Whither
Software Architecture?

L

Jeff Kramer

Imperial College London

software architecture

withalotsstraD lyenmndflots
of publimsitanstand books

SOFTWARE
ARCHITECTURE

PERSPECTIVES ON AN EMERGING DISCIPLINE
MARY SHAW DAVID GARLAN

Image: Tina Phillips / FreeDigitalPhotos.net

software architecture

with lots and lots and lots
of definitions

“... software architecture is a set of
architectural (or, if you will, design) elements
that have a particular form.” (Perry,Wolf)

“The software architecture of a system is the
set of structures needed to reason about the
system, which comprise software elements,
relations among them, and properties of
both.” (SEI)

“A software system’s architecture is the set
of principal design decisions made during its
development and any subsequent
evolution.” (Taylor,Medvidovic,Dashofy)

Image: Tina Phillips / FreeDigitalPhotos.net

Whither software architecture

' how did we get here?
impact?

where are we going?

a “soap opera” based on
my personal research
experience

unintentional stepping on toes

my formative project

CONIC -
“configuration
programming”

the CONIC project

Computer Control & Monitoring
of underground systems in coal mining.

The investigators:

i

Guess Who and Morris Sloman

Jeff Magee

The research assistant:

coal mines

Underground, coal mines consist of a number of interacting
subsystems: =

4+ coal cutting
+ transport

4+ ventilation
4+ drainage

>

... changes
as the mine
topography
changes.

requirements elicitation engineering distributed software

= complex m Information Hiding
large number of interconnected devices, sensors,

actuators, cqntrollers, . b F

= highly distributed. o
e e 2. i

over the min| SR al 7 m Abstraction

Encapsulation of design behind an interface
David Parnas, CACM, 1972

above and bef Programming-in-the-small Vs

= evolving Programming-in-the-large
new coal fad deRemer and Kron, TSE 1975
old faces cl m Composition
= robust "Having divided to conquer,
against failu we must reunite to rule”
Michael Jackson, CompEuro 1990
CONIC research elements 1. distributable components
Key property of context independence.
1. distributable components * communication via a well-defined interface.
* third party instantiation and binding
2. transparent local/remote communication * reuse in the same system (multiple pumps),

and in different systems (other mines).
3. separate configuration description z ()

(architecture)
* input and output ports PUMP_CONTROL
4. construction and modification/evolution (indirection) » enable
(“configuration programming”) + parameterised » methane g

component types > level

2. local/remote communication

sender receiver
unidirectional

synchronous 4
asynchronous

bidirectional

rendezvous ¢

consult a
wise guru

3. configuration

Separate explicit description of the structure of the
system in terms of the composition of component instances
and connections (ie. third party instantiation and binding).

OPERATOR
I . .
oy Hierarchical
composition
helps to
SENSOR PUMP_CONTROL PUMPSTATION il
enable it
methane methane PUMP complexity.
cmd —» cmd

level p——p» level
WATER

4. “configuration programming”

structural evolved structural
description description

F
F

o ¥ |

Compile, chan
build and 8T+~ script”
deploy

system evolved system

TSE 1985

CONIC

B Reusable components
The control software for a particular coal mine
could be assembled from a set of components.

B On-line change
Once installed, the software could be dynamically
modified without stopping the entire system tfo
deal with new coalfaces.

Research team:

Kevin Twidle Naranker Dulay Keng Ng

CONIC

B The Iron Lady effect!

However ...
B Wider application than coal mining.

B Distributed worldwide to academic
and industrial research institutions.

B Exciting and a lot of fun

TSE 1989

CONIC was not general

B .. was programming language
dependent (Pascal)

B ... had fixed communications
primitives
B .. had simple single message

interfaces for bindings

Structural view provides a
useful level of abstraction.

Darwin - a general purpose ADL

B Component types have one or more
inferfaces. An interface is simply a sef

ESEC/ESE 19957 ESE 1996

... associated Modelling support

% model component behaviour
% compose behaviours using the

same structural information as
the software architecture

... compositional reasoning using
model checking

Process Calculus - FSP

PUMP = STOPPED,

STOPPED = (cmd.start -> STARTED),
(pump -> STARTED

| emd.stop -> STOPPED

)it

STARTED

CONTROL PUMP
level emd O @cemd pumpO O

| |IPUMP_CONTROL =(c:CONTROL || p:PUMP)
/{c.cmd/p.cmd,
level/c.level,

pump/p.pump} .

