
Deep Learning Financial Market Data
.

Steven Hutt steven.c.hutt@gmail.com
12 December, 2016

The Limit Order Book

A financial exchange provides a central location for electronically trading
contracts. Trading is implemented on a Matching Engine, which matches buy
and sell orders according to certain priority rules and queues orders which
do not immediately match.

A. Booth©

A Marketable limit order is immedi-
ately matched and results in a trade.

A Passive limit order cannot be
matched and joins the queue.

Data In: Client ID tagged order flow.

Data Out: LOB state (quantity at price).

Need to learn data sequences.

1

Representing the Limit Order Book

Level Bid Px Bid Sz Ask Px Ask Sz

1 23.0 6 24.0 2
2 22.5 13 24.5 5
3 22.0 76 25.0 17
4 21.5 132 25.5 14
5 21.0 88 26.0 8

5 Level Limit Order Book

at = (88, 132, 76, . . . , 14, 8)︸ ︷︷ ︸
10 elements

bt = (23.0, 24.0)

At a given point in time, the LOB may
be represented by:

Bid Side: The quantity of orders at
each price level at or below the best
bid.

Ask Side: The quantity of orders at
each price level at or above the best
ask.

A possible representation xt = at ⊔ bt
is given on the left.

The evolution of the LOB over time is
represented by a sequence:

(x1, x2, x3, · · · , xn, · · ·)

2

LOB Pattern Search for Prohibited Trading Patterns

Motivation Regulators identify prohibited patterns of trading activity
detrimental to orderly markets. Financial Exchanges are responsible for
maintaining orderly markets. (e.g. Flash Crash and Hound of Hounslow.)

Challenge Identify prohibited trading patterns quickly and efficiently.

Goal Build a trading pattern search function using Deep Learning. Given a
sample trading pattern identify similar patterns in historical LOB data.

3

Learning Sequences with RNNs

In a Recurrent Neural Network there are nodes which feedback on
themselves. Below xt ∈ Rnx , ht ∈ Rnh and zt ∈ Rnz , for t = 1, 2, . . . , T. Each
node is a vector or 1-dim array.

..

output

.state .

input

.

zt

.ht.

xt

.

Whx

. Whh.

Wzh

. h0.

z1

.

z2

.

z3

. h1. h2. h3.

x1

.

x2

.

x3

.

zT

. hT.

xT

.

· · ·

. · · ·.

· · ·

The RNN is defined by update equations:

ht+1 = f(Whhht +Whxxt + bh), zt = g(Wyhht + bz).

where Wuv ∈ Rnu×nv and bu ∈ Rnu are the RNN weights and biases
respectively. The functions f and g are generally nonlinear.

Given parameters θ = {Whh,Whx,Wyh, bh, bz}, an RNN defines a mapping of
sequences

Fθ : X = (x1, x2, · · · , xT) 7→ Z = (z1, z2, · · · , zT).
4

Supervised Training for RNNs

Supervised Learning: Given sample input sequences {X(1), X2, · · · X(K)} with
corresponding outputs {Z(1), Z2, · · · Z(K)}, choose the RNN parameters θ so as
to minimize

L(θ) =
K∑
t=k

Lk(θ) where Lk(θ) =
T∑
t=1

L(Fθ(x(k)t), z(k)t)

and Lt(θ) = L(Fθ(xt), zt) is some loss function, e.g. least squares.

Gradient Descent: Fixing some time t above, we have

∂Lt
∂θ

=
t∑
i=1

∂Lt
∂xt

∂xt
∂xi

∂xi
∂θ

where ∂xt
∂xi

=
∏
t≥j>i

∂xj
∂xj−1

But this final product leads to vanishing / exploding gradients! Vanishing
gradients limits the RNNs capacity to learn from the distant past. Exploding
gradients destroy the Gradient Descent algorithm.

Problem: How to allow information in early states to influence later states?
Note that trading patterns can extend over 100s of time steps.

5

Long Short Term Memory Units

We would like to create paths through time through which the gradient
neither vanishes nor explodes. Sometimes need to forget information once
it has been used.

An LSTM [3] learns long term dependencies by adding a memory cell and
controlling what gets modified and what gets forgotten:

..memory ct .

state ht

.∗.
forget

. +.
modify

.

σ

.

σ

.

tanh

.

σ

.

∗

.

∗

.

tanh

.

•

.

⃝

.

⃝

.

⃝

.. ⃝.. ct+1.

ht+1

.

xt

.

input

.

⃝

.

= copy

.

•

.

⃝

.

= join then copy

An LSTM can remember state dependencies further back than a standard
RNN and has become one of the standard approaches to learning
sequences.

6

Unitary RNNs

The behaviour of the LSTM can be difficult to analyse.

An alternative approach [1] is to ensure there are no contractive directions,
that is require Whh ∈ U(n), the space of unitary matrices.

