er that contains compressed data. The data
are compressed because of two reasons: �rst, we are in kernel space
and we have �only� 4 Mbytes, if we use a lot of space we could loss
same monitoring attack (anyway it has never happened). Second the
data are compressed it is very di�cult for an intruder to understand
that it is monitored.

• Small bu�er: it is a bu�er used temporary for registering the data of
the attack. This data, when the small bu�er is full, will be compressed
and put within the large bu�er.

• Pointer of small bu�er: the same as large pointer but for the small
bu�er.

MW

op

large
bu�er

pointer large bu�er

small
bu�er

pointer small bu�er

Table 2.1: Main structure of the honeypot memory organization

2.3.4 Experimental results

In this subsection, we present the results of the experiments. First is given a
global statistic, in order to give an overview of the activities observed on the
honeypot, then a characterization of the various intrusion processes. Finally,
there is a detailed analyze of the behavior of the attackers once they manage
to break into the honeypot. In this book, an intrusion corresponds to the
activities carried out by an intruder who has succeeded to break into the
system.

Global statistics The high-interaction honeypot has been deployed on
the Internet and has been running for 131 days during which 480 IP ad-
dresses have tried to contact its ssh port. It is worth comparing this value
to the amount of hits observed against port 22, considering all the other
low-interaction honeypot platforms deployed in the rest of the world (40
platforms). In the average, each platform has received hits on port 22 from

CHAPTER 2. BACKGROUND AND ENVIRONMENT 22

Account Number of Percentage of Number of
connection attempts connection attempts pass tested

root 34251 13.77% 12027

admin 4007 1.61% 1425

test 3109 1.25% 561

user 1247 0.50% 267

guest 1128 0.45% 201

info 886 0.36% 203

mysql 870 0.35% 211

oracle 857 0.34% 226

postgres 834 0.33% 194

webmaster 728 0.29% 170

Table 2.2: ssh connection attempts and number of passwords tested

around approximately 100 di�erent IPs during the same period of time. Only
four platforms have been contacted by more than 300 di�erent IP addresses
on that part and only one was hit by more visitors than the high interaction
honeypot deployed from the team. Even better, the low-interaction platform
maintained in the same subnet as the high-interaction experimented only 298
visits, i.e. less than two thirds of what the high-interaction did see. This very
simple and �rst observation con�rms the fact already described in [12] that
some attacks are driven by the fact that attackers know in advance, thanks
to scans done by other machines, where potentially vulnerable services are
running. The existence of such a service on a machine will trigger more at-
tacks against it. This is what is observed here: the low interaction machines
do not have the ssh service open, as opposed to the high interaction one,
and, therefore get less attacked than the one where some target has been
identi�ed.

The number of ssh connection attempts to the honeypot have been
recorded is 248717 (the scans on the ssh port are not considered here).
This represents about 1900 connection attempts a day. Among these 248717
connection attempts, only 344 were successful. Table 2.2 represents the user
accounts that were mostly tried (the top ten) as well as the total amount of
di�erent passwords that have been tested by the attackers. It is noteworthy
that many user accounts corresponding to usual �rst names have also regu-
larly been tested on the honeypot. The total number of accounts tested is
41530.

Before the real beginning of the experiment (approximately one and a
half month), a machine with a ssh server correctly con�gured is deployed,
o�ering no weak account and password. The advantage of this observation
period to determine which accounts were mostly tried by automated scripts.
Using this acquired knowledge, 17 user accounts have been created and they

CHAPTER 2. BACKGROUND AND ENVIRONMENT 23

User Account Duration between creation Duration between �rst
and �rst successful successful connection

connection and �rst intrusion

UA1 1 day 4 days

UA2 half a day 4 minutes

UA3 15 days 1 day

UA4 5 days 10 days

UA5 5 days null

UA6 1 day 4 days

UA7 5 days 8 days

UA8 1 day 9 days

UA9 1 day 12 days

UA10 3 days 2 minutes

UA11 7 days 4 days

UA12 1 day 8 days

UA13 5 days 17 days

UA14 5 days 13 days

UA15 9 days 7 days

UA16 1 day 14 days

UA17 1 day 12 days

Table 2.3: History of breaking accounts

have started looking for successful intrusions. Some of the created accounts
were among the most attacked ones and others not. As we already explained
in the chapter, they have deliberately created user accounts with weak pass-
words (except for the root account). Then, the time between the creation
of the account and the �rst successful connection to this account have been
measured, then the duration between the �rst successful connection and the
�rst real intrusion (as explained in section 2.3.4, the �rst successful connec-
tion is very seldom a real intrusion but rather an automatic script which
tests passwords). Table 2.3 summarizes these durations (UAi means User

Account i).
The second column indicates that there usually is a gap of several days

between the time when a weak password is found and the time when someone
logs into the system with this same password to issue some commands on the
now compromised host. This is a somehow a surprising fact and is described
with some more details here below. The particular case of the UA5 account
is explained as follows: an intruder succeeded in breaking the UA4 account.
This intruder looked at the contents of the /etc/passwd �le in order to see
the list of user accounts for this machine. He immediately decided to try
to break the UA5 account and he was successful. Thus, for this account, the
�rst successful connection is also the �rst intrusion.

CHAPTER 2. BACKGROUND AND ENVIRONMENT 24

Intrusion process In the subsection, is presented the conclusions of the
analysis regarding the process to exploit the weak password vulnerability of
the honeypot. The observed attack activities can be grouped into three main
categories:

1. dictionary attacks;

2. interactive intrusions;

3. other activities such as scanning, etc.

intrusion IPother IP (scan, ...)

IP seen on the honeypot

480(348)

248(166) 197(182) 35(0)

18(18) 179(164)

dictionary attack IP

X(Y) : Y IP addresses among X were also seen on the low−interaction honeypot

successful failed

Figure 2.3: Classi�cation of IP addresses seen on the honeypot

As illustrated in �gure 2.3, among the 480 IP addresses that were seen
on the honeypot, 197 performed dictionary attacks and 35 performed real
intrusions on the honeypot (see below for details). The 248 IP addresses
left were used for scanning activity or activity that are not clearly identi�ed.
Among the 197 IP addresses that made dictionary attacks, 18 succeeded
in �nding passwords. The others (179) did not �nd the passwords either
because their dictionary did not include the accounts created or because
the corresponding weak password had already been changed by a previous
intruder. In Figure 2.3 there is also represented the corresponding number of
IP addresses that were also seen on the low-interaction honeypot deployed in
the context of the project in the same network (between brackets). Whereas
most of the IP addresses seen on the high interaction honeypot are also
observed on the low interaction honeypot, none of the 35 IPs used to really
log into the machine to launch commands have ever been observed on any of
the low interaction honeypots that are controlled in the whole world! This
striking result is discussed here after.

Dictionary attack The preliminary step of the intrusion consists in dic-
tionary attacks2. In general, it takes only a couple of days for newly created

2Let us note here that we consider as �dictionary attack� any attack that tries more
than 10 di�erent accounts and passwords.

CHAPTER 2. BACKGROUND AND ENVIRONMENT 25

accounts to be compromised. As shown in Figure 2.3, these attacks have
been launched from 197 IP addresses. By analyzing more precisely the dura-
tion between the di�erent ssh connection attempts from the same attacking
machine, is evident that these dictionary attacks are executed by automatic
scripts. As a matter of fact, a result of the studies is that these attacking
machines try several hundreds, even several thousands of accounts in a very
short time.

For the machines that succeed in �nding passwords, further analysis have
been made, i.e., the 18 IP addresses. By searching the database containing
information about the activities of these addresses against the other low
interaction honeypots four important elements of information are founded.
First, none of the low interaction honeypot has an ssh server running, none of
them replies to requests sent to port 22. These machines are thus scanning
machines without any prior knowledge on their open ports. Second, the
found evidences that these IPs were scanning in a simple sequential way all
addresses to be found in a block of addresses. Moreover, the comparison of
the �ngerprints left on the low interaction honeypots highlights the fact that
these machines are running tools behaving the same way, not to say the same
tool. Third, these machines are only interested in port 22, they have never
been seen connecting to other ports. Fourth, there is no apparent correlation
as far as their geographical location is concerned: they are located all over
the world.

In other words, it comes from this analysis that these IPs are used to
run a well known program. The activities linked to that tool, as observed in
the database thanks to all the platforms, indicate that it is unlikely to be a
worm but rather an easy to use and widely spread tool.

Interactive attack: intrusion The second step of the attack consists in
the real intrusion. They have noted that, several days after the guessing of a
weak password, an interactive ssh connection is executed on the honeypot to
issue several commands. There are reason to believe that, in those situations,
a real human being, as opposed to an automated script, is connected to the
machine. This is explained and justi�ed in subsection 2.3.5. As shown in
Figure 2.3, these intrusions come from 35 IP addresses never observed on
any of the low-interaction honeypots.

Whereas the geographic localization of the machines performing dictio-
nary attacks is very blur, the machines that are used by a human being for
the interactive ssh connection are, most of the time, clearly identi�ed. The
data give a precise idea of their country, geographic address, the responsible
of the corresponding domain. Surprisingly, these machines, for half of them,
come from the same country, an European country not usually seen as one of
the most attacking ones as reported, for instance, by the www.leurrecom.org
web site.

CHAPTER 2. BACKGROUND AND ENVIRONMENT 26

Then are made more analysis in order to see if these IP addresses had
tried to connect to other ports of the honeypot except for these interactive
connections; and the answer is no. Furthermore, the machines that make
interactive ssh connections on the honeypot do not make any other kind of
connections on this honeypot, i.e, no scan or dictionary attack. Further anal-
ysis, using the data collected from the low-interaction honeypots deployed
in the CADHo project, revealed that none of the 35 IP addresses have ever
been observed on any of the platforms deployed in the world. This is in-
teresting because it shows that these machines are totally dedicated to this
kind of attack (they only targeted the high-interaction honeypot and only
when they knew at least one login and password on this machine).

The conclusion for these analysis is that there are two groups of attack-
ing machines. The �rst group is composed of machines that are speci�cally
in charge of making dictionary attacks. Then the results of these dictionary
attacks are published somewhere. Then, another group of machines, which
has no intersection with the �rst group, comes to exploit the weak passwords
discovered by the �rst group. This second group of machines is clearly ge-
ographically identi�ed and commands are executed by a human being. A
similar two steps process was already observed in the CADHo project when
analyzing the data collected from the low-interaction honeypots (see [12] for
more details).

2.3.5 Behavior of attackers

This subsection is dedicated to the analysis of the behavior of the intruders.
A �rst characterization of the intruders, i.e. trying to know if they are
humans or programs, is followed from the presentation in more details of the
various actions they have carried out on the honeypot. Finally, they try to
�gure out what their skill level seems to be.

The analysis is concentrated on the last three months of the experiment.
During this period, some intruders have visited the honeypot only once,
others have visited it several times, for a total of 38 ssh intrusions. These
intrusions were initiated from 16 IP addresses and 7 accounts were used.
Table 2.4 presents the number of intrusions per account, IP addresses and
passwords used for these intrusions. It is of course very di�cult to be sure
that all the intrusions for a same account are initiated by the same person.
Nevertheless, in this deploy of the honeypot, they noted that:

• most of the time, after his �rst login, the attacker changes the weak
password into a strong which, from there on, remains unchanged;

• when two di�erent IP addresses access the same account (with the
same password), they are very close and belong to the same country
or company.

CHAPTER 2. BACKGROUND AND ENVIRONMENT 27

account Number of Number of Number of
intrusions password IP address

UA2 1 1 1

UA4 13 2 2

UA5 1 1 1

UA8 1 1 1

UA10 9 2 2

UA13 6 1 5

UA16 5 1 3

UA17 2 1 1

Table 2.4: Number of intrusions per account

These two remarks lead us to believe that there is in general only one
person associated to the intrusions for a particular account.

Type of the attackers: humans or programs Before analyzing what
intruders do when connected, the paper is oriented to identify who they
are. They can be of two di�erent natures. Either they are humans, or
they are programs which reproduce simple behaviors. For all intrusions but
12, intruders have made mistakes when typing commands. Mistakes are
identi�ed when the intruder uses the backspace to erase a previously entered
character. So, it is very likely that such activities are carried out by a human,
rather than programs.

When an intruder did not make any mistake, they analyze how the data
are transmitted from the attacker machine to the honeypot. They can note
that, for ssh communications, data transmission between the client and the
server is asynchronous. Most of the time, the ssh client implementation uses
the function select() to get user input. So, when the user presses a key, this
function ends and the program sends the corresponding value to the server.
In the case of a copy and a paste into the terminal running the client, the
select() function also ends, but the program sends all the values contained
in the bu�er used for the paste into the server. We can assume that, when
the function tty_read() returns more than one character, these values have
been sent after a copy and a paste. If all the activities during a connection
are due to a copy and a paste, we can strongly assume that it is due to an
automatic script. Otherwise, this is quite likely a human being who uses
shortcuts from time to time (such as CTRL-V to paste commands into its
ssh session). For 7 out of the last 12 activities without mistakes, intruders
have entered several commands on a character by character basis. This, once
again, seems to indicate that a human being is entering the commands. For
the 5 others, their activities are not signi�cant enough to conclude : they

CHAPTER 2. BACKGROUND AND ENVIRONMENT 28

have only launched a single command, like w, which is not long enough to
highlight a copy and a paste.

9 intrusions

with character by character input with only one or two commands

without mistakeswith mistakes

38 intrusions

25 intrusions 13 intrusions

4 intrusions

Figure 2.4: Characterization of the intrusions

Attacker activities The �rst signi�cant remark is that all of the intruders
change the password of the hacked account. The second remark is that most
of them start by downloading some �les. In all, but one, cases the attackers
have tried to download some malware to the compromised machines. In a
single case, the attacker has �rst tried to download an innocuous, yet large,
�le to the machine (the binary for a driver coming from a known web site).
This is probably a simple way to assess the quality of the connectivity of the
compromised host.

The command used by the intruders to download the software is wget.
To be more precise, 21 intrusions upon 38 include the wget command. These
21 intrusions concern all the hacked accounts. As mentioned in subsection
2.3.3, outgoing http connections are forbidden by the �rewall. Nevertheless,
the intruders still have the possibility to download �les through the ssh

connection using sftp command (instead of wget). Thus, it is interesting
to analyze the percentage of the attackers that continue their attack despite
this wget problem. Surprisingly, they noted that only 30% of the intruders
did use this ssh connection. 70% of the attackers were unable to download
their malware due to the absence of http connectivity! Three explanations
can be envisaged at this stage. First, they follow some simplistic cookbook
and do not even known the other methods at their disposal to upload a �le.
Second, the machines where the malware resides do not support sftp. Third,
the lack of http connectivity made the attacker suspicious and he decided to
leave the system. Surprisingly enough, the �rst explanation seems to be the
right one as observing them leaving the machine after an unsuccessful wget
and coming back a few hours or days later, trying the same command again
as if they were hoping it to work at that time. Some of them have been seen
trying this several times. It comes out of this that i) they are apparently
unable to understand why the command fails, ii) they are not afraid to come
back to the machine despite the lack of http connectivity, iii) applying such

CHAPTER 2. BACKGROUND AND ENVIRONMENT 29

brute force attack reveals that they are not aware of any other method to
upload the �le.