... in collaboration as always ...

)é

Shing-Chi Cheung
- LTS, CRA & Safety

Jeff Magee Emmanuel Letier

Dimitra Giannakopoulou - AFLTL
- Liveness & Fluent LTL

Nat Pryce
- Animation

Sebastian Uchitel
- Synthesis

ICSE 1996, FSE 1999, ICSE 2000, ESEC/FSE
2003, ESEC/FSE 2005, and Wiley 1999 & 2006

Analysis - LTSA

fluent RUNNING
fluent METHANE

<start,stop>
<methane.high, methane.low>

assert SAFE = [] (tick->(METHANE -> !RUNNING))

ESEC/FSE 2005

connector wars

pragmatists VS purists?

connector wars

Component O
Connector ©,

Component O

Component O Component
asa @
“Connector”

5

C]
omponent i
3

S

=t

w0

=

(7]
<

(%)

Component o
<

® 3,
(4]

=

(7]

Component

pragmatists VS purists?

connector wars

Image: Salvatore Vuono / FreeDigitalPhotos.net

Koala

In the ARES project
Rob van Ommering saw potential of
Darwin in specifying television
product architectures and
developed Koala, based on Darwin,
for Philips.

First large-scale industrial application of an ADL.

Computer 2000

Koala - example

t

Koala

Not more widely adopted, even in Philips!
® ... despite right level of abstraction

® ... despite compiler + code generation
® ... despite support for diversity

WHY???

-~

i 4

. Success.

£\

|/ .. and is still
in use.

But ..

- it S

Is Koala the only ADL in use?

ROOM
MetaH
AADL
UNICON
WRIGHT
ACME
Rapide
c2

xADL
ArchJava
SADL
UML2?

Architecture research is a success

The abstractions pioneered in software
architecture research have actually been
very influential. :

e qualitative aspects 1
® reviews/style guides = \
® architectural patterns
® provides and requires
e UML2

® modelling and analysis

ADLs have not been widely adopted!

Disappointed
but not
downhearted

“ ALl hat and no cakbkle! ”

Why were ADLs not widely adopted?

objects rather Than components

components vs objects

EE
fl . Component 1998

benefits of a Sqftware

. evond
component oriented Objct-ricnid

rogramming
view are recognised
e

we can gain the
beneﬁ ts even with The Scala Experiment
Obj ec1's_ Can We Provide Better Lang_uage Support for Component

Systems?

.

Martin Odersky
EPFL

2006

components from objects

provided required
methods/services methods/services

component type as an OO class

dependency injection (or inversion of control):

"new” and connections are no longer in the
component code
supports 3rd party instantiation and binding

components from objects

1 Leal 3 | ,
port atlrlbute Int=9% pO”

Interface Interface

public class Leaf
{
public int attribute = 5;
private Interface portl =
new Interface();
{...Interface methods ...};
provides —) public Interface getPortl ()
{ return portl(); }
; private Interface port2;
requlres » public void setPort2 (Interface i)
{ port2 = 1i; }

composite components

Composite = |

portA ‘ port
. | connector . k= |
a:Leaf H b:Leaf [H

Interface Interface

public class Composite
{

instantiation == private Leaf a = new Leaf();
private Leaf b = new Leaf();

public Composite ()
connector) { a.setPort2(b.getPortl()); }

provides é public Interface getPortA()
{ return a.getPortl(); }

requires — public void setPortB(Interface i)
{ b.setPort2(i); }

dependency injection

Permits separation of configuration from use

e current EJB (CDI) - "... server-side component
architecture for Java”

» Spring - “... application development framework
for enterprise Java”
e Guice - .."lightweight dependency injection
framework for Java 5 and above”
» Autofac - .. "IOC container for .NET
classes by treating them as components.

rays of hope for ADLs

some current practice in
programming languages
and some application
domains

1. software
maintenance and
evolution

2. adaptive software

1. ADLs for software evolution

Change as fundamental in architecture definition

- rather than making change management systems aware
of architectural concepts.