This preserves the simple form of an RNN but ensures the state
dependencies go further back in the sequence.
A key problem is that gradient descent does not pre-
serve the unitary property:

x ∈ U(n) 7→ x+ λυ /∈ U(n)

The solution in [1] is to choose Whh from a
subset generated by parametrized unitary
matrices:

Whh = D3R2F−1D2ΠR1FD1.

Here D is diagonal, R is a reflection, F is the Fourier
transform and Π is a permutation.

7

RNNs as Programs addressing External Memory

RNNs are Turing complete but the theoretical capabilities are not matched
in practice due to training inefficiencies.

The Neural Turing Machine emulates a differentiable Turing Machine by
adding external addressable memory and using the RNN state as a memory
controller [2].

..

Input xt

.

Output yt

.RNN Controller.RNN Controller.RNN Controller.

Read Heads

.

Write Heads

.

Memory

.

ml

.

ml

Vanila NTM Architecture

NTM equivalent 'code'
initialise: move head to start location
while input delimiter not seen do

receive input vector
write input to head location
increment head location by 1

end while
return head to start location
while true do

read output vector from head location
emit output
increment head location by 1

end while

8

Deep RNNs

..

out

.

L3

.

L2

.L1 .

in

.

zt

.

h3t

.

h2t

.h1t.

xt

.

Wh1x

. Wh1h1.

Wh2h2

.

Wh3h3

.

h1t

.

h2t

.

Wzh3

.

h30

.

h20

. h10.

z1

.

z2

.

z3

.

h31

.

h32

.

h33

.

h21

.

h22

.

h23

. h11. h12. h13.

x1

.

x2

.

x3

.

zT

.

h3T

.

h2T

. h1T.

xT

.

· · ·

.

· · ·

.

· · ·

. · · ·.

· · ·

The input to hidden layer Li is the state hi−1 of hidden layer Li−1. Deep RNNs
can learn at different time scales.

9

Unsupervised Learning: Autoencoders

The more regularities there are in data the more it can be
compressed. The more we are able to compress the data, the more
we have learned about the data.

(Grünwald, 1998)

..

x1

.

x2

.

x3

.

x4

.

x5

.

x6

.

h11

.

h12

.

h13

.

h14

.

h21

.

h22

.

h31

.

h32

.

h33

.

h34

.

y1

.

y2

.

y3

.

y4

.

y5

.

y6

.

input

.

code

.

reconstruct

.

encode

.

decode

.
Wh1x

.
Wh2h1

.
Wh3h2

.
Wyh3

Autoencoder

10

Recurrent Autoencoders

.. he0. he1. he2. he3.

x1

.

x2

.

x3

. heT.

xT

. · · ·.

· · ·

. hd0.

z1

.

z2

.

z3

. hd1. hd2. hd3.

z0

.

z1

.

z2

.

zT

. hdT.

zT−1

.

· · ·

. · · ·.

· · ·

. =

encoder decoder

A Recurrent Autoencoder is trained to output a reconstruction z of the the
input sequence x. All data must pass through the narrow heT . Compression
between input and output forces pattern learning.

11

Recurrent Autoencoder Updates

.. he0. he1. he2. he3.

x1

.

x2

.

x3

. heT.

xT

. · · ·.

· · ·

................ hd0.

z1

.

z2

.

z3

. hd1. hd2. hd3.

z0

.

z1

.

z2

.

zT

. hdT.

zT−1

.

· · ·

. · · ·.

· · ·

. =...............

encoder decoder

he1 = f(We
hhhe0 +We

hxx1 + beh)
he2 = f(We

hhhe1 +We
hxx2 + beh)

he3 = f(We
hhhe2 +We

hxx3 + beh)
· · ·

encoder updates

hd0 = heT

copy

hd1 = f(Wd
hhhd0 +Wd

hxz0 + bdh)
hd2 = f(Wd

hhhd1 +Wd
hxz1 + bdh)

hd3 = f(Wd
hhhd2 +Wd

hxz2 + bdh)
· · ·

decoder updates

12

Deep Recurrent Autoencoder

...

encoder_2

.

encoder_1

. encoder_0.

he30

.

he20

. he10.

he31

.

he32

.

he33

.

he21

.

he22

.

he23

. he11. he12. he13.

x1

.

x2

.

x3

.

he3T

.

he2T

. he1T.

xT

.

· · ·

.

· · ·

. · · ·.

· · ·

.

decoder_2

.

decoder_1

.

decoder_0

.

hd30

.

hd20

.

hd10

.

hd31

.

hd32

.

hd33

.

hd21

.

hd22

.

hd23

.

hd11

.

hd12

.

hd13

.

z1

.

z2

.

z3

.

z0

.

z1

.

z2

.

hd3T

.

hd2T

.

hd1T

.

zT−1

.

zT

.

· · ·

.

· · ·

.

· · ·

.

· · ·

.

· · ·

.

