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The following is intended to provide some insight into a line of research in Oracle Labs. It is intended for 

information purposes only, and may not be incorporated into any contract. It is not a commitment to 

deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. 

Oracle reserves the right to alter its development plans and practices at any time, and the development, 

release, and timing of any features or functionality described in connection with any Oracle product or 

service remains at the sole discretion of Oracle.  Any views expressed in this presentation are my own and 

do not necessarily reflect the views of Oracle. 
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Graph analytics workloads 

https://upload.wikimedia.org/wikipedia/commons/9/9b/Social_Network_Analysis_Visualization.png 

Large data sizes 
Click-stream data 

IoT 

TB+ benchmark inputs 

Abundant parallelism 
Process vertices concurrently 

Complex access patterns 
Input dependent 

Low-diameter inputs 

=> no effective partitioning 
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SPARC M7-16 

16 sockets 
32 cores per socket 
8 h/w contexts per core 
=> 4096 h/w contexts 

8 TB DRAM 
512 GB installed per socket 
16 * 32 GB DIMMs per socket 
16 DRAM channels 
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In-memory graph analytics 

•Queries expressed in terms of graph concepts 

•Tailor for different kinds of workload (e.g., sub-
graph isomorphism) 

Domain specific 
languages 

•Efficient in-memory data representations, e.g. 
compressed-sparse-row format 

•Abundant parallelism 
Generated code 

•Allocation of resources to a query 

•Distribution of work and data within a machine 
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parallel_for<node_t>([&](node_t n) { 
     … 
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PageRank inner loop 
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PageRank inner loop 
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Graph analytics workloads 

https://upload.wikimedia.org/wikipedia/commons/9/9b/Social_Network_Analysis_Visualization.png 

Large data sizes 
Click-stream data 

IoT 

TB+ benchmark inputs 

Abundant parallelism 
Process vertices concurrently 

Complex access patterns 
Input dependent 

Low-diameter inputs 

=> no effective partitioning 

Benefit from large  
number of h/w threads 

Use h/w parallelism to 
tolerate cache misses 

Benefit from large 
memory capacity 
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Case studies 

2 Memory allocation 

3 Observations 

1 Distributing parallel work 
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Batch size / load imbalance trade-off 

Divide into large batches of vertices 
 
Reduce overheads 
Risk load imbalance  
 

Divide into small batches of vertices 
 
Increase overheads distributing work 
Achieve better load balance 
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Batch size / load imbalance trade-off 

Iteration number 
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 Variable amount 
of work per 
iteration 

(Actual data – #out-edges of the top 1000 
nodes in the SNAP Twitter dataset) 
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Example performance 
Complete PageRank execution, SNAP LiveJournal data set 

8-socket SPARC T5 
16 cores per socket 

8 h/w threads per core 
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Batch size / load imbalance trade-off 

Typically, choose manually – 
but getting this right 

depends on (1) algorithm, 
(2) machine, (3) data 

Our approach: efficient 
fine-grained distribution 

Divide into large batches of vertices 
 
Reduce overheads 
Risk load imbalance  
 

Divide into small batches of vertices 
 
Increase overheads distributing work 
Achieve better load balance 
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Consider distributing 0..16000 vertices, batch size 10 

8 sockets 
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Consider distributing 0..16000 vertices, batch size 10 

8 sockets 

16 cores per socket 

8 h/w threads per core 

Distribute vertices at  
start of loop down to  
per-core counters 

0..125 125..250 
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Consider distributing 0..16000 vertices, batch size 10 

8 sockets 

16 cores per socket 

8 h/w threads per core 

Distribute vertices at  
start of loop down to  
per-core counters 

Aggregate requests  
upwards within a core 

0..125 125..250 

Per-thread request flags 
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Consider distributing 0..16000 vertices, batch size 10 

8 sockets 

16 cores per socket 

8 h/w threads per core 

Distribute vertices at  
start of loop down to  
per-core counters 
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upwards within a core 
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Consider distributing 0..16000 vertices, batch size 10 

8 sockets 

16 cores per socket 

0..10 10..20 20..30 8 h/w threads per core 

Distribute vertices at  
start of loop down to  
per-core counters 

Aggregate requests  
upwards within a core 

30..125 125..250 
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PageRank – SNAP LiveJournal (4.8M vertices, 69M edges) 
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Case studies 

2 Memory allocation 

3 Observations 

1 Distributing parallel work 
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PageRank inner loop 

    Vertices 

Edges 

Current 10 10 10 10 10 10 10 10 

Next 
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Current 10 10 10 10 10 10 10 10 

PageRank inner loop 

Vertices 

Edges 

Next 

BIG HOT 
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Logical view of memory – ccNUMA  

Process virtual address space 

Machine physical address space 
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Logical view of memory – ccNUMA  