Once they manage to download their malware thanks to sftp , they try
to install it (by decompressing or extracting �les for example). 75% of the
intrusions that installed software did not install it on the hacked account but
rather on standard directories such as /tmp, /var/tmp or /dev/shm (which
are directories with write access for everybody). This makes the activity of
the hacker more di�cult to identify because these directories are regularly
used by the operating system itself and shared by all the users.

Additionally, they have identi�ed four main activities of the intruders.
The �rst one is launching ssh scans on other networks but these scans have
never tested local machines. Their idea is to use the targeted machine to
scan other networks. So, for the administrator of the targeted network, it is
more di�cult to localize them. The program used by most intruders, which
is easy to �nd on the Internet, is pscan.c.

The second type of activity consists in launching irc clients. Some ex-
amples are emech [23] and psyBNC. Names of binary �les have regularly been
changed by intruders, probably in order to dissimulate them. For example,
the binary �les of emech have been changed to crond or inetd, which are
well known binary �le names and processes on Unix systems. The irc clients
are used for Denial Of Service attacks (DoS).

The third type of activity is trying to become root. Surprisingly, such
attempts have been observed for 3 intrusions only. Two rootkits were used.
The �rst one exploits two vulnerabilities: a vulnerability which concerns the
Linux kernel memory management code of the mremap system call[24] and
a vulnerability which concerns the internal kernel function used to manage
process's memory heap[25]. This exploit could not succeed because the kernel
version of the honeypot does not correspond to the version of the exploit. The
intruder should have realized this because he checked the version of the kernel
of the honeypot (uname -a). However, he launched this rootkit anyway and
failed. The other rootkit used by intruders exploits a vulnerability in the
program ld. Thanks to this exploit, three intruders became root but the
bu�er over�ow succeeded only partially. Even if they apparently became
root, they could not launch all desired programs (removing �les for example
caused access control errors).

The last activity observed in the honeypot is related to phishing activi-
ties. It is di�cult to make precise conclusions because only one intruder has
attempted to launch such an attack. He downloaded a forged email and tried
to send it through the local smtp agent. But it looked like a preliminary step
of the attack because the list of recipient emails was very short. It seems
that is was just a preliminary test before the real deployment of the attack.

CHAPTER 2. BACKGROUND AND ENVIRONMENT 30

Attackers skill Intruders can roughly speaking be classi�ed into two main
categories. The most important one is relative to script kiddies. They are
inexperienced hackers who use programs found on the Internet without really
understanding how they work. The next category represents intruders who
are more dangerous. They are named �black hat�. They can make serious
damage on systems because they are expert in security and they know how
to exploit vulnerabilities on various systems.

As already presented in 2.3.5 (use of wget and sftp), the observation is
that intruders are not as clever as expected. For example, for two hacked
accounts, the intruders don't seem to really understand the Unix �le access
rights (it's very obvious for example when they try to erase some �les whereas
they don't have the required privileges). For these two same accounts, the
intruders also try to kill the processes of other users. Many intruders do not
try to delete the �le containing the history of their commands or do not try
to deactivate this history function (this �le depends on the login shell used, it
is .bash_history for example for the bash). Among the 38 intrusions, only
14 were cleaned by the intruders (11 have deactivated the history function
and 3 have deleted the .bash_history �le). This means that 24 intrusions
left behind them a perfectly readable summary of their activity within the
honeypot.

The IP address of the honeypot is private and the they have started
another honeypot on this network. This second honeypot is not directly ac-
cessible from the outside, it is only accessible from the �rst honeypot. They
have modi�ed the /etc/motd �le of the �rst honeypot (which is automati-
cally printed on the screen during the login process) and added the follow-
ing message: �In order to use the software XXX, please connect to

A.B.C.D�. In spite of this message, only one intruder has tried to connect to
the second honeypot. They could expect that an experienced hacker will try
to use this information. In a more general way, they have very seldom seen
an intruder looking for other active machines on the same network.

One important thing to note is relative to �ngerprinting activity. No in-
truder has tried to check the presence of VMware software. For three hacked
accounts, the intruders have read the contents of the �le /proc/cpuinfo but
that's all. None of the methods discussed on Internet was tested to identify
the presence of VMware software [18][26]. This probably means that the
intruders are not experienced hackers.

2.3.6 Conclusion

In this section, we have presented the results of an experiment carried out
over a period of 6 months and described in detail in the paper [1]. The ob-
servation is that there are various steps that lead an attacker to successfully
break into a vulnerable machine and his behavior once he has managed to
take control over the machine.

CHAPTER 2. BACKGROUND AND ENVIRONMENT 31

The �ndings are somehow consistent with the informal know how shared
by security experts. The contributions that the paper bring is in performing
an experiment and rigorous analyses that con�rm some of these informal
assumptions. Also, the precise analysis of the observed attacks reveals several
interesting facts. First of all, the complementarity between high and low
interaction honeypots is highlighted as some explanations can be found by
combining information coming from both set ups. Second, it appears that
most of the observed attacks against port 22 were only partially automatized
and carried out by script kiddies. This is very di�erent from what can be
observed against other ports, such as 445, 139 and others, where worms have
been designed to completely carry out the tasks required for the infection and
propagation. Last but not least, honeypot �ngerprinting does not seem to be
a high priority for attackers as none of them has tried the known techniques
to check if they were under observation. It is also worth mentioning a couple
of important missing observations. First, they did not observe scanners
detecting the presence of the open ssh port and providing this information
to other machines in charge of running the dictionary attack. This is di�erent
from previous observations reported in [12]. Second, as most of the attacks
follow very simple and repetitive patterns, they did not observe anything
that could be used to derive sophisticated scenarios of attacks that could be
analyzed by intrusion detection correlation engine. Of course, at this stage
it is to early to derive de�nite conclusions from this observation.

Therefore, it would be interesting to keep doing this experiment over a
longer period of time to see if things do change, for instance if a more e�cient
automation takes place. They would have to solve the problems of weak
passwords being replaced by strong ones though, in order to see more people
succeeding in breaking into the system. Also, it would be worth running
the same experiment by opening another vulnerability into the system and
verifying if the identi�ed steps remain the same, if the types of attackers are
similar. Could it be, at the contrary, that some ports are preferably chosen
by script kiddies while others are reserved to some more elite attackers? This
is something that they are in the process of assessing.

This chapter is the state of art at the beginning of the high-interaction
honeypot data processing system. During 6 months a huge quantity of data
storage is achieved and there are not tools for retrieving these information
in a comfortable way. High-interaction honeypot data processing system is
an interface that allow to retrieve information from the honeypot database.
The feature of such a system are explained in the next chapters.

Chapter 3

Honeypot data processing

system

A honeypot is a machine connected to a network but that no one is supposed
to use. If a connection occurs, it must be, at best an accidental error or,
more likely, an attempt to attack the machine.

Every new attempt is saved within a database, that contains the raw
data. In the CADHo project we only consider the high-interaction honeypot.
To retrieve the information from this system, the team has written scripts.
These scripts are written in shell programming and the visualization is on
the console. In the current version of the prototype the analysis of the attack
data, which is the core of the CADHo project, is very uncomfortable. An
operator must execute scripts and read the results without any possibility to
have these data formatted in any other way he wants. The aim of our project
is to build a wrapper that allows to retrieve these information in a more
e�cient and e�ective way. The wrapper is the high-interaction honeypot
data processing system and it will have tools to synthesize data retrieved in
a graphical way. From now we call �system� the high-interaction honeypot
data processing system, see �gure 1.1. The legacy system is the old program,
composed of scripts, that allowed to retrieve the information. The legacy
system will continue to work normally without any additional constraints.

In this chapter we analyze the architectural features of the system of
data processing. We utilize the UML (Uni�ed Modeling Language) in order
to analyze and model the architecture; one important reason to use UML is
to allow the exchange of information between the components of the group
following a formalism that do not allow a lot of ambiguity. The �rst part of
the chapter explains the general matters concerning the application, so the
architecture client-server, the layers and the tiers. The section 3.2 analyze
in detail the function of the application. The section 3.3 analyze the class
diagram to both the client and the server side, introducing the patterns
utilized.

32

CHAPTER 3. HONEYPOT DATA PROCESSING SYSTEM 33

Technologies used The database of the legacy system is implemented
in MySQL technology so the SQL requests will be performed utilizing this
technology. The language of implementation is java because it is suitable
implementing GUI, but also because of the experience of the group and the
large documentation available on the net.

3.1 Architecture

The system has an architecture client-server, so it is a distributed application
accessible from the web. The interface allow to retrieve and manipulate the
raw data. It's required the possibility of automatizing the data obtained. In
fact the client that will perform any operation on the system could be a user
or a program.

Figure 3.1: Client server architecture

We use the de�nition of �client� of the book [27]: the client is any user or
program that wants to perform an operation over the system. Clients interact
with the system through a presentation layer. Automating the processing of
the data recorded on the honeypot means that these data could be utilized
from another server in an automatic way. There will be a communication
protocol, see chapter 5, that says to the server, that acts like a client, how

CHAPTER 3. HONEYPOT DATA PROCESSING SYSTEM 34

to retrieve the services of our application, �gure 3.1. One requisite of the
new system is that it should be portable and platform independent. What's
more, at the state of the art, we need a good scalability because the number
of users could enough increase during the future years, with scalability we
allow a good performance in this case.

We leave open the possibility to have another server that interacts with
our server but at the moment we will have three possibilities for interacting
with the server. The �rst possibility is that the server will be accessed from

Figure 3.2: The three layers

the web, so from a browser equipped with the necessary plugins, that allow
to download and execute the application. The second possibility is to access
to the server installing a java Swing application on the host. The Swing
application is a java interface, with the same look and feel of the application
downloaded from the web, that allows to process the requests. The third
possibility is to process the request from a terminal connection, like telnet
for example, and visualize the raw data on the screen. If you know exactly
the details of the communication protocol you can anyway understand, with
some di�culties, what the data means.

With the �rst two cases we obtain the data in a suitable form. The third
case is admitted because same browser do not dispose of the right plugins for
the java application and, moreover, a telnet connection is very light. With
telnet you need just a tiny client to perform a request instead of a fat client
for the �rst two cases.

The architecture of the system is three layers1 and two tiers; the three
layers are visualized in �gure 3.2. The application logic2 is shared between
the client and the server, what it contains is explained later in the text. The
application logic interfaces with the resource management3 with a JDBC

1There are many advantages to use a three layer architecture, for more information see
[27].

2The application logic determines what the system actually does. It takes care of
enforcing the business rules and establish the business processes, for more information see
[27].

3The resource manager deal with the organization (storage, indexing and retrieval) of

CHAPTER 3. HONEYPOT DATA PROCESSING SYSTEM 35

driver. Our architecture is two tiers because the application logic at the
server is physically in the same place of the database. Instead, as already
said, the client could be remote.

The place of installation of the database will be probably at the city of
Nice, France, and people will access the information utilizing our system.

3.2 Use Case speci�cation

We begin in this section to model the concept using UML. The formalisms
used in this section are the same of the books [27] and [28]. The application
will develop two use cases: the Dictionary attack and the Terminal infor-
mation. In the future more use cases will be added to these implemented
here.

We leave the name of the actor like �user� because the client of the
application could be very generic. The details on the meaning of the func-
tionalities will be explained in the next chapter.

Figure 3.3: Use case diagram.

the data necessary to support the application logic. This is typically a database but it can
also be a text retrieval system or any other data management system providing querying
capabilities and persistence, for more information see [27].

CHAPTER 3. HONEYPOT DATA PROCESSING SYSTEM 36

Name Dictionary attack

Initiator User

Goal Retrieve the information about all attacks
performed in a requested time distinguishing
two attacks from an attack elapsed time

Main success scenario

1. User asks to retrieve dictionary attack information on the main menu;

2. User inserts the instants(date and hour) of the begin and the end of
the time window. He inserts also the interval time to be considered for
two attacks.

3. The system provides all the information required in two di�erent visu-
alizations: the �rst one is a table and the second one is a graphic view
of the table.

Extensions

3. Any error occurs

a)The system shows an error message and returns to
main menu.

Name Terminal information

Initiator User

Goal Retrieve the terminal information about
all attacks performed in a requested time.
Retrieve the information about all attacks

Main success scenario

1. User asks to retrieve terminal information on the main menu;

2. User inserts the instants(date and hour) of the begin and the end of
the time window;

3. The system provides a table containing all the information: the termi-
nal name, the begin of the attack and the end of the attack, one row
for each attack.

4. The user chooses one attack;

CHAPTER 3. HONEYPOT DATA PROCESSING SYSTEM 37

5. The system displays all the activities recorded by that terminal at the
moment of the attack.

Extensions

3a The system provides an empty table

a) The user returns to insert the dates.

3b. Any error occur

a)The system shows an error message and return to
main menu.

5. Any error occur

a)The system shows an error message and return to
main menu.

3.3 Class diagram

3.3.1 General

As we can notice analyzing the use cases and the scenario's problem, our
system will interrogate a remote database respect to the client and it will
provide same services. We will call these services functionalities. One func-
tionality is a particular request that we want to ask to the server. These
functionalities have same common features and same peculiar features of the
service that they represent. Moreover we know that the service will be used
by many people and so it is important to provide an user-friendly graphical
interface.

3.3.2 Server side

Server side organization The server class contains the main program
of the server side application. Inside the main() program we create all the
functionalities: dictionary attack, terminal information, ecc. . . . Then the
main() waits any connection on a speci�ed port.

The server must be multithreaded because many requests could arrive
consecutively and, any time, a new thread is launched to avoid the blocking
of the request for the other clients. So the class ServerSockThread extends
the class thread overriding the method run.

CHAPTER 3. HONEYPOT DATA PROCESSING SYSTEM 38

Figure 3.4: Server class diagram

For each request the server establishes a socket connection4 with the
client. The server operations are wrapped on the class ServerSocketThread:
the method read and write are used respectively for the socket operations
read and write.

DBManager is the wrapper class for all the database operations. Es-
sentially it is used for connecting and unconnecting the database and to
manage its generated errors. This class contains attributes of login informa-
tion, dbPassword and dbUser, and the identi�cation of the database into the
attribute dbName.

The Functionalities class is a Singleton pattern and it is used to keep
all the information o�ered by the system. It should be a Singleton pattern
because we want just one instance of the class, we can access to the instance
with the method getInstance() that returns the lonely object. The class al-
lows to add other functionalities through the method add() where we specify
the functionality we want to add.

