The past and future of Random Field Theory for neuroimaging inference

> Thomas Nichols, Ph.D. Department of Statistics & WMG University of Warwick http://warwick.ac.uk/tenichols

> > January 11, 2016

Overview

- Multiple Comparisons Problem (MCP)
 Which of my 100,000 voxels are "active"
- Controlling MCP with FWE methods
 - Random Field Theory
 - Permutation
- Evaluations
 - Real data & simulations
- Conclusions

Functional Magnetic Resonance Imaging (fMRI)

- Magnetic properties of blood vary
 - Blue blood \rightarrow Red blood
 - − Paramagnetic → Diamagnetic
- BOLD
 - Blood Oxygenation Level Dependent effect
 - ↑ Blood flow ↑ fMRI Signal

fMRI Perspective

- 4-Dimensional Data
 - 1,000 multivariate observations, each with 100,000 elements
 - 100,000 time series, each with 1,000 observations
- Usual approach is the time-series perspective

1,000

3

2

Hypothesis Testing in fMRI

10

5

-5

- Massively Univariate Modeling

 Fit model at each voxel
 Create statistic images of effect
- Which of 100,000 voxels are significant? $-\alpha=0.05 \Rightarrow 5,000$ false positives!

Multiple Comparisons Problem (MCP)

- Standard Hypothesis Test
 - Controls Type I error of each test, at say 5%
 - "Type I Error" only defined for single test

- Must control false positive rate over image
 - What false positive rate?
 - Chance of 1 or more Type I errors
 - Chance of 50 or more?
 - Expected fraction of false positives?

MCP Solutions: Measuring False Positives

- Familywise Error Rate (FWER)
 - Familywise Error
 - Existence of one or more false positives
 - FWER is probability of familywise error
- False Discovery Rate (FDR)
 - R voxels declared active, V falsely so
 - Observed false discovery rate: V/R
 - -FDR = E(V/R)

FWER MCP Solutions

- Bonferroni
- Maximum Distribution Methods
 - Random Field Theory
 - Permutation

FWER MCP Solutions: Bonferroni

- Based on truncation of Boole's formula FWER = P(FWE) $= P(\bigcup_{i} \{T_{i} \ge u\} \mid H_{o})$ $\leq \Sigma_{i} P(T_{i} \ge u \mid H_{o})$
- Corrected Threshold
 - Use P-value threshold $\alpha = 0.05/V$
 - to test *V* voxels

- Or statistic threshold u_{α} : P($T_i \ge u_{\alpha} \mid H_o$) = α

• Corrected P-value

 $-\min\{ \text{P-value} \times V, 1 \}$

FWER MCP Solutions

- Bonferroni
- Maximum Distribution Methods
 - Random Field Theory
 - Permutation

FWER MCP Solutions: Controlling FWER w/ Max

• FWER & distribution of maximum FWER = P(FWE)

 $= \mathbf{P}(\bigcup_{i} \{T_i \ge u\} \mid H_o)$ = $\mathbf{P}(\max_{i} T_i \ge u \mid H_o)$

• $100(1-\alpha)$ % ile of max distⁿ controls FWER FWER = P(max_i $T_i \ge u_\alpha | H_o) = \alpha$

– where

11

FWER MCP Solutions

- Bonferroni
- Maximum Distribution Methods
 - Random Field Theory
 - Permutation

FWER MCP Solutions: Random Field Theory

• Euler Characteristic χ_{μ} - Topological Measure • #blobs - #holes Threshold - At high thresholds, Random Field just counts blobs $-FWER = P(Max voxel \ge u \mid H_o)$ No holes c = P(One or more blobs $| H_o$) $\sim P(\chi_u \ge 1 \mid H_o)$ Never more $\approx \mathrm{E}(\chi_{\mu} \mid H_{o})$ than 1 blob