Process virtual address space 

Per-socket physical  
address space 
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M7-16, physical organization 

http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-t7-m7-server-architecture-2702877.pdf 
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Parallel runs – reasonable defaults 
Distribute memory across the whole machine 
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Parallel runs – reasonable defaults 
Distribute memory across the whole machine 
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# threads PageRank, S27 data set, M7-16 
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Parallel runs – control placement explicitly 
Distribute over active sockets, control translation sizes 
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Parallel runs – control placement explicitly 
Distribute over active sockets, control translation sizes 
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# threads PageRank, S27 data set, M7-16 
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Parallel runs – control placement explicitly 
Replicate read-only data to active sockets 
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Parallel runs – control placement explicitly 
Replicate read-only data to active sockets 
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# threads PageRank, S27 data set, M7-16 
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Parallel runs – control placement explicitly 
Re-replicate read-write data after each phase 
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Parallel runs – control placement explicitly 
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Parallel runs – control placement explicitly 
Re-replicate read-write data after each phase 
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# threads PageRank, S27 data set, M7-16 
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SPARC M7 processor, single socket 

http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/sparc-t7-m7-server-architecture-2702877.pdf 
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Dividing graphs into tiles 
No attempt to exploit graph structure (there may be none to exploit) 

Current 10 10 10 10 10 10 10 10 

Vertices 

Edges 

Next 

1. Focus on the hot randomly-accessed array 
 2. Assign elements to tiles round-robin 
 



Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 

Dividing graphs into tiles 
No attempt to exploit graph structure (there may be none to exploit) 

Current 10 10 10 10 10 10 10 10 

Vertices 

Edges 

Next 

1. Focus on the hot randomly-accessed array 
 2. Assign elements to tiles round-robin 
 
3. Assign edges to their target’s tile 
 



Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 

Dividing graphs into tiles 
No attempt to exploit graph structure (there may be none to exploit) 

Current 10 10 10 10 10 10 10 10 

Vertices 

Edges 

Next 

1. Focus on the hot randomly-accessed array 
 2. Assign elements to tiles round-robin 
 
3. Assign edges to their target’s tile 
 4. Duplicate vertices+next in each connected tile 
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Dividing graphs into tiles 
No attempt to exploit graph structure (there may be none to exploit) 

1. Focus on the hot randomly-accessed array 
 2. Assign elements to tiles round-robin 
 
3. Assign edges to their target’s tile 
 4. Duplicate vertices+next in each connected tile 

5. Generate fresh graph representation per tile                   
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Dividing graphs into tiles 
No attempt to exploit graph structure (there may be none to exploit) 

1. Focus on the hot randomly-accessed array 
 2. Assign elements to tiles round-robin 
 
3. Assign edges to their target’s tile 
 4. Duplicate vertices+next in each connected tile 

5. Generate fresh graph representation per tile 

6. Allocate each tile separately 
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# threads 

633x compared with 
1-thread with memory 
distributed 

PageRank, S27 data set, M7-16 
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Parallel runs with tiling – larger input 
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# sockets 

PageRank

SSSP

98.4s 

31.5s 

1600s 

405s 

M7-16 
1..12 sockets 
6 active threads / core 
G500 Scale-32 input 
16B edges (4*2^32) 
~4 TB in memory 
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Case studies 

2 Memory allocation 

3 Observations 

1 Distributing parallel work 
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Observations 

Runtime system scaling Memory placement Use of h/w threads & caches 

What we expected 

What we found 
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Observations 

Runtime system scaling Memory placement Use of h/w threads & caches 

What we expected 

What we found No surprises. 

Going from small 
machines to larger 
will highlight extra 
places to remove 

contention. 

NUMA effects will be  
significant on larger 
machines.  Replicate 
data, control thread 

placement. 

Balancing memory 
system load is more 
significant.  Achieve 
close to per-socket 

limits when effective. 

Low hit rate, but good 
fit with multi-

threaded cores. 

OOO execution is 
effective here, little 
benefit from more 
threads.  Need to 
improve hit rate. 
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Observations 

• As we have optimized these systems, many of our concerns come down to 
issues usually tackled in HPC: 

– Load balancing across 4K+ threads 

– Low-level h/w interactions, memory system hot spots, page sizes, … 

– Balancing resource utilization (CPU pipelines, DRAM, interconnect, …) 

• New issues not always seen in HPC: 

– Fine-grained management of concurrent users 

– Resource management within servers 

• Working from a DSL lets us mask much of this complexity 
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Further details 

• Oracle Labs PGX project (Parallel Graph Analytics -- 
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-
analytics/overview/index.html) 

• “Callisto-RTS: Fine-Grain Parallel Loops” – Tim Harris, Stefan Kaestle. 
USENIX ATC 2015 

• “Pandia: Comprehensive Contention-Based Thread Placement” –  
Daniel Goodman, Georgios Varisteas, Tim Harris.  EuroSys 2017  
(ask me for a PDF) 

• timothy.l.harris@oracle.com 
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