With the getFunctionality() method we obtain the object Functionality
through the speci�cation of the functionality number4.

The hash table contains all the pairs: functionality key, functionality

4See chapter 5 Protocol communication.

CHAPTER 3. HONEYPOT DATA PROCESSING SYSTEM 39

instance. Functionality key is an integer number that identi�es in an uni-
vocal way the functionality5, functionality instance is the object of the class
Functionality.

Functionality is an abstract class that represents the common aspects of
the entity functionality. The various functionalities, dictionary attack, ter-
minal information, etc. . . , should implement the abstract method perform()
that contains all the peculiarity of the functionality. For example, all the
test on the type of exchanged data between the client and the server are
peculiar of the functionality.

The attribute numberOfFunctionality is the integer that identi�es the
functionality in an univocal way.

The getIdenti�er() method is used to obtain the functionality identi�ca-
tion.

The attribute dbManager keeps the connection with the database to allow
the execution of the SQL query, performed from the method getResult().

The queryFileToPath() method is used to obtain the path �le that con-
tains the SQL query. All the �le paths that contain the SQL query are
contained in the �le c:/query_�le.txt5.

The close() method is used to close all the resources opened to perform
the query, the database connection mainly.

The substitute() method, substitutes the SQL query parameters with the
wright values send from the client5.

The formatResultSet() method, formats the result obtained from the ex-
ecution of the SQL script6.

In same functionalities we need to perform a double client-server interac-
tion, this is the case of the terminal information functionality. In these cases
we �rstly obtain same information and, in function of them, we perform,
to the client side, the second interaction to obtain the result. When a new
request will arrive to the server, it will open a socket. What does it will do if
the functionality is composed of a double interaction? We may manage this
situation in two ways. The server may leave open the socket and it may will
wait that the client performs the second request. Contrarily the server may
close the socket and open another socket later when the second request will
arrive and threating it as a new functionality. What the server can do is to
break the functionality in two sub-functionality.

This second organization is possible because of our interactions are state-
less for the server side. This means that the new demand depends only on the
data it is carrying on and on the state that the client has reached. The state
is independent of the state of the server. So there is not a great utility to leave
an opened session to wait the second request of the client. Contrarily the
disadvantage is evident: the overloading of the server that becomes less scal-

5See chapter 6, Query SQL.
6The result is formatted as speci�ed in chapter 5, Protocol communication.

CHAPTER 3. HONEYPOT DATA PROCESSING SYSTEM 40

able. So we choose to manage one functionality as two sub-functionalities.
In practice these are treated like two di�erent functionalities. For these rea-
sons the functionalities as terminal information are implemented with two
classes: Terminal1 and Terminal2, the number emphasizes the interaction's
number. Moreover it is for all these reasons that the cardinality between
the classes Functionality and ServerSockThread is (1,n). So the socket is
opened for each simple functionality7 and for each sub-functionality8. This
organization guarantees better performance and is more easy to implement
because the sub-functionality assumes more independence with respect to
the bigger functionality.

Server side advantages All the functionalities inherit from the class
Functionality and this has same of advantages. To the server side, in fact,
we have to perform the SQL script relative to the functionality and check
that all the data exchanged between the entities are conformed to that spec-
i�ed in the protocol communication. There is a huge quantity of common
features to all the functionalities; the class Functionality is born with the
aim of gathering all the common features. Each real implementation of one
functionality inherits from the class Functionality and develops only the part
that is dependent on itself. One of the aims of the project is to keep the
system in the way we can easy upgrade it later. In fact, it is anticipated
that a lot of functionalities will be added in the future. With our server side
organization the evolution of the system becomes very easy, because there
is a lot of code that will not be rewritten. As you can notice from the class
diagram at page 38, the various functionalities implement only the method
of the abstract class from which they inherit.

Another advantage is the use of the hash tables. The class Function-
alities keeps the class that associates the key of the functionality with the
object functionality. This allows to access the functionality object in a faster
way, just the time of accessing the hash table, and when the number of the
functionalities becomes greater it avoids huge switch-cases into the code.

The other hash table contains all the data sent from the client and it is
used to separate the net level from the rest of the application. The parame-
ters may be retrieved in a comfortable way, passed to the other methods all
together and put in the hash table already tested.

3.3.3 Client side

MVC Model-view-controller Model-view-controller (MVC) is an archi-
tectural pattern used in software engineering. In complex computer appli-

7We call simple functionality the one only functionality.
8We call sub-functionality one interaction of one functionality composed from more

interactions. In the rest of the book the word functionality will be utilized with the
meaning of simple functionality or sub-functionality.

CHAPTER 3. HONEYPOT DATA PROCESSING SYSTEM 41

cations that present lots of data to the user, one often wishes to separate
data (model) and user interface (view) concerns, so that changes to the user
interface do not impact the data handling, and that the data can be reorga-
nized without changing the user interface. The model-view-controller solves
this problem by decoupling data access and business logic from data presen-
tation and user interaction, by introducing an intermediate component: the
controller.

Figure 3.5: A simple diagram depicting the relationship between the Model,
View, and Controller. Note: the solid lines indicate a direct association, and
the dashed line indicate an indirect association (e.g.: observer pattern).

It is common to split an application into separate layers: presentation
(UI), domain, and data access. In MVC the presentation layer is further
separated into View and Controller.

• Model The domain-speci�c representation of the information on which
the application operates. It is a common misconception that the model
is another name for the domain layer. Domain logic adds meaning to
raw data (e.g., calculating if today is the user's birthday, or the totals,
taxes and shipping charges for shopping cart items). Many applications
use a persistent storage mechanism (such as a database) to store data.
MVC does not speci�cally mention the data access layer because it is
understood to be underneath or encapsulated by the Model.

• View Renders the model into a form suitable for interaction, typically
a user interface element.

• Controller Processes and responds to events, typically user actions,
and may invoke changes on the model.

MVC is often seen in web applications, where the view is the actual
HTML page and the code which gathers dynamic data and generates the

CHAPTER 3. HONEYPOT DATA PROCESSING SYSTEM 42

content within the HTML is the controller. Finally the model is represented
by the actual content, usually stored in a database or XML-�les.

Though MVC comes in di�erent �avors, control �ow generally works as
follows:

1. The user interacts with the user interface in some way (e.g., user presses
a button);

2. A controller handles the input event from the user interface, often via
a registered handler or callback;

3. The controller accesses the model, possibly updating it in a way ap-
propriate to the user's action (e.g., controller updates user's shopping
cart);

4. A view uses the model to generate an appropriate user interface (e.g.,
view produces a screen listing the shopping cart contents). The view
gets its own data from the model. The model has no direct knowledge
of the view. (However, the observer pattern can be used to allow
the model to indirectly notify interested parties, potentially including
views, of a change.)

5. The user interface waits for further user interactions, which begins the
cycle anew.

Event channel In big architectures it is very important to uncouple the
di�erent part of the application, keep them independent in order to not
cause a lot of code changing if there will be same changes or increasing of
the software volume in the future. The solution is often to have a central
object that knows the other objects and, in general, nobody knows each
other. All the objects exchange the messages with the only object known,
the message is then forwarded to the interested object. All the objects are
listening on the channel that forwards the events, for this reason the channel
object will be called EventChannel. When the listeners recognize the events
that are addressed to them, they catch and process them. The event channel
is the core of the client application but at the same time is only a point where
everybody should pass, it does not add important things to the execution of
the functionality.

The EventChannel has three methods for each functionality �func�:
addFunc(), removeFunc() and �reFunc().

• addFunc() is needed to register a listener that is going to receive infor-
mation on that functionality �func�;

• removeFunc() is needed to remove a listener previously registered;

CHAPTER 3. HONEYPOT DATA PROCESSING SYSTEM 43

• �reFunc() is needed to perform a broadcast to all the objects interested
in that speci�c functionality �func�.

Each listener is registered to the EventChannel in function of the func-
tionality, so there is a set of listeners for each functionality9.

New custom event de�nition The information are exchanged utilizing
custom events that are functionality dependent. For each functionality, in
fact, the information to be exchanged are di�erent. What we do is inherit
from an event that contains the common information and extend this object
with the peculiar characteristic of the functionality.

Figure 3.6: Class event diagram

In the �gure we de�ne the new event HoneyPotEvent10. This event
contains the attributes type and messageError that are common to all the
functionalities. The type is the information about which is the next step
the system should perform. This �eld has the aim to help an object to
understand if the next one to perform a computation is him or is not. mes-
sageError contains the information about the error in the case same have
occurred. The new events contain also all the get and set in order to ma-
nipulate the attributes, for sake of conciseness, they are marked with xxx
instead of the name of all the attributes.

For each functionality we de�ne a new event that inherits from Hon-
eyPotEvent. As you can notice from the �gure 3.6, the other information

9For information about the implementation of the EventChannel see the annex.
10See the annex for information about the implementation of the creation of custom

events.

CHAPTER 3. HONEYPOT DATA PROCESSING SYSTEM 44

carried from the events are functionality dependent.
Later in the text there are the sections that explain the details of the

various functionalities and from which the new attributes of the event derive.

Client side model We have introduced the concept of MVC pattern and
event channel, now we introduce a portion of the client side architecture
identifying the di�erent parts in function of the patterns viewed. We now
show a portion of the architecture, we do not show all the classes here. The
�gure 3.7 refers to one simple functionality11.

We have adopted the MVC pattern customizing it for our needs. The
direct link of �gure 3.5 between the model and the view is been deleted with
the aim of integrating also the event channel concept. Moreover we have
added a dashed line between the model and the controller. All the messages
are dispatched from the event channel, so also the model must go through
the controller.

We explain the architecture of �gure 3.7, these are the various steps:

1. The user selects the functionality (in the picture we have just one
functionality);

2. The event channel understands which functionality it should call and
it wakes up, with a broadcast communication, all the observers that
are listening. The common case is that just one object will wake up
but there are cases were we have more objects. So, in our example,
there is only one waked up object and it receives the event.

3. The object, waked up from the event channel, processes the event
showing the associated view that is an interface for the user;

4. The user sets the parameters and generates the Swing event12. This
step is in dashed line because the generation of the event is automatic
in Java.

5. The controller catches the event of the Swing and creates a custom
event that is loaded with all the information in order to perform the
request. The event is sent to the event channel;

6. Like the step 2;

7. The Process object executes the request through the net and the server.
The result is loaded on the custom event and sent to the event channel
object.

8. Like the step 2;

11Remember that simple functionality means single interaction.
12For example the event of button pressed or same other widget.

CHAPTER 3. HONEYPOT DATA PROCESSING SYSTEM 45

Figure 3.7: MVC and event channel matched on a portion of the real system

CHAPTER 3. HONEYPOT DATA PROCESSING SYSTEM 46

9. The controller understands that the process is addressed to him and
processes the event. This means that it displays the obtained data into
an interface.

In the case we have a double interaction functionality we have to add
another cycle from the View of the step 9, to the server and then come back
to a View with a new interface. We do not use the same classes but we create
others. In the main diagram there are all the functionalities and same of all
are with double interaction. See the �gure 3.8.

As you notice from the picture 3.7 we have utilized both the concepts of
event channel and MVC pattern. The last one, in particular, has a little bit
changed. The View portion is strictly the one of graphical interface. The
portion of Control is composed of two objects: the Ctrls that are controllers
of the graphical interface and the event channel that is an universal controller
that works like a dispatcher. The Model portion is interfaced only with the
Controller.

In the picture 3.7 the schema is simpli�ed. In the real class diagram it
is composed of more classes as explained in the next paragraph.

Advantage of the client side model By adopting this client model
organization we have kept independent the various services of the application.
To add a new functionality we repeat the schema of �gure 3.7 and the lonely
thing shared between the functionalities is the event channel, so the mix of
code is minimum.

Also inside each functionality we leave a lot of �exibility. First of all we
bene�t of all the advantages of the MVC13 that are to keep separate the data
(Model), from the visualization (View), through a new layer (Controller).
Moreover we have uncoupled the various parts that perform one functionality.
To perform one simple functionality we have to follow these steps: obtain the
user data, process and display the result. These three steps are extremely
independent in our application, the various objects do not have to know each
other. In more complex functionalities what we have to do is add two new
parts completely independent from the other objects.

Client side organization The real structure of the class diagram is a
little bit di�erent from the one explained in the previous paragraphs.

The classes are disposed in order to underly the di�erent layers of the
MVC pattern. At the top we have all the Views that are marked with the
stereotype Swing. At the centre we have the Controller layer countersigned
with the name of the classes that terminate with Ctrl, and the EventChannel.
At the bottom of the �gure there is the Model layer composed of the classes
Process, Thread and ClientSock.

13See the MVC pattern paragraph for more details on the advantages of MVC.

CHAPTER 3. HONEYPOT DATA PROCESSING SYSTEM 47

Figure 3.8: Complete client class diagram

CHAPTER 3. HONEYPOT DATA PROCESSING SYSTEM 48

As you can notice the classes of the View layer have only the method to
be created. These classes have only the goal of displaying the user interface.

In the Control layer, all the control classes inherit from a class called Ctrl.
We want to model that all the classes Ctrl are controllers of the graphical
interfaces of the View layer. The events of the View layer are captured
from the respective class of control and then the request is forwarded to the
EventChannel. Inside the methods actionPerformed() we do the catch of
the events generated from the widgets of the form set from the user. It is
useful to capture the events this way in order to uncouple completely the
View from the Control.

The Ctrls of one functionality inherit also from the class XxxListener.
The Xxx is the name of the di�erent functionalities. Moreover the class
XxxListener generalize the interface HoneyPotEventListener, with the me-
thod eventOccurred(). This is the common method of all the listeners and
the method that the EventChannel utilizes to notify that an event of interest
has occurred. This interface represents that all the Ctrls are listeners on the
event dispatched from the EventChannel.

If we analyze, for example, the case of Dictionary attack functionality, the
Ctrls are ReqDictionaryAttackCtrl and ResDictionaryAttackCtrl, these in-
herit from the class Ctrl and implement the method eventOccurred() of the
class DictionaryAttackListener. The class DictionaryAttackListener does
not has peculiar methods of this functionality, anyway we leave this poten-
tiality on the general scheme.

In the Model layer we have to add something respect to the model of
�gure 3.7. This application manages non trivial query SQL and net oper-
ations with the socket. These computations could demand many seconds
to be performed. We want to give the possibility to perform a second re-
quest while the server has not �nished the processing of the �rst one. So it
is not enough to have the lonely server multithread, we need also a client
that allows multithreading computations. It is for this reason that on the
diagram we have class XxxThread, where Xxx represents the name of the
functionality they implement. Following the previous example of Dictionary
attack the thread is called DictionaryThread.

