

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Tim Harris

13 March 2017

Big graphs on
big machines

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

The following is intended to provide some insight into a line of research in Oracle Labs. It is intended for

information purposes only, and may not be incorporated into any contract. It is not a commitment to

deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions.

Oracle reserves the right to alter its development plans and practices at any time, and the development,

release, and timing of any features or functionality described in connection with any Oracle product or

service remains at the sole discretion of Oracle. Any views expressed in this presentation are my own and

do not necessarily reflect the views of Oracle.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Graph analytics workloads

https://upload.wikimedia.org/wikipedia/commons/9/9b/Social_Network_Analysis_Visualization.png

Large data sizes
Click-stream data

IoT

TB+ benchmark inputs

Abundant parallelism
Process vertices concurrently

Complex access patterns
Input dependent

Low-diameter inputs

=> no effective partitioning

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

SPARC M7-16

16 sockets
32 cores per socket
8 h/w contexts per core
=> 4096 h/w contexts

8 TB DRAM
512 GB installed per socket
16 * 32 GB DIMMs per socket
16 DRAM channels

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

In-memory graph analytics

•Queries expressed in terms of graph concepts

•Tailor for different kinds of workload (e.g., sub-
graph isomorphism)

Domain specific
languages

•Efficient in-memory data representations, e.g.
compressed-sparse-row format

•Abundant parallelism
Generated code

•Allocation of resources to a query

•Distribution of work and data within a machine

 Runtime
system

Operating
system

parallel_for<node_t>([&](node_t n) {
 …
});

CPU

CPU CPU

RAM

RAM

RAM

RAM

CPU

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

PageRank inner loop

10 10

10
10

10

10

10

10

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

PageRank inner loop

10 10

10
10

10

10

10

10

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

PageRank inner loop

10 10

10
10

10

10

10

10
10

10

5

10

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

PageRank inner loop

10 10

10
10

10

10

10

10

35

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Graph analytics workloads

https://upload.wikimedia.org/wikipedia/commons/9/9b/Social_Network_Analysis_Visualization.png

Large data sizes
Click-stream data

IoT

TB+ benchmark inputs

Abundant parallelism
Process vertices concurrently

Complex access patterns
Input dependent

Low-diameter inputs

=> no effective partitioning

Benefit from large
number of h/w threads

Use h/w parallelism to
tolerate cache misses

Benefit from large
memory capacity

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Case studies

2 Memory allocation

3 Observations

1 Distributing parallel work

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Divide into large batches of vertices

Reduce overheads
Risk load imbalance

Divide into small batches of vertices

Increase overheads distributing work
Achieve better load balance

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Iteration number

It
er

at
io

n
 e

xe
cu

ti
o

n
 t

im
e

 Variable amount
of work per
iteration

(Actual data – #out-edges of the top 1000
nodes in the SNAP Twitter dataset)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Example performance
Complete PageRank execution, SNAP LiveJournal data set

8-socket SPARC T5
16 cores per socket

8 h/w threads per core

1024

512

256

128

64

32

1024 256 64 16 4

T
h
re

a
d
s

Batch size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o
rm

a
liz

e
d
 e

x
e
c
u
tio

n
 tim

e

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Typically, choose manually –
but getting this right

depends on (1) algorithm,
(2) machine, (3) data

Our approach: efficient
fine-grained distribution

Divide into large batches of vertices

Reduce overheads
Risk load imbalance

Divide into small batches of vertices

Increase overheads distributing work
Achieve better load balance

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Consider distributing 0..16000 vertices, batch size 10

8 sockets

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Consider distributing 0..16000 vertices, batch size 10

8 sockets

16 cores per socket

8 h/w threads per core

Distribute vertices at
start of loop down to
per-core counters

0..125 125..250

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Consider distributing 0..16000 vertices, batch size 10

8 sockets

16 cores per socket

8 h/w threads per core

Distribute vertices at
start of loop down to
per-core counters

Aggregate requests
upwards within a core

0..125 125..250

Per-thread request flags

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Consider distributing 0..16000 vertices, batch size 10

8 sockets

16 cores per socket

8 h/w threads per core

Distribute vertices at
start of loop down to
per-core counters

Aggregate requests
upwards within a core

0..125 125..250

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Consider distributing 0..16000 vertices, batch size 10

8 sockets

16 cores per socket

8 h/w threads per core

Distribute vertices at
start of loop down to
per-core counters

Aggregate requests
upwards within a core

0..125 125..250

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Consider distributing 0..16000 vertices, batch size 10

8 sockets

16 cores per socket

8 h/w threads per core

Distribute vertices at
start of loop down to
per-core counters

Aggregate requests
upwards within a core

0..125 125..250

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Consider distributing 0..16000 vertices, batch size 10