® add three basic constructs to a
Darwin-like ADL (Backbone) to
support arbitrary extension:

resemblance, replacement, strata

e Evolve Tool uses UML2 graphical
notation

SAVCBS 2006 Jeff Magee

resemblance

newA
resembles

Shape m
denotes g replace with ¥
Jun 4 delete

define new components as a delta from the structure of
one or more existing components (ie. reuse)

D R R

replacemen'r

B R R R N B B R AT

i §as i P A SRR AR e

replaces

A globally
replaces A in
. B8

architecture.

stratum

(2.7 R B A o B R S T B N W e e B B i Ml e A SR PR U S Pt B S|
include both strata
to give extended
system
depends

* packages the definitions
* unit of ownership
% controls visibility

include base stratum
fo give original
system

evolution

R e e RS o P WU I S Aoty SRS I, 7% S o

R R R L B B S T e s

evolves

delta
add
replace with <&
delete

combines resemblance and replacement

decen’rmllsed developmen’r

G TF WY R A X T o R R EU R A R ST e S s

R e R e R B T B RS

Used by U

Extended by X Extended by Y

Developed by D

Evolve demo

incremental extension properties

* ALTER
Allows any possible extension even if unplanned

* NO IMPACT
Others are not impacted by extensions they dont want

* DECENTRALIZED
Supports a fully decentralized environment

* COMBINE
Extensions / upgrades can be combined, problems rectified

% NO SOURCE
Works even without source code!

1
55|
SafeTwoCarBridge
Evolve
design — ¥ F—- _
tool S
TwoCarBridge SR
Backbone
ADL v
= —
5] o
SingleLaneBridge backbone
ICSE demo 2011 http://www.intrinsarc.com/evolve
conformance

“"What are the prospects for showing
conformance between architecture and code?”

question posed by Garlan and Shaw
(ESEC/FSE 2011)

Crenerake LE!

2. ADLs for adaptive software

" It is not the strongest of
the species that survives,
nor the most infelligent that
survives. It is the one that
is the most adaptable to
change.’

Charles Darwin

MAPE cycle

|—> Analyse =9 Plan j

Monitor <@ Execute

a single feedback loop?
response fimes?

complexity?

three layer architecture model

Goal Plan synthesis based on a 1hlanning
oa . over abstract
Management domain model and goals domain
* Chang(la Plans
o o 2. Assembly
Decentralised component selection and of software
AL components
assembly by ’rrgnsu"rlve closure'on e
components satisfying plan actions plans
i :
Status v
Component : ;) 3. Component
Control Safe operation, including mxdcon
q oA and dynamic
during change (tranquility) conflouratiah

a separation of timescales and concerns
P

ICSE FOSE ‘07, SEAMS 2008, SEAMS 2011

generating the architecture

moveto (t)—' GoToTask

Motors Location
Repository
Motors Locatlon Locatlon
Camera
Hardware SkyCamera SLAM < @Webcam
Camera

Already instantiated Unavailable,
network failure

generating revised plans

= System designer
Plan revision

through model

S
revision using Domain model
observations N :
and
probabilistic ‘

; Execution [/ Plan
rule learnlng traces |\

; Change management &
Learning through control layers

experience!

In conclusion...

PreviousW hat vdotsitsdtiwareanthitecture”

engineering distributed software

m Information Hiding| CONIC research elements
Encapsulation of de %
. Parnas, CACM, 19 Darwin - a general purpose ADL
m Abstraction 1) distributable c

Component types have o Koala - example
An interface is
25 referring to a

Programming-in-the| 2 tla

ADLs have not been widely adopted!

dependency injection]
Evolve demo

O o e e three layer architecture model

public class ¢
—— p -G
;:ivate Leaf 3 Evolve @1
private Leaf Y — * Management [o
public Composil design tool 4 Channglans
{ a.setPort2(h T *
2 Plan Request

public Interfal Backbone . ch
(xeturn aged | Management
public void se f Change Actions la
{ b.setPort2 (i T i
} Status

Component
Control & €

a clear separation of comcerns

ICSE demo 2011

ICSE FOSE ‘07

Architecture as an Abstraction

.. the same architectural description can be used as the
structutdrg‘ampansykofdifeng fequitkis aors;epmtaoimpose
behaviours f&rodyaysiesearcbmpbse component
implementations for systems,

continuing research...

»

B partial component model synthesis from goals
and scenarios for architectural fragments,
= merge overlapping models,
= compose component models according to

the system architecture Sebastian
Uchitel

B requirements elaboration
and revision using a
combination of model checking
and machine learning

Dalal Alessandra Axel van
FSE 2004, ICSE 2009, ICSE 2012 Alrajeh Russo Lamsweerde

a life aflifellaboeskdaechesearch

colleagues

Whither
Software Architecture?

=

Jeff Kramer

Imperial College London