The set of classes Process are used to process the request addressed to the
server. They launch a thread that retrieves the data from the server. The
Process object loads the data retrieved on a custom event and it sends them
to the EventChannel. As you can notice the Process objects are controllers
too, they inherit from the classes Ctrl and Listener. Anyway they have
a di�erent meaning turned to the data, it is for this reason that they are
placed on the Model layer. The lonely method that they have to implement
is eventOccurred() that is needed, like the other controllers, to interface with
the EventChannel.

The thread classes implement the method run() inherited from the exten-
sion of the class Thread that belongs to the standard API. This is the method

CHAPTER 3. HONEYPOT DATA PROCESSING SYSTEM 49

called to launch a new thread. It also implements the method checkDepen-
dentParameters() that is used to check the parameters retrieved from the
net. Here we check only the parameters that are functionality dependent14.

The exchange of parameters with the net is demanded to the class Client-
Sock that is called from the thread to read and write on the socket through
the method read() and write(). This class gathers also a general method
useful to all the threads o� all the functionalities. The method is checkGen-
eralParameters() and it is used to check the general parameters retrieved
from the net. Here we check the general parameters, the parameters that
are common to all the functionalities14.

All the classes that have a control function realize a Singleton pattern,
these are marked with the stereotype Singleton. We want a single instance
of these classes. The registration of this single instance on the EventChannel
occur through the class Client.

The Client class contains the main() program that is the application
that launches the main menu of all the functionalities available. The class
MenuCtrl and MenuView are the classes that manage the menu, respectively
the Control and the View. It is from the menu View that the user chooses
the functionality to run.

14For more details see the chapter 5 Protocol communication.

Chapter 4

Functionalities

In this chapter we explain the meaning of the two functionalities developed
for the high-interaction data processing system: the dictionary attack and
the terminal information. In both cases we �rst explain the general meaning
in term of computer science and security, and then we show the interface
developed.

4.1 Dictionary attack

4.1.1 What is a dictionary attack?

In cryptanalysis and computer security, a dictionary attack is a technique
for defeating a cipher or authentication mechanism by trying to determine
its decryption key or passphrase by searching a large number of possibilities.

In contrast with a brute force attack, where all possibilities are searched
through exhaustively, a dictionary attack only tries possibilities which are
most likely to succeed, typically derived from a list of words in a dictionary.
Generally, dictionary attacks succeed because most people have a tendency
to choose passwords which are easy to remember, and typically choose words
taken from their native language.

Dictionary attacks may be applied in two main situations:

• in cryptanalysis, in trying to determine the decryption key for a given
piece of ciphertext;

• in computer security, in trying to circumvent an authentication mech-
anism for accessing a computer system by guessing passwords.

In the latter case, the e�ectiveness of a dictionary attack can be greatly
reduced by limiting the number of authentication attempts that can be per-
formed each minute, and even blocking further attempts after a threshold of

50

CHAPTER 4. FUNCTIONALITIES 51

failed authentication attempts is reached. Generally, 3 attempts is consid-
ered su�cient to cope with mistakes made by legitimate users; beyond that,
one can safely assume that the user is a malicious attacker.

In our case we don't want to increase the security of our system because
the honeypot wants to attract a large number of attacks.

There is some commonality between these situations. For instance, an
eavesdropper may record a challenge-response authentication exchange be-
tween two parties and use a dictionary attack to try to determine what the
password was. Or, an attacker may be able to obtain a copy of the list of
encrypted passwords from a remote system; assuming the users are mostly
English speakers, the attacker could attempt to guess the passwords at their
leisure, by encrypting each of a list of English words and comparing each
encryption against the stored encrypted version of users' passwords. Since
users often choose easily guessed passwords, this has historically succeeded
about 4 times out of 10 when a reasonably large list is used. Dictionaries for
most human languages (even those no longer used) are easily accessible on
the Internet, meaning even the use of foreign words is practically useless in
preventing dictionary attacks.

An example of a dictionary attack occurred in the Second World War,
when British codebreakers working on German Enigma-ciphered messages
used the German word eins as part of the attack; eins, the word for the
number one, appeared in 90 percent of all ciphertexts, as the Enigma ma-
chine's keyboard had no numerals 1.

4.1.2 Dictionary attack functionality

During the last years, the project CADHo has accumulated a large amount
of dictionary attack data, addressed to our honeypots. These data have been
stored on a big central database. The dictionary attack functionality is used
to retrieve and visualize these information in order to analyze them.

Our aim is to retrieve the dictionary attack information, occurred in a
given temporal interval speci�ed by the user, through the de�nition of the
begin and end parameters. One dictionary attack is associated to one IP
address.

Nevertheless there is also another issue, due to the fact that most of the
IP addresses of the Internet are dynamically assigned. The main consequence
is that IP addresses that appear more than once in the database may not
refer to the same machine. Besides, let us suppose that a machine performs
two dictionary attacks, executed within 12 hours from each other. What this
means, does this second attack belong to the �rst one or is it a new one?

One dictionary attack is composed of one or several consecutive login
attempts. Two consecutive attempts belongs to the same dictionary attack

1Some might classify this as a known plaintext attack.

CHAPTER 4. FUNCTIONALITIES 52

if the time interval separating these attempts is less then a speci�ed limit,
see �gure 4.1. For these reasons, besides the temporal interval another pa-

Figure 4.1: The parameter limit

rameter must be established that points out the maximum time between two
dictionary attacks. For more information and an example see chapters: 5
and 6 and especially the example 6.3.

So the user must specify three numbers: begin, end and limit. The
interface to specify these numbers is �gure 4.2

Figure 4.2: Main window of dictionary attack

On the top of the interface we have the widgets to specify the begin
instant. This is composed from a calendar, that allow to specify the date,
and three boxes in order to specify hour, minute and second of the day.
On the middle we have the end instant speci�cation working the same.
On the bottom, we set the maximum duration parameter (limit) with three
slidebar in order to speci�cate hours, minutes and seconds. The maximum

CHAPTER 4. FUNCTIONALITIES 53

value of limit may be one day. In the �gure we have setted the �elds of the
interface with the following data:

• begin = date: 8/1/2006 hour: 0:00:00;

• end = date: 9/1/2006 hour: 12:30:00;

• limit = 10 seconds.

From now we will call begin and end these two parameters.
When an OK click occurs we get two representations of the same data: a
table and a graph.

4.1.3 Table representation of the data

On the table, we get a line for every dictionary attack. On the line we obtain
the IP address of the machine, the number of attempts that have been tried,
the begin and the end of the attacks, �gure 4.3 (the parameters used in order
to generate the table are the same of the �gure 4.2).

Figure 4.3: Table result of the functionality dictionary attack

As you can notice, there are more lines with the same IP address. This
is due to the parameter limit that is not an in�nite number.

CHAPTER 4. FUNCTIONALITIES 54

4.1.4 Graphic representation of the data

Our aim is to obtain a �rst glance idea of the table data; we have developed
a graphic interface. We use an UNIX system representation of the time.
In the UNIX systems the time is counted in milliseconds beginning from a
determined instant of the history. This instant is what is called �zero epoch�
and it corresponds to the January 1, 1970.

In the interface a Cartesian coordinate system is visualized with the IP
addresses on the axis y and the time on the axis x, �gure 4.4. On the axis x
we represent the seconds therefore, any date is in relationship 1 to 1 with a
number that represents the seconds beginning from the epoch. We consider

Figure 4.4: Graphic visualization of dictionary result

as viewport of our interface the space of plan among the axises. There is a
line for each IP address present in the dictionary attack result and the graph
changes dynamically in comparison to it. The temporal window considered
is given by the user in the preceding step with the parameters begin and end
of the form, as shown in �gure 4.2 . We can interact with the graph making
some zooms forward or backward and moving the scrollbar.

In the �rst visualization the scrollbar cannot be moved and begin/end of
the graph exactly coincides with the parameters begin/end speci�ed by the
user. We can notice the 5 IP addresses instead of a lot of rows visualized on
the table. In fact the attacks visualized on the table are reassumed by the
graphic but the �rst time we have a small granularity. We can increase the
granularity through the zoom.

The various attacks from the IP address 60.208.105.190 are drawn, in
this �rst image, as single long attack; taking a great granularity the attacks
can be visualized in their real form so it will be separated. Making a positive
zoom we change the parameters, begin/end of the graph will coincide with
some new parameters calculated according to a formula.

To produce the graphical representation we make a relation between the
seconds and the pixels of the screen, we need to consider the size of the
screen. The number of the pixels is got in a dynamic way so we will not

CHAPTER 4. FUNCTIONALITIES 55

have problems of visualization in the case the size of the screen changes in
future installations of the software on devices of di�erent dimensions. At
any instant of the time pointSec is mapped on a pixel x of the screen if this
temporal instant reenters in the window of time considered. We call totalSec
the total number of seconds, from the parameters begin and end speci�ed
by the user, we get x according to the proportion:

totalSec : pointSec = totalP ixels : x

from which we obtain:

x =
totalP ixels · pointSec

totalSec

Our temporal window is relative to the parameters begin/end. The param-
eter pointSec will be therefore an instant related to the parameter begin,
pointSec = instantSec−begin, where instantSec is an instant of the history
in seconds. Also the number x of pixels to be drawn is related to the axis y
that has coordinates x = 0, so we have to set the pixel x beginning from the
pixel of the axis y.

If we make a positive zoom, the �gure is magni�ed only on the axis x and
the bars are lengthened according to the new parameters. The parameter
totalSec is changed according to the formula:

totalSec =
(end − begin)

zoom

At the �rst instance, zoom is equal to one and when we perform same
zoom it will be multiplied for a �xed value, for example two. Making a
positive zoom there is a loss of information, there are some points that
remain out of the viewport. These information can be all visualized through
the scrollbar. A parameter �move� tells us that we are moved by the absolute
center 2 of our time. Every time that the scrollbar is moved the parameter
move is modi�ed in function of the movement of the scrollbar. Accordingly
we make the refresh of the paint including and/or excluding some attacks
from the viewport. Once calculated the x through the proportion, that is
function of the parameter already modi�ed totalSec, a check is made in order
to see if the point should be drawn or not. If the calculated pixel is out of our
range of values, it is not drawn. Our range of values is from 0 to totalPixels.

The result of the zoom that we get continuing the precedent example is
the �gure 4.5. You notice the change of the temporal references begin/end
and the size of the bars that represent the attacks. Also the scrollbar has
changed, now we can interact with it. One attack, on the last IP address,
is lost by the viewport but it can be visualized moving the picture with the
scrollbar. Performing same zooms and moving the scrollbar we can see that
the large bar splits in more di�erent bars showing that it is composed of
multiple attacks, see �gure 4.6.

2The absolute center is given by (end−begin)
2

.

CHAPTER 4. FUNCTIONALITIES 56

Figure 4.5: Zoom visualization

Figure 4.6: Split visualization of the attacks

CHAPTER 4. FUNCTIONALITIES 57

4.2 Terminal information

4.2.1 What is a terminal?

Historically A computer terminal is an electronic or electromechanical
hardware device that is used for entering data into, and displaying data from,
a computer or a computing system. Typically it provides a text terminal
interface over a serial line.

Early user terminals connected to computers were generally electrome-
chanical teleprinters (TTYs: abbreviation of teletypewriters). However these
were too slow for most production uses. By the early 1970s, many in the com-
puter industry realized that an a�ordable video data entry terminal could
supplant the ubiquitous punch cards and permit new uses for computers that
would be more interactive.

Early video computer displays were sometimes nicknamed �Glass TTYs�
and used individual logic gates, with no CPU. One of the motivations for
development of the microprocessor was to simplify and reduce the electron-
ics required in a terminal. Most terminals were connected to mainframe
computers and often had a green or amber screen. Typically terminals com-
municate with the computer via a serial line, often using the RS-232 serial
interface.

Later, so called intelligent terminals were introduced, such as the VT52
and VT100 made by DEC, both of which are still widely emulated in soft-
ware. These were called �intelligent� because they had the capability of
interpreting escape sequences to position the cursor and control the display.
The VT100 terminal implemented the sophisticated ANSI standard for func-
tions such as controlling cursor movement, character set, and display en-
hancements.
Today, most PC telnet clients provide emulation of the most common termi-
nal, the DEC VT100 for example which has became the de facto standard
used by terminal emulators.

Contemporary Since the advent and subsequent popularization of the
personal computer, few genuine hardware terminals are used to interface
with computers today. Using the monitor and keyboard, modern operating
systems like Linux and the BSD derivatives feature virtual consoles, which
are mostly independent from the hardware used. Graphical user interface
(or GUI) like the X Window System, one's display is typically occupied by
a collection of windows associated with various applications, rather than
a single stream of text associated with a single process. In this case, one
may use a terminal emulator application within the windowing environment.
This arrangement permits terminal-like interaction with the computer (for
running a command line interpreter, for example) without the need for a
physical terminal device.

CHAPTER 4. FUNCTIONALITIES 58

The ubiquitous Unix terminal window is used for both local and remote
access; where the connection goes is not the business of the terminal emula-
tor itself, it just communicates through a pseudo terminal interface. Many
di�erent terminal emulators are available for the X Window System, like
xterm for example.

A terminal emulator, terminal application, term, or tty for short, is a
program that emulates a �dumb� video terminal within some other display
architecture. Though typically synonymous with a command line shell or
text terminal, the term terminal covers all remote terminals, including graph-
ical interfaces. A terminal emulator inside a graphical user interface is often
called a terminal window.

A terminal window allows the user access to text terminal and all its
applications such as Command-Line Interfaces (CLI) and text user interface
applications. These may be running either on the same machine or on a
di�erent one via telnet, ssh, or dial-up.

On Unix-like operating systems it is common to have one or more ter-
minal windows connected to the local machine. Terminals usually support a
set of escape sequences for controlling color, cursor position, etc.

Pseudo terminal implementation For each pseudo terminal, the oper-
ating system kernel provides two character devices: a master device and a
slave device.

The slave and master devices, in their most common deployment, form
an association between a Unix shell and a terminal emulation program or
some sort of network server. The slave device �le has the appearance and
supported system calls of any text terminal. Thus it has the understanding
of a login session and session leader process (which is typically the shell
program).

The master device �le is the endpoint for communication with the ter-
minal emulator. It receives the control requests and information from the
other party over this interface and responds accordingly.

Pseudo terminal applications Important applications of pseudo termi-
nals include xterm and similar terminal emulators in the X Window System
and other window systems (such as the Terminal application in Mac OS X),
in which the terminal emulator process is associated with the master device
and the shell is associated with the slave. Any terminal operations performed
by the shell in a terminal emulator session are received and handled by the
terminal emulator process itself (such as terminal resizing or terminal re-
sets). The terminal emulator process receives input from the keyboard and
mouse using windowing events, and is thus able to transmit these characters
to the shell, giving the shell the appearance of the terminal emulator being
an underlying hardware object.