8 sockets

16 cores per socket

0..10 10..20 20..30 8 h/w threads per core

Distribute vertices at
start of loop down to
per-core counters

Aggregate requests
upwards within a core

30..125 125..250

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

1024

512

256

128

64

32

1024 256 64 16 4
T

h
re

a
d

s

Batch size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o

rm
a

liz
e

d
 e

x
e

c
u

tio
n

 tim
e

PageRank – SNAP LiveJournal (4.8M vertices, 69M edges)

Before After

1024

512

256

128

64

32

1024 256 64 16 4

T
h

re
a

d
s

Batch size

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Case studies

2 Memory allocation

3 Observations

1 Distributing parallel work

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

PageRank inner loop

 Vertices

Edges

Current 10 10 10 10 10 10 10 10

Next

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

PageRank inner loop

Vertices

Edges

Next

Current 10 10 10 10 10 10 10 10

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Current 10 10 10 10 10 10 10 10

PageRank inner loop

Vertices

Edges

Next

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Current 10 10 10 10 10 10 10 10

PageRank inner loop

Vertices

Edges

Next

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Current 10 10 10 10 10 10 10 10

PageRank inner loop

Vertices

Edges

Next

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Current 10 10 10 10 10 10 10 10

PageRank inner loop

Vertices

Edges

Next

BIG HOT

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Logical view of memory – ccNUMA

Process virtual address space

Machine physical address space

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Logical view of memory – ccNUMA

Process virtual address space

Per-socket physical
address space

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

M7-16, physical organization

http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-t7-m7-server-architecture-2702877.pdf

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Parallel runs – reasonable defaults
Distribute memory across the whole machine

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Parallel runs – reasonable defaults
Distribute memory across the whole machine

0

50

100

150

200

250

300

8 16 32 64 128 256 512 1024 1536

Sp
e

ed
u

p
 o

ve
r

se
q

u
en

ti
al

threads PageRank, S27 data set, M7-16

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Parallel runs – control placement explicitly
Distribute over active sockets, control translation sizes

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Parallel runs – control placement explicitly
Distribute over active sockets, control translation sizes

0

50

100

150

200

250

300

8 16 32 64 128 256 512 1024 1536

Sp
e

ed
u

p
 o

ve
r

se
q

u
en

ti
al

threads PageRank, S27 data set, M7-16

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Parallel runs – control placement explicitly
Replicate read-only data to active sockets

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Parallel runs – control placement explicitly
Replicate read-only data to active sockets

0

50

100

150

200

250

300

8 16 32 64 128 256 512 1024 1536

Sp
e

ed
u

p
 o

ve
r

se
q

u
en

ti
al

threads PageRank, S27 data set, M7-16

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Parallel runs – control placement explicitly
Re-replicate read-write data after each phase

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Parallel runs – control placement explicitly
Re-replicate read-write data after each phase

0

50

100

150

200

250

300

8 16 32 64 128 256 512 1024 1536

Sp
e

ed
u

p
 o

ve
r

se
q

u
en

ti
al

threads PageRank, S27 data set, M7-16

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Parallel runs – control placement explicitly
Re-replicate read-write data after each phase

0

50

100

150

200

250

300

8 16 32 64 128 256 512 1024 1536

Sp
e

ed
u

p
 o

ve
r

se
q

u
en

ti
al

threads PageRank, S27 data set, M7-16

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

SPARC M7 processor, single socket

http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-t7-m7-server-architecture-2702877.pdf

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Dividing graphs into tiles
No attempt to exploit graph structure (there may be none to exploit)

Current 10 10 10 10 10 10 10 10

Vertices

Edges

Next

1. Focus on the hot randomly-accessed array
 2. Assign elements to tiles round-robin

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Dividing graphs into tiles
No attempt to exploit graph structure (there may be none to exploit)

Current 10 10 10 10 10 10 10 10

Vertices

Edges

Next

1. Focus on the hot randomly-accessed array
 2. Assign elements to tiles round-robin

3. Assign edges to their target’s tile

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Dividing graphs into tiles
No attempt to exploit graph structure (there may be none to exploit)

Current 10 10 10 10 10 10 10 10

Vertices

Edges

Next

1. Focus on the hot randomly-accessed array
 2. Assign elements to tiles round-robin

3. Assign edges to their target’s tile
 4. Duplicate vertices+next in each connected tile

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Dividing graphs into tiles
No attempt to exploit graph structure (there may be none to exploit)