=

A Deep Recurrent Autoencoder allows learning patterns on different time
scales. This is important for trading patterns which may occur over a few or
multiple time steps.

13

TensorFlow Deep Recurrent AutoEncoder

with tf.variable_scope('encoder_0') as scope:
for t in range(1, seq_len):

placeholder for input data
xs_0_enc[t] = tf.placeholder(shape=[None, nx_enc])
hs_0_enc[t] = lstm_cell_l0_enc(xs_0_enc[t], hs_0_enc[t-1])
scope.reuse_variables()

with tf.variable_scope('encoder_1') as scope:
for t in range(1, seq_len):

encoder_1 input is encoder_0 hidden state
xs_1_enc[t] = hs_0_enc[t]
hs_1_enc[t] = lstm_cell_l1_enc(xs_1_enc[t], hs_1_enc[t-1])
scope.reuse_variables()

with tf.variable_scope('encoder_2') as scope:
for t in range(1, seq_len):

encoder_2 input is encoder_1 hidden state
xs_2_enc[t] = hs_1_enc[t]
hs_2_enc[t] = lstm_cell_l2_enc(xs_2_enc[t], hs_2_enc[t-1])
scope.reuse_variables()

14

Pattern Search

Goal: Build a trading pattern search function using Deep Learning. Given a
sample trading pattern identify similar patterns in historical LOB data.

Methodology: Train the deep recurrent autoencoder on sequences of LOB
data to define a mapping from LOB sequences to fixed length vector
encoded LOB sequences:

X = {x1, x2, · · · , xT} encode−→ Xenc = he3T

For all historical LOB data, {X(1), X(2), · · · , X(K)} compute {X(1)enc, X(2)enc, · · · , X(K)enc}.

Pattern Search: Define dist(X, Y) = d(Xenc, Yenc) where d is some metric on Rn

with n = dim(he3T).

15

Sample Search Results (Small Data Set)

LHS: Search target
RHS: Search result

Time displacement
Large quantity bias

16

Generative Models I

It is useful to learn the distribution of LOB sequences and be able to
generate samples from this distribution:

Backtesting: Generate large scale sample sets for systems testing

Transfer Learning: Augment historical data for illiquid contracts

Latent Variables: Learn driving variables for LOB markets

The recurrent autoencoder above does not learn data distributions and
cannot generate samples of LOB sequences.

Instead:

Generative Models: generate examples like those already in the data

17

Generative Models II

We assume a probabalistic model for the data x in the form

p(x) =
∫
pθ(x |h)p(h)dh

for latent variables h and seek to choose parameters θ which maximize p(x)
over the data.

General Approach: Distribution p(h) can be simple (e.g. Gaussian) so long as
pθ(x |h) is universal (e.g. neural network)

How to maximize p(x)?: Sample hk ∼ p(h) and set p(x) ≃ 1
n
∑

k pθ(x |hk)

But: For most h, pθ(x |h) will be close to zero so convergence is poor

Better: Sample h from pθ(h | x) and set p(x) = Eh∼pθ(z|x)(pθ(x |h)

18

Variational Autoencoder

We assume the market data {xk} is sampled from a probability distribution
p(x) with a 'small' number of latent variables h.

Assume pθ(x, h) = pθ(x | h)pθ(h)
where θ are weights of a NN/RNN. Then

pθ(x) =
∑
h
pθ(x | h)pθ(h)

Train network to minimize

Lθ({xk}) = min
θ

∑
k

− log(pθ(xk)).

Compute pθ(h | x) and cluster.

But pθ(h | x) is intractable!

..h.

x

. pθ(h).

pθ(x)

. prior.

likelihood

.

marginal

.

posterior

.

p(x | h)

.

pθ(h | x)

19

Variational Inference

Variational Inference learns an NN/RNN approximation qϕ(h | x) to pθ(h | x)
during training.

Think of qϕ as encoder and pθ decoder networks: an autoencoder.

Then log pθ(xk) ≥ Lθ,ϕ(xk) where

Lθ,ϕ(xk) = −DKL(qϕ(h | xk)||pθ(h))︸ ︷︷ ︸
regularization term

+ Eqϕ (log pθ(xk | h))︸ ︷︷ ︸
reconstruction term

is the variational lower bound.

Reconstruction term = log-likelihood wrt
qϕ

Regularization term = target prior on en-
coder

..h.

x

. pθ(h).

pθ(x)

. prior.

likelihood

.

marginal

.

approx

.

pθ(x | h)

.

qϕ(h | x)

20

Questions?

20

References

M. Arjovsky, A. Shah, and Y. Bengio.
Unitary evolution recurrent neural networks.
arXiv:1511.06464v4, 2016.

A. Graves, G. Wayne, and I. Danihelka.
Neural turing machines.
arXiv:1410.5401v2, 2014.

S. Hochreiter and J. Schmidhuber.
Long short term memory.
Neural Computation, 9:1735--1780, 1997.

21