CHAPTER 4. FUNCTIONALITIES 59

Other important applications include remote login handlers such as ssh
and telnet servers, which serve as the master for a corresponding shell,
bridged by a pseudo terminal.

4.2.2 Terminal information functionality

Our honeypots need a login to be accessed. Our studies are targeted to at-
tackers that perform the attack from UNIX like systems. Thus the violation
of the system is always done with a pseudo terminal slave, in other words
with a shell, with a SSH (Secure Shell) connection. The login is climb over
by the dictionary attack and the attack is performed once the attacker has
entered into the system.

This functionality is aimed to obtain the information of what the attacker
do from the terminal. The terminal is always a pts (pseudo terminal slave)
and the aim of the functionality is to print all the activities typed from the
attackers. The schema of an attack is as follows:

• the attacker opens a terminal, a shell;

• the attacker tries to login to a remote server, our honeypot for example,
performing a dictionary attack;

• if the attacker logins successfully then he will perform some operations,
he will execute some programs.

Our aim is to reproduce exactly what the attacker writes on the terminal.
When the machine of the attacker and our honeypot are connected the hon-
eypot records a lot of information that are stored to the main database.

Our application shows the information in a suitable way in order to an-
alyze the data. The steps of the interaction between the user and the appli-
cation are explained in section 3.2.

The �rst interface is a little bit simpler than the one of dictionary attack.
On the dictionary attack we have the parameter limit that has no sense in
the terminal information functionality. The rest of the parameters are the
same of dictionary attack. To perform this request to the application two
parameters are necessary: the begin and the end of the time interval. The
interface to specify these numbers is shown in �gure 4.7.

On the top of the interface we have the widgets to specify the begin
instant. This is composed from a calendar, that allows to specify the date,
and three boxes in order to specify hour, minute and second of the day.
On the middle we have the end instant speci�cation working the same.
In the �gure we have set the �elds of the interface with the following data:

• begin = date: 1/1/2006 hour: 0:00:00;

• end = date: 4/3/2006 hour: 0:00:00;

CHAPTER 4. FUNCTIONALITIES 60

Figure 4.7: Main window of terminal information

This functionality is composed of two interactions3. The �rst interaction
obtains all the terminals that have performed an attack during the speci�ed
period of time, i.e., the begin and the end interval. In the example we want
to identify all the terminals between the �rst January 2006 and the four
March 2006.

When an OK click occurs we get a table of three columns: the tty name,
the begin and the end of the session opened by that tty. This is showed in
�gure 4.8. In the �gure we visualize all the terminal names that the attackers
have utilized to perform the attack and moreover the time references of the
session opened in order to connect to our honeypot. If we click on one of the
displayed lines we start the second interaction. So clicking on one of the tty
of the table we ask to retrieve all the activities the attacker has typed while
that session. One example result is the �gure 4.9.

The command �w� prints summaries of system usage, currently logged-in
users, and what those users are doing. So the attacker is maybe looking if
he is the only user of the system.
With the command �wget www.poison.lydo.org/t3.tgz� the attacker is trying
to download the �le t3.tgz but this operation fails.
Then he displays some information about the host with the command �cat
/proc/cpuinfo�.
Describing the attacker activities is out of the scope of the project of mine,
so we do not give a lot o� explications concerning these results.

3See the chapter 5, Protocol communication, for more information.

CHAPTER 4. FUNCTIONALITIES 61

Figure 4.8: First interaction window of terminal information

Figure 4.9: Second interaction window of terminal information

Chapter 5

Protocol communication

In this chapter we talk about the protocol utilized on both client and server
side to communicate. The �rst part is a general consideration on the advan-
tages or disadvantages of the di�erent technologies that we can use. Then
we talk about the details of the protocol developed and implemented.

5.1 General

What we need is a communication channel between the server and the client.
There are a lot of technologies that allow a channel between the two parts.
The programming language that we use is Java, so the �rst idea to develop
the channel could be utilizing the power of this middleware, for example,
the Remote Method Invocation(RMI). This technology is powerful and com-
fortable to use. Unfortunately there are same disadvantages. Writing the
bridge between the client and the server in this way means that both the net
interface should be written in Java. We are binded to the platform while we
would like that the two parts are completely independent.

One solution is to utilize socket that is a system independent technol-
ogy. This means that we can implement the server side in a language that
is di�erent from the one of the client side. If we do not have the platform
independent problem we could create an Object that contains all the infor-
mation to be transferred to the other side. Utilizing the class Serializable of
Java we transform the Object in an equivalent String that can be converted
another time to the beginning Object. The sender transforms the object
into a String, the String is sent through the net and then the receiver trans-
forms again the String in Object. This way we have transferred the data in
a very easy and comfortable way because we have utilized the already im-
plemented API. In the conversion the data are �encrypted� behind the Java
organization; this means that this solution is platform dependent.

It is for this reason that we cannot use class like Serializable, so we
created a customized protocol to transfer the data. What we do is build

62

CHAPTER 5. PROTOCOL COMMUNICATION 63

a string that can be read from any kind of implementation. The string is
formatted in a �xed way in order to manage the retrieval of the information
at the other side of the channel. Moreover we add to the pure information
same special characters. Here we explain the communication protocol that
we are proposed and implemented.

We de�ne a number �#�, at the begin of the string, which identi�es the
functionality that the client request or maybe the interaction step number
within a functionality. This parameter is a char, so 255 functionalities are
allowed.

#

Table 5.1: Functionality's number

The functionalities are as follows:

1. Dictionary attack;

2. Terminal �rst interaction;

3. Terminal second interaction;

For the terminal functionality we have two interactions so we need two num-
bers to manage this situation. We use a char token to separate the di�erent
�elds of the protocol. The token is �:� like the implementation of other
utility of Unix systems. The �eld between the token are the information

: : :

Table 5.2: Token's structure

needed to perform the query of the client. Each functionality has a protocol
to exchange the information between client and server. It means that all the
�elds are speci�ed for the request and for the answer.

The parameters are inserted in the packets with an identi�cation for each
of them. This identi�cation will allow to match same information needed to
the other side (i.e.: the parameters of the SQL parameter query). The
parameter is separated from the identi�cation with an �=�. So we put for
each parameter the pair �PARAMETER=parameter�.

Request The request message is composed of a header and same param-
eters. The header is composed from: REQUEST, LENGTH. The number
of functionality is the REQUEST. The LENGTH header is an integer num-
ber, it counts the number of the parameters from the �rst parameter, so
the header is not included. The LENGTH parameter is useful for reasons of
testing and for future enhancement of the system.

CHAPTER 5. PROTOCOL COMMUNICATION 64

REQUEST=# : LENGTH=length : PARAMETER=p1 : ...

Table 5.3: Request: headers and parameters

Answer The answer is composed of the raw data retrieved and a header.
The header is the ANSWER number, the LENGTH and the TYPE of the
answer. The ANSWER parameter is important in order to be sure that the
answer is relative to that request. This is the number of functionality as the
request. The LENGTH parameter is the length of the data beginning from
the �rst data. The string TYPE parameter is important in order to distin-
guish a normal answer from an error answer. If same errors have occured the
type parameter will be �error�. If the answer is correct the type parameter
will be �result�.

In the case the answer is empty the data string returned will be empty,
there will be just the type parameter. In the case same error occur to the

ANSWER=# : LENGTH=length : TYPE=result : d1 : d2

Table 5.4: Answer: headers and parameters

server side, the string returned will be: We don't care about the �eld length.

ANSWER=# : LENGTH=x : TYPE=error : message error

Table 5.5: Answer: error headers and parameters

Message error is a string that describe the error.
Note that the order of the parameters at request time is not important, in-
stead it's important for the answer.

For sake of performance, for each interaction the server is unconnected
from the client and it reconnects after, for the second interaction. This way
we will avoid that the server has a lot of session opened for �thinking time�
at the client side. The data at the client side are obtained to be studied, so
in general this could mean that one session could be open for a long time.
This way we avoid useless server employment.

5.2 Dictionary attack

Request The number `1' is reserved to perform this functionality. More-
over we have other three �elds:

• b: is the begin of the time interval to be considered;

• e: is the end of the time interval to be considered;

CHAPTER 5. PROTOCOL COMMUNICATION 65

• l: is the limit time for distinguishing two di�erent attacks.

REQUEST : LENGTH : BEGIN : END : LIMIT
=1 =3 =b =e =l

int int int

Table 5.6: Request dictionary attack

An example is: BEGIN=1136073600, End=1167631200, LIMIT=5, the be-
gin corresponds to 01/01/2006 and the end corresponds to 01/01/2007.

Answer The answer is composed of four �elds that are repeated for all the
instances of attacks founded:

• IP: is the IP address of the attacker;

• Attempts: is the number of attempts of that attack;

• Begin: is the begin time of the attack;

• End: is the end time of the attack.

ANSWER : LENGTH : TYPE : attempts : begin : end
=1 =num =result

int int int

Table 5.7: Regular answer dictionary attack

5.3 Terminal information

The Terminal information functionality has a multiple information inter-
change between the server and the client. There are two messages for each
part. The number `2' and `3' are reserved for this functionality.

First request The number `2' is reserved to perform this �rst request.
Moreover we have two other �elds:

• b: is the begin session time to be considered;

• e: is the end session time to be considered.

An example is: BEGIN=1136073600, End=1167631200, the begin corre-
sponds to 01/01/2006 and the end corresponds to 01/01/2007.

CHAPTER 5. PROTOCOL COMMUNICATION 66

REQUEST=2 : LENGTH=2 : BEGIN=b : END=e

int int

Table 5.8: First request terminal information

First answer The answer is composed of three �elds that are repeated for
all the attackers open sessions within the interval of time.

• tty: is the name of the tty;

• begin: is the begin time of the session;

• end: is the end time of the session.

ANSWER : LENGTH : TYPE : tty : begin : end
=2 =num =result

text int int

Table 5.9: Regular �rst answer terminal information

num is the number of �eld information after the parameter type. It should
be module 3.

Second request The number `3' is reserved to perform this second request.
Moreover we have other three �elds.

• t: is the tty name. We want to show all the information about this
tty;

• b: is the begin session time to be considered;

• e: is the end session time to be considered.

REQUEST : LENGTH : TTY : BEGIN : END
=3 =3 =t =b =e

text int int

Table 5.10: Second request terminal information

An example is: TTY=pts1, BEGIN=1136073600, End=1167631200, LIMIT-
=5, the begin corresponds to 01/01/2006 and the end corresponds to 01/01-
/2007.

CHAPTER 5. PROTOCOL COMMUNICATION 67

ANSWER=3 : LENGTH=num : TYPE=result : bu�er

text

Table 5.11: Regular second answer terminal information

Second answer The answer is composed of one �eld that is repeated for
all the terminal information.

• bu�er: is all the terminal information that corresponds to all the things
the attacker has typed on the keyboard.

num is the number of �eld information after the parameter type.

5.4 Data testing

Through the socket a lot of data is exchanged between the client and the
server. For a good security and data coherence these are tested every time
they enter from the net, in both client and server.

The data are tested at two di�erent levels: the general data and the
speci�c data of one functionality.

General data These are the data of the headers of our protocol1. The
headers are common to all the packets exchanged between the client and the
server, like the protocol speci�cate. The test is done on the type of the data,
thus not strictly on the data value. Into a packet exchanged on the net the
headers are always of the same type for all the functionalities treated.

In the request packet, see table 5.3, the REQUEST and the LENGTH
parameters are integers. If we receive a request and these parameters are not
integers we have to generate an error. The same is for the answer packet,
see table 5.4, the ANSWER and the LENGTH headers are integer and the
TYPE is a string.

Another thing that we test at this level is the consistency between the
�eld LENGTH and the number of parameters. The mean of this �eld is the
number of parameters that follow the headers. This number is not dependent
from the functionality and so we can test it here. If the number of parameters
is di�erent from the number LENGTH we generate an error.

The �elds of the packet should match exactly the �elds of the protocol.
This means that the packet must have the same number of headers of the
protocol. If all the �elds are correct but the �eld LENGTH or the �eld
REQUEST, is not present, we generate an error.

The content of the header TYPE should be �result�. The �eld TYPE is
received only at client side, so if the content is not result this means that

1See the precedent paragraph General.

CHAPTER 5. PROTOCOL COMMUNICATION 68

to the server side of the net same error has occurred. Generate an error
to the receiver is equivalent to have catch the error that the transmitter
has generated. In this case of error we have same information on the �eld
�message error�, see table 5.5.

So what we do in the general data test is a control on the meaning of the
data and this is functionality independent. Moreover we check if the string
that represent the packet is well formatted. There is a character that allow
to understand the limit between one �eld and another. This is the character
�:�. A �eld cannot be empty. Another character is �=�. This special character
separates the header �eld in two parts. The �rst part identi�es the �eld and
the second part is the value. Both these parts cannot be empty.

At the client side all these controls are in the method checkGeneralPa-
rameters() of the class ClientSock, see �gure 3.8. This respects the fact that
we manage an independent functionality control. At the server side we do
the controls in the method run() of the class ServerSocketThread, see the
�gure 3.4. For both, the control is done as soon as read from the socket.

Peculiar data These are the data that depend on the functionality that
utilizes it. In the precedent paragraph, we analyze only the formatting of
the packet and the headers, we check if the content is of the type speci�ed
in the protocol. Here we check that the header's content is the right one.
At this level we do not care about the check of the type of the parameters
or if the �eld exists. These controls are already performed on the checkGen-
eralParameters() that is temporally precedent to the check on the peculiar
data.

If we are performing the dictionary attack functionality, the header RE-
QUEST should be exactly `1', because this is the number that identify this
functionality. The same is for the header ANSWER, the content should be
`1'.

Once tested the headers, we can test all the parameters that depend on
the protocol de�nition. In the case of dictionary attack, for example, we
have three parameters in the query: begin, end and limit. These parameters
should exist and should be integer otherwise we have to generate an error.
The number of these parameters is strictly binded to the functionality like
the type of the parameters too. In the functionality terminal information,
for example, in one of the interaction, there are the parameters tty, begin
and end, see table 5.10. tty is a text, begin and end are integer. As you can
notice the tests we have to do are di�erent from the one of the dictionary
attack.

Another important thing to test in general check, is that the number of
parameters returned from a query should be module N, like already men-
tioned in the precedent section. In the case of dictionary attack the number
of parameters returned is N = 3: attempts, begin and end, see table 5.7.

CHAPTER 5. PROTOCOL COMMUNICATION 69

These information are repeated for each dictionary attack retrieved from
the database, M for example, so the number of �elds returned should be
X = N · M that is X%N = 0. If the number of attacks of the dictionary
attack returned is M = 5 then the number of the parameters returned is
X = 15. The check is that X%N = 0, so 15%3 = 0. If we have X%N = 1,
for example, this means that we have an attack that have one of the three
information needed. For characterizing the attack we need all the three in-
formation. Following the example,the check on the LENGTH that we have
explained before, is that the header LENGTH = 15 (this is done in the
checkGeneralParameters().