Suprathreshold Sets

RFT Details: Expected Euler Characteristic

 $E(\chi_u) \approx \lambda(\Omega) |\Lambda|^{1/2} (u^2 - 1) \exp(-u^2/2) / (2\pi)^2$

- $\Omega \quad \rightarrow \text{Search region } \Omega \subset \mathbb{R}^3$
- $-\lambda(\Omega) \rightarrow$ volume
- $|\Lambda|^{1/2} \rightarrow \text{roughness}$
- Assumptions
 - Multivariate Normal
 - Stationary*
 - ACF twice differentiable at 0
- * Stationary
 - Only cluster results need stationary
 - Most accurate when stat. holds

Random Field Theory Smoothness Parameterization

• $E(\chi_u)$ depends on $|\Lambda|^{1/2}$ - Λ roughness matrix:

$$\begin{split} \Lambda &= \mathbf{Var} \left(\frac{\partial G}{\partial (x, y, z)} \right) \\ &= \begin{pmatrix} \mathbf{Var} \left(\frac{\partial G}{\partial x} \right) & \mathbf{Cov} \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y} \right) & \mathbf{Cov} \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial z} \right) \\ \mathbf{Cov} \left(\frac{\partial G}{\partial y}, \frac{\partial G}{\partial x} \right) & \mathbf{Var} \left(\frac{\partial G}{\partial y} \right) & \mathbf{Cov} \left(\frac{\partial G}{\partial y}, \frac{\partial G}{\partial z} \right) \\ \mathbf{Cov} \left(\frac{\partial G}{\partial z}, \frac{\partial G}{\partial x} \right) & \mathbf{Cov} \left(\frac{\partial G}{\partial z}, \frac{\partial G}{\partial y} \right) & \mathbf{Var} \left(\frac{\partial G}{\partial z} \right) \end{pmatrix} \\ &= \begin{pmatrix} \lambda_{xx} & \lambda_{xy} & \lambda_{xz} \\ \lambda_{yx} & \lambda_{yy} & \lambda_{yz} \\ \lambda_{zx} & \lambda_{zy} & \lambda_{zz} \end{pmatrix} \end{split}$$

- Smoothness
 parameterized as
 Full Width at Half Maximum
 - FWHM of Gaussian kernel needed to smooth a white noise random field to roughness Λ

$$|\Lambda|^{1/2} = \frac{(4\log 2)^{3/2}}{\mathrm{FWHM}_x\mathrm{FWHM}_y\mathrm{FWHM}_z}$$

Random Field Theory Smoothness Parameterization

- RESELS Resolution Elements
 - -1 RESEL = FWHM_x × FWHM_y × FWHM_z
 - RESEL Count *R*
 - $R = \lambda(\Omega) \sqrt{|\Lambda|}$ \leftarrow The only data-dependent part of $E(\chi_u)$
 - Volume of search region in units of smoothness
 - Eg: 10 voxels, 2.5 voxel FWHM smoothness, 4 RESELS

- Wrong RESEL interpretation
 - "Number of independent 'things' in the image"
 - Nichols & Hayasaka, 2003, Stat. Meth. in Med. Res.

Random Field Intuition

• Corrected P-value for voxel value *t*

 $P^{c} = P(\max T > t)$ $\approx E(\chi_{t})$ $\approx \lambda(\Omega) |\Lambda|^{1/2} t^{2} \exp(-t^{2}/2)$

- Statistic value *t* increases
 - P^c decreases (but only for large t)
- Search volume increases
 - P^c increases (more severe MCP)
- Roughness increases (Smoothness decreases)
 P^c increases (more severe MCP)

RFT Details: Super General Formula

• General form for expected Euler characteristic

• χ^2 , *F*, & *t* fields • restricted search regions • *D* dimensions •

 $\mathsf{E}[\chi_u(\Omega)] = \sum_d \mathsf{R}_d(\Omega) \,\rho_d(u)$

$R_d(\Omega)$: *d*-dimensional Minkowski functional of Ω

- function of dimension, space Ω and smoothness:

- $R_0(\Omega) = \chi(\Omega)$ Euler characteristic of Ω
- $R_1(\Omega)$ = resel diameter

 $R_2(\Omega)$ = resel surface area

 $R_3(\Omega) = resel volume$

 $\rho_d(\Omega)$: *d*-dimensional EC density of $Z(\underline{x})$

- function of dimension and threshold, specific for RF type:

E.g. Gaussian RF:

 $\rho_0(u) = 1 - \Phi(u)$

 $\rho_1(u) = (4 \ln 2)^{1/2} \exp(-u^2/2) / (2\pi)$

 $\rho_2(u) = (4 \ln 2) \exp(-u^2/2) / (2\pi)^{3/2}$

 $\rho_3(u) = (4 \ln 2)^{3/2} (u^2 - 1) \exp(-u^2/2) / (2\pi)^2$

 $\rho_4(u) = (4 \ln 2)^2 (u^3 - 3u) \exp(-u^2/2) / (2\pi)^{5/2}$

Random Field Theory Cluster Size Tests

- Expected Cluster Size - E(S) = E(N)/E(L)
 - S cluster size
 - *N* suprathreshold volume $\lambda(\{T > u_{clus}\})$
 - -L number of clusters
- $E(N) = \lambda(\Omega) P(T > u_{clus})$
- $E(L) \approx E(\chi_u)$ - Assuming no holes

Random Field Theory Cluster Size Distribution

• Gaussian Random Fields (Nosko, 1969)

$$S^{2/D} \sim Exp\left(\left[\frac{E(N)}{\Gamma(D/2+1)E(L)}\right]^{-2/D}\right)$$

- D: Dimension of RF
- *t* Random Fields (Cao, 1999)
 - -B: Beta dist^{*n*}
 - $U' s: \chi^{2'} s$
 - -c chosen s.t. E(S) = E(N) / E(L)

$$S \sim cB^{1/2} \left[\frac{U_0^D}{\prod_{b=0}^D U_b} \right]^{2/D}$$

20

Random Field Theory Cluster Size Corrected P-Values

- Previous results give uncorrected P-value
- Corrected P-value
 - Bonferroni
 - Correct for expected number of clusters
 - Corrected $P^c = E(L) P^{uncorr}$
 - Poisson Clumping Heuristic (Adler, 1980)
 - Corrected $P^c = 1 \exp(-E(L) P^{\text{uncorr}})$

Random Field Theory Strengths & Weaknesses

- Closed form results for $E(\chi_u)$ - *Z*, *t*, *F*, Chi-Squared Continuous RFs
- Results depend only on volume & smoothness
- Smoothness assumed known
- Sufficient smoothness required
 - Results are for *continuous* random fields
 - Smoothness estimate becomes biased
- Multivariate normality
- Several layers of approximations

FWER MCP Solutions

- Bonferroni
- Maximum Distribution Methods
 - Random Field Theory
 - Permutation

Nonparametric Permutation Test

- Parametric methods
 - Assume distribution of statistic under null hypothesis
- Nonparametric methods
 - Use *data* to find distribution of statistic under null hypothesis
 - Any statistic!

Controlling FWER: Permutation Test

- Parametric methods
 - Assume distribution of max statistic under null hypothesis
- Nonparametric methods
 - Use *data* to find distribution of *max* statistic under null hypothesis
 - Again, any max statistic!