1. Focus on the hot randomly-accessed array
 2. Assign elements to tiles round-robin

3. Assign edges to their target’s tile
 4. Duplicate vertices+next in each connected tile

5. Generate fresh graph representation per tile

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Dividing graphs into tiles
No attempt to exploit graph structure (there may be none to exploit)

1. Focus on the hot randomly-accessed array
 2. Assign elements to tiles round-robin

3. Assign edges to their target’s tile
 4. Duplicate vertices+next in each connected tile

5. Generate fresh graph representation per tile

6. Allocate each tile separately

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

0

50

100

150

200

250

300

350

400

8 16 32 64 128 256 512 1024 1536

Parallel runs with tiling

Sp
e

ed
u

p
 o

ve
r

se
q

u
en

ti
al

threads

633x compared with
1-thread with memory
distributed

PageRank, S27 data set, M7-16

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Parallel runs with tiling – larger input

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0 2 4 6 8 10 12 14

Sp
ee

d
u

p
 o

ve
r

1
 s

o
ck

et

sockets

PageRank

SSSP

98.4s

31.5s

1600s

405s

M7-16
1..12 sockets
6 active threads / core
G500 Scale-32 input
16B edges (4*2^32)
~4 TB in memory

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Parallel runs with tiling – larger input

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0 2 4 6 8 10 12 14

Sp
ee

d
u

p
 o

ve
r

1
 s

o
ck

et

sockets

PageRank

SSSP

98.4s

31.5s

1600s

405s

M7-16
1..12 sockets
6 active threads / core
G500 Scale-32 input
16B edges (4*2^32)
~4 TB in memory

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Case studies

2 Memory allocation

3 Observations

1 Distributing parallel work

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Observations

Runtime system scaling Memory placement Use of h/w threads & caches

What we expected

What we found

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Observations

Runtime system scaling Memory placement Use of h/w threads & caches

What we expected

What we found

Going from small
machines to larger
will highlight extra
places to remove

contention.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Observations

Runtime system scaling Memory placement Use of h/w threads & caches

What we expected

What we found No surprises.

Going from small
machines to larger
will highlight extra
places to remove

contention.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Observations

Runtime system scaling Memory placement Use of h/w threads & caches

What we expected

What we found No surprises.

Going from small
machines to larger
will highlight extra
places to remove

contention.

NUMA effects will be
significant on larger
machines. Replicate
data, control thread

placement.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Observations

Runtime system scaling Memory placement Use of h/w threads & caches

What we expected

What we found No surprises.

Going from small
machines to larger
will highlight extra
places to remove

contention.

NUMA effects will be
significant on larger
machines. Replicate
data, control thread

placement.

Balancing memory
system load is more
significant. Achieve
close to per-socket

limits when effective.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Observations

Runtime system scaling Memory placement Use of h/w threads & caches

What we expected

What we found No surprises.

Going from small
machines to larger
will highlight extra
places to remove

contention.

NUMA effects will be
significant on larger
machines. Replicate
data, control thread

placement.

Balancing memory
system load is more
significant. Achieve
close to per-socket

limits when effective.

Low hit rate, but good
fit with multi-

threaded cores.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Observations

Runtime system scaling Memory placement Use of h/w threads & caches

What we expected

What we found No surprises.

Going from small
machines to larger
will highlight extra
places to remove

contention.

NUMA effects will be
significant on larger
machines. Replicate
data, control thread

placement.

Balancing memory
system load is more
significant. Achieve
close to per-socket

limits when effective.

Low hit rate, but good
fit with multi-

threaded cores.

OOO execution is
effective here, little
benefit from more
threads. Need to
improve hit rate.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Observations

• As we have optimized these systems, many of our concerns come down to
issues usually tackled in HPC:

– Load balancing across 4K+ threads

– Low-level h/w interactions, memory system hot spots, page sizes, …

– Balancing resource utilization (CPU pipelines, DRAM, interconnect, …)

• New issues not always seen in HPC:

– Fine-grained management of concurrent users

– Resource management within servers

• Working from a DSL lets us mask much of this complexity

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Further details

• Oracle Labs PGX project (Parallel Graph Analytics --
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-
analytics/overview/index.html)

• “Callisto-RTS: Fine-Grain Parallel Loops” – Tim Harris, Stefan Kaestle.
USENIX ATC 2015

• “Pandia: Comprehensive Contention-Based Thread Placement” –
Daniel Goodman, Georgios Varisteas, Tim Harris. EuroSys 2017
(ask me for a PDF)

• timothy.l.harris@oracle.com

http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytics/overview/index.html
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytics/overview/index.html
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytics/overview/index.html
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytics/overview/index.html
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytics/overview/index.html
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytics/overview/index.html
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytics/overview/index.html
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytics/overview/index.html