At the client side all these controls are in the method checkDependent-
Parameters() of the class xxxThread that manage the interaction with the
net, see �gure 3.8, xxx is the name of the functionality. In the case of dic-
tionary attack the class xxxThread is DictionaryThread. This location of
the method respects the fact that we manage an independent functionality
control.

At the server side we place the controls in the method perform() of the
class that inherit from the class Functionality and that implements the pe-
culiar functionality. In the case of dictionary attack the class is Dictionary-
Attack, see �gure 3.3.2.

For both the control is done as soon as read from the socket, so before
the beginning of the processing of the data.

Chapter 6

SQL query processing

In this chapter we speak about all concerning the database. The application
interacts with the database to retrieve the information stored during the
months of attack observation. The database used to store the observed data
is in MySQL technology so the query and the drivers used from the high-
interaction honeypot data processing system are related to MySQL.

We �rst introduce the �le structure that allows to retrieve the SQL script.
Then we speak about the tables manipulation of the dictionary attack in
order to obtain the result and we show a numerical example. The table
manipulation and the example is reported only for one functionality for sake
of conciseness. At the end of the chapter we speak about the driver utilized
to connect the application to the database.

6.1 General

For the usability of our software, it's very important to design SQL query
with a good performance. In fact we have to care about the size of the
database because it is big enough. The queries we have to perform are not
trivial, we have two possibilities in its design. The easiest thing could be
designing easy queries that provide partial results and then managing these
in the layer above, the application layer. This solution is not very e�cient
from the performance point of view. In deed, same preliminary performance
tests have proved that the response time in this case is of the order of minutes.
What we need is to obtain directly, from the SQL, the answer for the client.
This way the computation is quicker and we gain better performance.

In the future the system will be extended and new functionalities will
be added, so we have to design it in a modular way. For each functionality
we write in a separate text �le the query of the database. The �le will have
a name concerning the query it will perform. In the case of the Dictionary
attack functionality the name of the �le will be �dictionary_attack.txt�. The
�le will contain a succession of SQL instructions that will return the result to

70

CHAPTER 6. SQL QUERY PROCESSING 71

be sent to the client, so there will not be other data manipulations to do. The
path of the �le will be retrieved from another �le called �queries_�le.txt�.
This �le contains all the path of the query �le and it is formatted as follow:

4 c:\command_frequency.txt
1 c:\dictionary_attack.txt
2 c:\terminal1.txt
3 c:\terminal2.txt
5 c:\key_frequency.txt

In the example there are functionalities not implemented; this is just an ex-
ample in order to understand the possible dispositions of the �queries_�le.txt�.
It's important to write the identi�cation number because each functionality is
associated to a number and the relative query is found utilizing this number.
In the case of the terminal information functionality we have two �les accord-
ing to what we have said in the explanation of the server side organization,
paragraph 3.3.2. In fact the two interactions will be treated independently
and so the two sub-functionalities as two normal functionalities.

We don't want an hard format restriction of this �le. The only condition
is that all the paths are disposed in di�erent lines. Are allowed space lines
and �TAB� for any suitable formatting of the �le. So the idea is that for each
client request we take the path of the query �le from �queries_�le.txt� and
then we execute the query. This way, if we want to add a new functionality,

Figure 6.1: Image query schema

we have to create a new �le that contains the query and add a new line in
the queries �le. There will not be a mix of SQL code that generally is error
prone and the order of the new line in the �queries_�le.txt� is not important.

CHAPTER 6. SQL QUERY PROCESSING 72

Once we have taken the query �le, before the execution of the query, the
�le should be modi�ed. In fact the query is parametric and it's not easy
to manage with the conventional method of PrepareStatement class. This
is because the query is composed of some other subquery and these will be
executed separately. What we are calling query is a script containing several
queries executed in sequence.

There will be many points of the script where we have to insert the
parameters within the SQL code. To identify where we have to insert the
parameters we use the notation $PARAM$. What we do is parsing the �le
before its execution and all parameters are changed with the correct values.
From the client will arrive parameters in the form �PARAM=param�, see
chapter 5, and these will be matched with the parameters of the �le. Also
the generation of temporary tables is managed with parameters. The thread
will create a pair �RANDOM=random� and this will take part of the set of
the parameters as well. This way we allow a multi-thread context without
caring of mistakes due to the same name in creation of tables. The tables in
the �le of the query should be called like this:

create table table$RANDOM$ (. . . .)

The user doesn't care about the real name of the temporary tables.
In the format of the �le �queries_�le� we have no particular restrictions.

It works like if we are running queries in MySQL batch mode. So it will
be easier to write the query: when we write the �le we can use comment,
blank line and write the same query in more than one line. We can use also
the �TAB� for formatting the �le in a suitable manner, put space characters
where we want and don`t care about lower\upper case of the keys of the
SQL query. In the following section we analyze the SQL query for each
functionality we developed.

6.2 Dictionary attack

With this functionality we want obtain the IP address, see chapter 5, the
number of attempts, the begin and the end of each attack.
The tables that are useful for retrieving this information are `op_hdr' and
`op_sshd_auth_password' because these contain the �eld we need. The
structures of these tables are given in table: 6.1 and table 6.2.

op_id op_type time pid index_op op_size

Table 6.1: Table op_hdr

CHAPTER 6. SQL QUERY PROCESSING 73

op_ is_ user_ pass ip_address user pass ip_
id auth size _size _size address

Table 6.2: Table op_sshd_auth_password

We have to join these tables on the �eld `op_id' and in various steps to
arrive to our result:

• We create a table called `table1'.
This is created by an inner join between the two tables above selecting
only the rows that have op_hdr.op_type = 6 because we are interested
only in the dictionary attack type and it is the number 6. We also have
two more conditions; the time of the operations selected should be in
a speci�c period of time that in the communication protocol is marked
like begin end. We select only the IP and time �eld and create a
primary key �eld. The result is the table 6.3.

id time ip

Table 6.3: Table table1

• We create a table called `table3'. This is created by an inner join be-
tween the precedent table1 with itself on the �eld table1.id = table2.id−
1. We also have two conditions more. We select only the rows with
di�erent IP and the rows with table2.time− table1.time > limit. This
way we are closer to the information we want, we only keep signi�cant
rows that allow us to count the number of attempts with only a sub-
traction in the next step. In fact now we have in id a number that can

idt id time1 time2 ip1 ip2

Table 6.4: Table table3

be used to calculate the number of attempts. idt is the primary key
generated automatically.

• Now we create a table called `table5' that is the last table containing
the �nal result. What we do is to do an inner join between the table3
and itself on the �eld table3.idt = (table4.idt − 1). The �eld we take

CHAPTER 6. SQL QUERY PROCESSING 74

are only ip, attempts and begin, end. We show clearly this join in the
example the follows; we show all the �elds of the join and then we will
cut some column.

ip attempts begin end

Table 6.5: Table table5

In this process we have lost two little parts of the information that we want.
These two parts are at the begin and the end of the table3. This is shown
in the example. We solve this problem adding some rows to the table5 and
managing separately these cases.

6.3 Example: test

We create an example that allows to see if the total query is right. Instead of
the �rst step, the join of table `op_hdr' and table `op_sshd_auth_password'
we begin from a example table called `table_init' that contains ip and time
of various attacks. The �rst join is easy to perform and doesn't need to be
tested. The numbers utilized in the example are di�erent from the reality
but we have chose them to have a good test case, so looking to underly
problems. We assume that the parameters of this example are:

• begin = 0;

• end = infinite;

• limit = 9.

It means that there is no selection for the time begin and end that is enough
trivial to test in other way but we care about the time expired between two
attacks. The entries are ordered by tps. The tps is the time instant of the
attack, ip is the IP number of the attacker. We show it in a graphic way,
�gure 6.2. We put the begin of each new dictionary attack performed and
all the attempts that form the attack. This paint is a particular instance
of this functionality because depends on the parameters that the client has
sent. All the attacks displayed are in the table init_table.

From this table we create the table1 adding the column of the identi�-
cation, the primary key. The order is based on the pair (time, ip). We show
it in a graphic way, 6.3. Here we paint it in di�erent lines in order to have
a clearer vision of the attacks split by IP. All the elements displayed are in
the table1.

CHAPTER 6. SQL QUERY PROCESSING 75

tps ip

0 1

1 1

2 1

2 2

2 5

8 2

8 4

12 1

13 1

14 1

18 2

32 3

33 3

Table 6.6: Table init_table

id time ip

1 0 1

2 1 1

3 2 1

4 2 2

5 2 5

6 8 2

7 8 4

8 12 1

9 13 1

10 14 1

11 18 2

12 32 3

13 33 3

Table 6.7: Table table1

CHAPTER 6. SQL QUERY PROCESSING 76

Figure 6.2: Graphic representation of the table init_table

Now we do the self join of table1 and we create the table3. Firstly we
show the entire join and then we transform the table in function of the
�where� clauses of the query described above. As we can see we have seven

attacks idt id time1 time2 ip1 ip2

1 1 1 0 1 1 1
2 2 1 2 1 1

2 3 3 2 12 1 1
4 4 12 13 1 1
5 5 13 14 1 1

3 6 6 14 2 1 2
7 7 2 8 2 2

4 8 8 8 18 2 2
5 9 9 18 32 2 3

10 10 32 33 3 3
6 11 11 33 8 3 4
7 12 12 8 2 4 5

Table 6.8: Table table3 without where clauses

attacks in this example. If we select the rows we obtain table 6.9. We show

idt id time1 time2 ip1 ip2

1 3 2 12 1 1

2 6 14 2 1 2

3 8 8 18 2 2

4 9 18 32 2 3

5 11 33 8 3 4

6 12 8 2 4 5

Table 6.9: Table table3

it in a graphic way, in �gure 6.4. Not all the elements displayed are in the
table table5 but just the pairs that are highlighted with the blue color.

With this computation we have grouped the information in a suited way.
The id is an information of interest because it is linked with the positions

CHAPTER 6. SQL QUERY PROCESSING 77

Figure 6.3: Graphic representation with di�erent IP lines

of the attacks and so with the number of attempts. Moreover the times are
important because they carry the information of the begin and the end of
the attacks and we have also the IP. Now we do the self join of table3 and we
create the table5. We can delete same columns that are not so important but
�rstly we show almost the whole join and we show it without any �where�
clauses, table 6.10.

table3 table4

idt id time1 time2 ip1 ip2 id time1 time2 ip1 ip2

1 3 2 12 1 1 6 14 2 1 2

2 6 14 2 1 2 8 8 18 2 2

3 8 8 18 2 2 9 18 32 2 3

4 9 18 32 2 3 11 33 8 3 4

5 11 33 8 3 4 12 8 2 4 5

Table 6.10: Table table5 without where clauses

From this table we can take directly the information that we need:

• the number of attempts is given by the di�erences between table4.id

CHAPTER 6. SQL QUERY PROCESSING 78

Figure 6.4: Graphic representation of table3

and table3.id;

• the attacker ip is table3.ip2;

• the begin is table3.time1;

• the end is table4.time1.

So what we have to do is to create a column called attempts and delete
the column unnecessary inserting �where� clauses in the query. What we
get is table 6.11 We show it in a graphic way in �gure 6.5 All the elements
highlighted with the color blue are in the table table5. The elements in green
are missed from the computation of the query.

6.3.1 Special cases

From the table3 without �where� clauses we see that this way we have lost
two attacks, the �rst and the last. This is shown in the �gure above with

CHAPTER 6. SQL QUERY PROCESSING 79

ip attempts begin end

1 3 12 14

2 2 2 8

2 1 18 18

3 2 32 33

4 1 8 8

Table 6.11: Table table5

Figure 6.5: Graphic representation of all attacks catched and missed

CHAPTER 6. SQL QUERY PROCESSING 80

circles. We treat these cases as particular cases.

First attack For this attack we do an insert taking:

• the ip of the table1 at the position id = 1 that is the �rst position;

• the begin time from the table1.time at id = 1;

• the attempts number, given by the id of table3.id;

• the end time from table3.time1.

So we will obtain the table 6.12 ordered by ip and begin.

ip attempts begin end

1 3 0 2

1 3 12 14

2 2 2 8

2 1 18 18

3 2 32 33

4 1 8 8

Table 6.12: Table table5 with inserted �rst attack in red

Last attack For this attack, in table3 we have just the begin and the IP
number in the position MAX(idt). We use the table1 for retrieving the end
information and the number of attempts in the position MAX(id). So we
do an insert taking:

• the ip of the table3;

• the begin time time2 from the table3;

• the attempts number, given by the subtraction table1.id − table3.id,
this cover the general case;

• the end time from table1.

We will obtain the table 6.13 ordered by ip and begin. As we can see, from
the last table and the table3 without the �where� clauses, all the attacks are
detected in the right way.

CHAPTER 6. SQL QUERY PROCESSING 81

ip attempts begin end

1 3 0 2

1 3 12 14

2 2 2 8

2 1 18 18

3 2 32 33

4 1 8 8

5 1 2 2

Table 6.13: Table table5 with inserted lasts attacks in red

tps ip

0 1

1 1

2 1

Table 6.14: Table init_table anomaly one attack

One attack present However there is another case to consider that is
not possible to see with this example. This case is called: �Anomaly of only
one attack present�. If there is only one attack present with one or more
attempts our code will not detect this attack. Consider the instance of table
6.14 for the table init_table. With this instance table3 is empty, so also the
�rst and the last special cases do not work because they are based on this
table. What we do here is to create table 6.15. These are all the information
that we need for the lost attack and we can take all from the table1 derived
directly from table_init:

• id1, ip1, time1: all the information of the �rst row of table1;

• id2, ip2, time2: all the information of the last row of the table1.

This is done with a creation of the tablex with the �rst row information
and then with the update of the needed �eld with the last row. Then we
insert this table, so the only row contained, inside the table5. There are two
possibilities, the �rst is that we are in our instance case so we have added the
write information, the second is that we are in the case of the �rst example
made, so we have added a error information. We can see this second case
checking same information in the table5. This case is valid only if the table5
has only one row, so only if the �rst row and the last row of the table have

id1 id ip1 ip2 time1 time2

1 3 1 1 0 2

Table 6.15: Table tablex

CHAPTER 6. SQL QUERY PROCESSING 82

the same ip, attempts and begin. What we do is delete the last row if this
information in the �rst and the last row are di�erent.

For the whole query see the annex.

6.4 Implementation environment: JDBC driver

In 1996, Sun released a version of the Java Database Connectivity (JDBC)
kit. This package allowed programmers to use Java to connect, query, and
update a database using the Structured Query Language (SQL). JDBC is an
API for the Java programming language that de�nes how a client may access
a database independently from the DBMS utilized. It provides methods
for querying and updating data in a database. JDBC is oriented toward
relational databases. The JDBC classes are contained in the Java package
java.sql or in its extension javax.sql.

The use of Java with JDBC has advantages over other database program-
ming environments. Programs developed with Java and JDBC are platform
and vendor independent, i.e. the same Java program can run on a PC, a
workstation, or a network computer. The database can be transferred from
one vendor to another one and the same Java programs can be used without
alteration.

Driver JDBC or bridge JDBC-ODBC? The idea behind JDBC is
similar to Microsoft's Open Database Connectivity (ODBC). Both ODBC
and JDBC are based on the X/Open standard for database connectivity.
Programs written using the JDBC API communicate with a JDBC driver
manager, which uses the current driver loaded. There are two architec-
tures to communicate with the database utilizing a driver JDBC or a bridge
JDBC-ODBC. In the �rst architecture, the JDBC driver communicates di-
rectly with the database. The driver connects to the database and executes
SQL statements on behalf of the Java program. Results are sent back from
the driver to the driver manager and �nally to the application. In the sec-
ond architecture, the JDBC driver communicates with an ODBC driver via
a �bridge�. A single JDBC driver can communicate with multiple ODBC
drivers. Each of the ODBC drivers execute SQL statements for speci�c
databases. The results are sent back up the chain as before.

The JDBC/ODBC bridge was developed to take advantage of the large
number of ODBC enable data sources. The bridge converts JDBC calls
to ODBC calls and passes them to the appropriate driver for the backend
database. The advantage of this scheme is that applications can access data
from multiple vendors. However, the performance of a JDBC/ODBC bridge
is lower than a JDBC driver alone due to the added overhead. A database
call must be translated from JDBC to ODBC to a native API. Moreover the
driver JDBC is always optimized for the database we are using. Graphically

CHAPTER 6. SQL QUERY PROCESSING 83

this is the situation for the two architectures:

1. Java �> Driver JDBC �> Database;

2. Java �> Bridge JDBC-ODBC �> Driver ODBC �> Database.

It is for this reason that we utilize a JDBC driver in our application. In fact,
as already said in the General section, the performance could be a problem
for our query SQL, so it is fundamental for us obtain the better potentiality
of the driver instead of the bridge.

The API provides a mechanism for dynamically loading the correct Java
packages and registering them with the JDBC Driver Manager. The Driver
Manager is used as a connection factory for creating JDBC connections.

In our application we utilize the database MySQL and the driver JDBC
called Connector-J.

Installation The installation of the Connector-J for the Mysql database
is simple. The copyright statement allows the redistribution of source and
binary, also if is not exactly identical to the GNU license. We just have
to add the directory in which the jar �le was located to the CLASSPATH
environment variable of the project. This completes the installation of the
JDBC driver.

Chapter 7

Conclusion and future work

My stay of 6 months at LAAS has given me the possibility to work in a
stimulating environment from a human and scienti�c point of view. I have
learned several particular aspects of the research on security computing sys-
tems through the honeypots.

These systems work 24 hours for day from many months and they collect
a huge quantity of data available for all the scienti�c community.
Future work will be oriented on changing the con�guration of the high-
interaction honeypots in order to observe other aspects not considered till
now and store this information, the objective will be to add new vulnerability
to the honeypot. Leaving more freedom to the attacker we can obtain more
interesting information but it is very dangerous: the attacker could create
damages not only on the honeypot but also outside of our controlled machine.

One interesting question could be: some ports are preferably chosen by
script kiddies while others are reserved to some more elite attackers?
Another thing could be utilizing weaker password in order to see more people
succeeding in breaking into the system.
Therefore, it would be interesting to keep doing this experiment over a longer
period of time to see if things do change, for instance if a more e�cient
automation takes place.

The application that we have designed and implemented will serve to the
scienti�c community in order to retrieve the data of the system who reside
the central database. Through this application also people less expertize can
access these information. The hope is that this new tool make the analysis
of the data easier to the experts in term of legibility, practicality and clarity.

The terminal function could be utilized also for presenting the honeypot
work. In fact, the database contains, for each command launched by the at-
tacker terminal, the information of the time. This could lead to a simulation
of the attacker operations on the terminal with the same velocity in typing
and launching the commands.

In the future more functionalities will be implemented depending on the

84

CHAPTER 7. CONCLUSION AND FUTURE WORK 85

needing of upcoming analysis. Could be interesting, i.e., modify the terminal
functionality in order to obtain all the wget executed by the attacker in a
particular session. This way we could know the �les that the attacker has
tried to download. The structure of the software is done in order to allow
an easy upgrade of the software. In the structure of one functionality there
are �xed stages to follow in order to create a new one.

Future work will be focused on the deployment of more high-interaction
honeypot with a consequent exploitation of the collected data to better char-
acterize attack scenarios and analyze their impact on the security of the
target systems. The ultimate objective would be to build representative
stochastic models that will enable us to evaluate the ability of computing
systems to resist the attacks and to validate them based on real attack data.

Appendix A

Database structure

This annex presents the structure of the high-interaction honeypot database.
This script creates all the tables.

use honeypot1 ;
CREATE TABLE op_hdr (

op_id INTEGER NOTNULL AUTO_INCREMENT,
op_type INTEGER,
time INTEGER,
pid INTEGER,
index_op INTEGER,
op_size INTEGER,
PRIMARYKEY (op_id)

) ;

CREATE TABLE op_exec (
op_id INTEGER NOT NULL,
f i l ename_s i z e INTEGER,
tty_name_size INTEGER,
a rg_s ize INTEGER,
f i l ename TEXT,
tty_name TEXT,
arg TEXT,
PRIMARYKEY (op_id)

) ;

CREATE TABLE op_sshd_auth_password (
op_id INTEGER NOT NULL,
is_auth INTEGER,
u s e r_s i ze INTEGER,
password_size INTEGER,
ip_address_size INTEGER,

86

APPENDIX A. DATABASE STRUCTURE 87

user TEXT,
password TEXT,
ip_address TEXT,
PRIMARYKEY (op_id)

) ;

CREATE TABLE op_sshd_new_session (
op_id INTEGER NOT NULL,
tty_name_size INTEGER,
ip_address_size INTEGER,
pw_name_size INTEGER,
tty_name TEXT,
ip_address TEXT,
pw_name TEXT,
PRIMARYKEY (op_id)

) ;

CREATE TABLE op_tty_open_close (
op_id INTEGER NOT NULL,
ta sk_s ize INTEGER,
tty_name_size INTEGER,
task TEXT,
tty_name TEXT,
PRIMARYKEY (op_id)

) ;

CREATE TABLE op_tty_read_write (
op_id INTEGER NOT NULL,
bu f f e r_s i z e INTEGER,
ta sk_s ize INTEGER,
tty_name_size INTEGER,
b u f f e r TEXT,
task TEXT,
tty_name TEXT,
PRIMARYKEY (op_id)

) ;

Appendix B

Dictionary attack query

This annex presents the SQL script executed in order to perform the �rst
functionality: the dictionary attack. The result is obtained with di�erent
stages according to the section 6.2.

use honeypot ;

create table i f not exists table1$RANDOM$
(id integer not null auto_increment ,
time integer , ip text , primary key (id))

select time , ip_address as ip from op_hdr
inner join op_sshd_auth_password
on op_hdr . op_id = op_sshd_auth_password . op_id

where (op_type = ' 6 ' and time < END and
time > $BEGIN$)

order by ip , time ;

create table i f not exists table3$RANDOM$
(id t integer not null auto_increment , id integer ,
t ime1 integer , t ime2 integer ,
ip1 text , ip2 text ,primary key (i d t))

select t1 . id as id , t1 . time as time1 , t2 . time
as time2 , t1 . ip as ip1 , t2 . ip as ip2 from
table1$RANDOM$ as t1 inner join table1$RANDOM$
as t2 on t1 . id = (t2 . id − 1)

where ((t2 . time − t1 . time > $LIMIT$) or
(t1 . ip <> t2 . ip))

order by id ;

create table i f not exists table5$RANDOM$
(id integer not null auto_increment , ip text ,
attempts integer , beg in integer , end integer ,

88

APPENDIX B. DICTIONARY ATTACK QUERY 89

primary key (id))
select t3 . ip2 as ip , (t4 . id − t3 . id) as attempts ,

t3 . time2 as begin , t4 . time1 as end
from table3$RANDOM$ as t3 inner join
table3$RANDOM$ as t4 on t3 . i d t = (t4 . i d t −1)

order by t3 . ip2 ;

Anomaly of the �rst attack:

insert into table5$RANDOM$ (ip , attempts , begin , end)
select table1$RANDOM$. ip as ip , table3$RANDOM$. id

as attempts , table1$RANDOM$. time as begin ,
table3$RANDOM$. time1 as end

from table1$RANDOM$, table3$RANDOM$
where table1$RANDOM$. id = 1 and
table3$RANDOM$. i d t = 1 ;

Anomaly of last attack:

insert into table5$RANDOM$ (ip , attempts , begin , end)
select table3$RANDOM$. ip2 as ip ,

table1$RANDOM$. id − table3$RANDOM$. id ,
table3$RANDOM$. time2 as begin ,
table1$RANDOM$. time as end

from table3$RANDOM$, table1$RANDOM$
where (table3$RANDOM$. i d t =
(select max(table3$RANDOM$. i d t) from
table3$RANDOM$) and table1$RANDOM$. id =
(select max(table1$RANDOM$. id) from
table1$RANDOM$)) ;

Anomaly of only one attack:

create table i f not exists tablex$RANDOM$ (id1 integer ,
id2 integer , ip1 text , ip2 text , time1 integer ,
t ime2 integer)

select id as id1 , time as time1 , ip as ip1
from table1$RANDOM$ where table1$RANDOM$. id = 1 ;

update tablex$RANDOM$ set
id2= (select id from table1$RANDOM$ where

table1$RANDOM$. id = (select max(table1$RANDOM$. id)
from table1$RANDOM$)) , time2 =
(select time from table1$RANDOM$ where

APPENDIX B. DICTIONARY ATTACK QUERY 90

table1$RANDOM$. id = (select max(table1$RANDOM$. id)
from table1$RANDOM$)) , ip2 =
(select ip from table1$RANDOM$ where
table1$RANDOM$. id = (select max(table1$RANDOM$. id)
from table1$RANDOM$)) where id1=1;

insert into table5$RANDOM$ (ip , attempts , begin , end)
select tablex$RANDOM$. ip1 as ip , tablex$RANDOM$. id2 ,

tablex$RANDOM$. time1 as begin ,
tablex$RANDOM$. time2 as end

from tablex$RANDOM$ where
(tablex$RANDOM$. ip1 = tablex$RANDOM$. ip2) ;

create table i f not exists table6$RANDOM$
(id integer not null auto_increment , ip text ,
attempts integer , beg in integer ,
end integer ,primary key (id))

select ∗ from table5$RANDOM$;

delete from table6$RANDOM$ where
id = (select max(id) from table5$RANDOM$) and ip =
(select min(ip) from table5$RANDOM$) and begin =
(select begin from table5$RANDOM$ where id = 1) and
attempts <> (select attempts from table5$RANDOM$
where id = 1) ;

Values returned:

select ip , attempts , begin , end from table6$RANDOM$
order by ip ;

drop table table1$RANDOM$;
drop table table3$RANDOM$;
drop table table5$RANDOM$;
drop table table6$RANDOM$;
drop table tablex$RANDOM$;

Appendix C

Terminal information �rst

interaction

This annex presents the SQL script executed in order to perform the second
functionality: the terminal information. In the book only the stages of the
dictionary attack functionalty are explicated for sack of conciseness.

This functionality has a double interaction client-server. This code is
relative to the �rst interaction.

use honeypot ;

create table i f not exists table1$RANDOM$ (time integer ,
t ty text , op integer)

select op_hdr . time as time ,
op_sshd_new_session . tty_name as tty , 0 as op

from op_hdr inner join op_sshd_new_session
on op_hdr . op_id = op_sshd_new_session . op_id

where (time < END and time > $BEGIN$) ;

create table i f not exists table2$RANDOM$ (time integer ,
t ty text , op integer)

select op_hdr . time as time , op_tty_read_write . task
as tty , 1 as op

from op_hdr inner join op_tty_read_write on
op_hdr . op_id = op_tty_read_write . op_id

where (time < END and time > $BEGIN$) ;

We have /dev/pts/# and we replace with pts#:

update table1$RANDOM$ set t ty =
r ep l a c e (tty , ' 2F6465762F7074732F ' , ' 707473 ') ;

91

APPENDIX C. TERMINAL INFORMATION FIRST INTERACTION 92

create table i f not exists table3$RANDOM$
(id integer not null auto_increment , time integer ,
t ty text , op integer , primary key (id))

select ∗ from table1$RANDOM$;

insert into table3$RANDOM$ (time , tty , op)
select time , tty , op from table2$RANDOM$;

create table i f not exists table4$RANDOM$
(id integer not null auto_increment , time integer ,
t ty text , op integer , primary key (id))

select table3$RANDOM$. time , table3$RANDOM$. tty ,
table3$RANDOM$. op from table3$RANDOM$

order by table3$RANDOM$. tty , table3$RANDOM$. time ;

create table i f not exists table5$RANDOM$
(id integer not null auto_increment , id1 integer ,
t ime1 integer , t ty1 text , op1 integer ,
id2 integer , t ime2 integer , t ty2 text , op2 integer ,
primary key (id))

select tx . id as id1 , tx . time as time1 , tx . t ty as tty1 ,
tx . op as op1 , ty . id as id2 , ty . time as time2 ,
ty . t ty as tty2 , ty . op as op2

from table4$RANDOM$ as tx inner join
table4$RANDOM$ as ty on tx . id = (ty . id − 1)
where (tx . op = 0) or (ty . op = 0) ;

create table i f not exists table6$RANDOM$
(tty text , time_begin integer , time_end integer)

select tx . t ty1 as tty , tx . time1 as time_begin ,
ty . time1 as time_end

from table5$RANDOM$ as tx inner join table5$RANDOM$
as ty on tx . id = (ty . id − 1)

where (tx . op1 <> tx . op2) and (tx . op1 = 0)
order by tx . tty1 , tx . time1 ;

GENERAL: op1=op2=0 from table5$RANDOM$ (maybe more than one
row):

insert into table6$RANDOM$ (tty , time_begin , time_end)
select t ty1 as tty , time1 as time_begin ,

time1 as time_end
from table5$RANDOM$ where op1 = op2 ;

APPENDIX C. TERMINAL INFORMATION FIRST INTERACTION 93

LAST 1◦ case: op1!=op2 from table5$RANDOM$ (only one row):

insert into table6$RANDOM$ (tty , time_begin , time_end)
select table5$RANDOM$. tty1 as tty ,

table5$RANDOM$. time1 as time_begin ,
table4$RANDOM$. time as time_end

from table5$RANDOM$, table4$RANDOM$
where (table5$RANDOM$. id1 + 1 <>

(select max(table4$RANDOM$. id)
from table4$RANDOM$)) and (table5$RANDOM$. op1
<> table5$RANDOM$. op2) and (table4$RANDOM$. id
= (select max(table4$RANDOM$. id) from
table4$RANDOM$)) and (table5$RANDOM$. id1
= (select max(table5$RANDOM$. id1) from
table5$RANDOM$)) ;

LAST 2◦ case: op1==op2 from table5$RANDOM$ (only one row):

insert into table6$RANDOM$ (tty , time_begin , time_end)
select table5$RANDOM$. tty2 as tty ,

table5$RANDOM$. time2 as time_begin ,
table5$RANDOM$. time2 as time_end

from table5$RANDOM$ where (table5$RANDOM$. op1 =
table5$RANDOM$. op2) and (table5$RANDOM$. id1 =
(select max(table5$RANDOM$. id1) from
table5$RANDOM$)) ;

select ∗ from table6$RANDOM$;

drop table table1$RANDOM$;
drop table table2$RANDOM$;
drop table table3$RANDOM$;
drop table table4$RANDOM$;
drop table table5$RANDOM$;
drop table table6$RANDOM$;

Appendix D

Terminal information second

interaction

This annex presents the SQL script executed in order to perform the second
functionality: the terminal information. More precisely this code is relative
to the second interaction with the server.

use honeypot ;

select op_tty_read_write . bu f f e r ,
op_tty_read_write . op_id

from op_hdr inner join op_tty_read_write on
op_hdr . op_id = op_tty_read_write . op_id

where (time < END and time > $BEGIN$ and
task = 'TTY ') ;

94

Appendix E

Event channel

A new custom event must extends EventObject. Moreover, an event listener
interface must be declared to allow objects to receive the new custom event.
All listeners must extend from EventListener.

The event channel must register a set of listeners. The registration is done
with the class EventListenerList. We see the example of one functionality,
in the real application the number of methods add(), remove() and �re()
depends from the number of functionalities. Also the number of EventLis-
tenerList depend from the number of the functionalities, we have a list for
each functionality.

This example demonstrates all the steps necessary to create a new custom
event, the associated listener and the EventChannel.

import javax . swing . event . EventL i s t ene rL i s t ;

//Declare the event . I t must ex tend EventObject .
public class MyEvent extends EventObject {

public MyEvent(Object source){
super (source) ;
}

}

//Declare the l i s t e n e r c l a s s . I t must ex tend
// EventLi s t ener . A c l a s s must implement
// t h i s i n t e r f a c e to ge t MyEvents .
public interface MyEvListener extends EventLis tener {

public void myEventOccurred (MyEvent evt) ;
}

//Add the event r e g i s t r a t i o n and
// n o t i f i c a t i o n code to a c l a s s .
public class EventChannel{

95

APPENDIX E. EVENT CHANNEL 96

// Create the l i s t e n e r l i s t
protected EventL i s t ene rL i s t l i s t e n e r L i s t =

new EventL i s t ene rL i s t () ;

//Al lows c l a s s e s to r e g i s t e r f o r MyEvents
public void addMyEvListener (MyEvListener l){

l i s t e n e r L i s t . add (MyEvListener . class , l) ;
}
//This methods a l l ow s c l a s s e s to un r e g i s t e r
// f o r MyEvents
public void removeMyEvListener (MyEvListener l){

l i s t e n e r L i s t . remove (MyEvListener . class , l) ;
}
//This p r i v a t e c l a s s i s used to f i r e MyEvents
void f ireMyEvent (MyEvent evt){

Object [] l s = l i s t e n e r L i s t . g e tL i s t e n e rL i s t () ;
//Each l i s t e n e r occup ie s two e lements :
// the f i r s t i s the l i s t e n e r c l a s s and
// the second i s the l i s t e n e r in s tance
for (int i =0; i<l s . l ength ; i +=2){
i f (l s [i]==MyEvListener . class){

((MyEvListener) l s [i +1]) . myEventOccurred (evt) ;
}

}
}

}

The lonely di�erence between the EventChannel of our application and
thie EventChannel is the Singleton pattern. Here there is no Singleton pat-
tern so in the real application when teh EventChannel is called the code is
a bit di�erent from the code that follow.

Here's an example of how to register for MyEvents.

EventChannel c = new EventChannel () ;

// Reg i s t e r f o r MyEvents from c
c . addMyEvListener (new MyEvListener (){

public void myEventOccurred (MyEvent evt){
// MyEvent was f i r e d

}
}) ;

Appendix F

Example of dictionary

This �le represent an example of dictionary used for SSH dictionary attack.
It contains the attempts that an attacker does when he performs a brute
force attack in order to establish a SSH connection. It is a very common
dictionary �le and it is often used in an automatic way from a script.

root asdfgh admin admin friends friends
root webadmin admin admin123 friends friends123
root 12345678910 admin 123456 friends 123456
root r00t admin administrator master master
root com administrator 123456 master master123
root id tads tads123 master 123456
root 1234567 tads tads amore amore
root asdfghjkl tads tads123456 apples apples
root 0246 tip tip apples apples123
root nevada tip tip123 apples 123456
root router tip 123456 apple apple
root 0249 myra myra apple apple123
root 1 myra myra123 apple 123456
root 1022 myra 123456 xxx xxx
root 10sne1 jack jack xxx xxx123
root 111111 jack jack123 xxx 123456
root 121212 jack 123456 miller miller
root xxx sya sya miller miller123
root 1225 sya sya123 miller 123456
root 123 sya 123456 chicago chicago
root 123123 wang wang Chicago chicago123
root 1234 wang wang123 Chicago 123456
root 12345 wang 123456 chipmast chipmast
root 1234qwer marvin marvin chipmast chipmast123
root 123abc marvin marvin123 chipmast 123456
root 123go marvin 123456 tweety tweety

97

APPENDIX F. EXAMPLE OF DICTIONARY 98

root 1313 andres andres tweety tweety123
root 131313 andres andres123 tweety 123456
root 13579 andres 123456 snoopy snoopy1
root 14430 barbara barbara snoopy snoopy
root 1701d barbara barbara123 snoopy snoopy123
root 1928 barbara 123456 snoopy 123456
root 1951 adine adine ashley ashley1
root 1a2b3c adine adine123 ashley ashley123
root 1p2o3i adine 123456 ashley 123456
root 1q2w3e test test ashley ashley
root 1qw23e test test123 bandit bandit1
root 1sanjose test 123456 bandit bandit
root 2112 guest guest bandit 123456
root 21122112 guest guest123 bandit bandit123
root 2222 guest 123456 madison madison
root 369 db db madison madison123
root 4444 db db123 madison 123456
root 5252 db 123456 princess princess
root 54321 ahmed ahmed princess princess123
root 5555 ahmed ahmed123 princess 123456
root 5683 ahmed 123456 viper viper
root 654321 alan alan viper viper123
root 6969 albert albert viper 123456
root 777 alberto alberto billy billy
root 7777 alex alex billy billy123
root 80486 alex alex123 billy 123456
root 8675309; alex 123456 skkb skkb
root 92072 alfred 123456 faridah faridah
root 007 ali ali faridah faridah123
root 123abc ali 123456 fauzi fauzi123
root 007007 alice alice fauzi fauzi
root 10sne1 alice alice123 fauzi 123456
root 4runner alice 123456 fauzi 123456
root 2welcome allan allan ginger ginger
root * allan allan123 ginger ginger123
root muiemare allan 123456 ginger 123456
root tmp123 andi andi cassie cassie
root qwerty andi andi123 cassie cassie123
root administrator andi 123456 cassie 123456
root root andrew andrew joe�ores joe�ores
root rootroot andrew andrew123 joe�ores joe�ores123
root root1 andrew 123456 joe�ores 123456
root 123456 amanda amanda anthony anthony
root 1234567890 amanda amanda123 anthony anthony123

APPENDIX F. EXAMPLE OF DICTIONARY 99

root qwerty amanda 123456 anthony 123456
root administrator1 angie angie je�rey je�rey
root admin angie angie123 je�rey je�rey123
root backup angie 123456 je�rey 123456
root admin1 angela angela superman superman
root secure angela angela123 superman superman123
root secret angela 123456 superman 123456
root passwd anita anita francis francis
root password anita anita123 francis francis123
root password123 anita 123456 francis 123456
root 1a2b3c anna anna francois francois
root 1p2o3i anna anna123 francois francois123
root 1q2w3e anna 123456 francois 123456
root 1sanjose arthur arthur franklin franklin
root 2welcome arthur arthur123 franklin franklin123
root welcome arthur 123456 franklin 123456
root aaaaaa aron aron mortimer mortimer
root abcdef aron aron123 mortimer mortimer123
root abcdefg aron 123456 mortimer 123456
root action austin austin lloyd lloyd
root adidas austin austin123 lloyd lloyd123
root airhead austin 123456 lloyd 123456
root alaska magic magic guinness guinness
root amanda magic magic123 guinness guinness123
root america magic 123456 guinness 123456
root america1 bart bart godzilla godzilla
carl carl bart bart123 godzilla 123456
carl carl123 bart 123456 godzilla godzilla123
cesar cesar ben ben123 charlott charlott123
corinna 123456 bind bind wwwrun wwwrun
craig craig bind bind123 www www
craig craig123 bind 123456 apache apache
craig 123456 bob bob oracle oracle
cesar 123456 beny beny apple1 apple1
clark clark beny beny123 apple apple123
clark clark123 beny 123456 apple 123456
clark 123456 bert bert netadmin netadmin
clinton clinton bert bert123 netadmin netadmin123
clinton clinton123 bert 123456 netadmin 123456
clinton 123456 bill bill scan scan
corinna corinna bill bill123 scan scan123
corinna corinna123 bill 123456 scan 123456

Bibliography

[1] M. Kaâniche E. Alata, V. Nicomette and M. Dacier. Lessons learned
from the deployment of a high-interaction honeypot. 2006.

[2] Michael Bailey, Evan Cooke, Farnam Jahanian, and Jose Nazario. The
internet motion sensor - a distributed blackhole monitoring system. In
Proceedings of NDSS 2005, Network and Distributed Systems Security
Symposium, San Diego, USA, 2005.

[3] CAIDA Project. Home Page of the CAIDA Project,
http://www.caida.org.

[4] http://www.dshield.org. Home page of the DShield.org Distributed In-
trusion Detection System, http://www.honeynet.org.

[5] E Alata, M Dacier, Y Deswarte, M Kaaniche, K Kortchinsky,
V Nicomette, Van Hau Pham, and Fabien Pouget. Collection and anal-
ysis of attack data based on honeypots deployed on the Internet. In
Proceedings of QOP 2005, 1st Workshop on Quality of Protection (col-
located with ESORICS and METRICS), September 15, 2005, Milan,
Italy, Sep 2005.

[6] Fabien Pouget, Marc Dacier, and Van Hau Pham. Leurre.com: on the
advantages of deploying a large scale distributed honeypot platform. In
Proceedings of ECCE'05, E-Crime and Computer Conference, 29-30th
March 2005, Monaco, Mar 2005.

[7] Corrado Leita, Ken Mermoud, and Marc Dacier. Scriptgen: an au-
tomated script generation tool for honeyd. In Proceedings of the 21st
Annual Computer Security Applications Conference (ACSAC 2005), De-
cember 2005.

[8] Weidong Cui, Vern Paxson, Nicholas Weaver, and Randy H. Katz.
Protocol-independent adaptive replay of application dialog. In Proceed-
ings of NDSS 2006, Network and Distributed Systems Security Sympo-
sium, 2006.

[9] Home page of Leurré.com: http://www.leurre.org.

100

BIBLIOGRAPHY 101

[10] Project Leurré.com. Publications web page:
http://www.leurrecom.fr/paper.htm.

[11] Dacier M., F. Pouget, and H. Debar. Honeypots: practical means to
validate malicious fault assumptions. In Dependable Computing, 2004.
Proceedings. 10th IEEE Paci�c Rim International Symposium, pages
383�388, Tahiti, French Polynesia, 3-5 March 2004.

[12] Fabien Pouget, Marc Dacier, and Van Hau Pham. Understanding
threats: a prerequisite to enhance survivability of computing systems.
In Proceedings of IISW'04, International Infrastructure Survivability
Workshop 2004, in conjunction with the 25th IEEE International Real-
Time Systems Symposium (RTSS 04) December 5-8, 2004 Lisbonne,
Portugal, Dec 2004.

[13] Michael Davis Edward Balas, Job de Haas. Available on:
http://www.honeynet.org/tools/sebek.

[14] Babès Jean Alberdi Ion and Le Jamtel Emilien. Uberlogger : un ob-
servatoire niveau noyau pour la lutte informatique défensive. In Pro-
ceedings of SSTIC '05, Symposium sur la Sécurité des Technologies de
l'Information et des Communications, June 1-3, 2005, Rennes, France,
Jun 2005.

[15] Honeynet Project. Know your enemy: De�ning virtual honeynets. Avail-
able on: http://www.honeynet.org.

[16] Honeynet Project. Know your enemy: Learning with user-mode linux.
Available on: http://www.honeynet.org.

[17] Honeynet Project. Know your enemy: Learning with vmware.
http://www.honeynet.org.

[18] T. Holz and F. Raynal. Detecting honeypots and other suspicious envi-
ronments. In Systems, Man and Cybernetics (SMC) Information Assur-
ance Workshop. Proceedings from the Sixth Annual IEEE, pages 29�36,
2005.

[19] K. Kortchinsky. Patch for vmware. Available on:
http://honeynet.rstack.org/tools/vmpatch.c.

[20] Inc. VMware. Available on: http://www.vmware.com.

[21] The PaX Team. Available on: http://pax.grsecurity.net.

[22] Ross N. Williams. An extremely fast ziv-lempel data compression algo-
rithm. In Data Compression Conference, pages 362�371, 1991.

BIBLIOGRAPHY 102

[23] EnergyMech team. Energymech. Available on:
http://www.energymech.net.

[24] US-CERT. Linux kernel mremap(2) system call does not prop-
erly check return value from do_munmap() function. Available on:
http://www.kb.cert.org/vuls/id/981222.

[25] US-CERT. Linux kernel do_brk() function contains integer over�ow.
Available on: http://www.kb.cert.org/vuls/id/981222.

[26] Joseph Corey. Advanced honey pot identi�cation and exploitation.
Phrack, N 63, Available on: http://www.phrack.org/fakes/p63/p63-
0x09.txt.

[27] H. Kuno V. Machiraju G. Alonso, F. Casati. Web services. concepts,
architectures and applications., 2004.

[28] Kendall Scott Martin Fowler. Uml distilled: A brief guide to the stan-
dard object modeling language.