Permutation Test & Exchangeability

- Exchangeability is fundamental
 - Def: Distribution of the data unperturbed by permutation
 - Under H_0 , exchangeability justifies permuting data
 - Allows us to build permutation distribution
- Subjects are exchangeable
 - Under Ho, each subject' s A/B labels can be flipped
- fMRI scans not exchangeable under H_0

Permutation Test & Exchangeability

- fMRI scans are not exchangeable
 - Permuting disrupts order, temporal autocorrelation
- *Intra*subject fMRI permutation test
 - Must decorrelate data, model before permuting
 - What is correlation structure?
 - Usually must use parametric model of correlation
 - E.g. Use wavelets to decorrelate
 - Bullmore et al 2001, HBM 12:61-78
- Intersubject fMRI permutation test
 - Create difference image for each subject
 - For each permutation, flip sign of some subjects

Real Data Example

- fMRI Study of Working Memory - 12 subjects, block design Marshuetz et al (2000) – Item Recognition • Active: View five letters, 2s pause, view probe letter, respond • Baseline: View XXXXX, 2s pause, view Y or N, respond • Second Level RFX – Difference image, A-B constructed for each subject
 - One sample, smoothed variance *t* test

Permutation Test Example

- Permute!
 - $-2^{12} = 4,096$ ways to flip 12 A/B labels

– For each, note maximum of *t* image

Permutation Distribution Maximum t

Maximum Intensity Projection Thresholded t 29

Permutation Test Example

- Compare with Bonferroni $-\alpha = 0.05/110,776$
- Compare with parametric RFT
 - 110,776 2×2×2mm voxels
 - 5.1×5.8×6.9mm FWHM smoothness
 - -462.9 RESELs

 t_{11} Statistic, Nonparametric Threshold

Test Level vs. t_{11} Threshold

t_{11} Statistic, RF & Bonf. Threshold

Smoothed Variance *t* Statistic, Nonparametric Threshold 31

Does this Generalize? RFT vs Bonf. vs Perm.

		t Threshold		
		(0.05 Corrected)		
	df	RF	Bonf	Perm
Verbal Fluency	4	4701.32	42.59	10.14
Location Switching	9	11.17	9.07	5.83
Task Switching	9	10.79	10.35	5.10
Faces: Main Effect	11	10.43	9.07	7.92
Faces: Interaction	11	10.70	9.07	8.26
Item Recognition	11	9.87	9.80	7.67
Visual Motion	11	11.07	8.92	8.40
Emotional Pictures	12	8.48	8.41	7.15
Pain: Warn ing	22	5.93	6.05	4.99
Pain: Anticipation	22	5.87	6.05	5.05

Monte Carlo Evaluations

- What's going wrong?
 - Normality assumptions?
 - Smoothness assumptions?
- Use Monte Carlo Simulations
 - Normality strictly true
 - Compare over range of smoothness, df
- Previous work
 - Gaussian (Z) image results well-validated
 - *t* image results hardly validated at all!

Monte Carlo Evaluations Challenges

- Accurately simulating *t* images
 - Cannot directly simulate smooth *t* images
 - Need to simulate v smooth Gaussian images
 (v = degrees of freedom)
- Accounting for all sources of variability
 - Most M.C. evaluations use known smoothness
 - Smoothness not known
 - We estimated it residual images

Monte Carlo Evaluations

- Simulated One Sample T test
 - 32x32x32 Images (32,767 voxels)
 - Smoothness: 0, 1.5, 3, 6,12 FWHM
 - Degrees of Freedom: 9, 19, 29
 - Realizations: 3000
- Permutation
 - 100 relabelings
 - Threshold: 95% ile of permutation distⁿ of maximum
- Random Field
 - Threshold: { $u : E(\chi_u | H_o) = 0.05$ }

Monte Carlo Evaluations

- Voxel-wise (intensity) Results Equivalent Independent Elements?
- Cluster-wise (extent) Results

Familywise Error Thresholds

- RF & Perm adapt to smoothness
- Perm & Truth close
- Bonferroni
 close to truth
 for low
 smoothness

Familywise Rejection Rates

- Bonf good on low df, smoothness
- Bonf bad for high smoothness
- RF only good for high df, high smoothness
- Perm exact

more

Familywise Rejection Rates

 Smoothness estimation is not (sole) problem

Monte Carlo Evaluations

- Voxel-wise (intensity) Results Equivalent Independent Elements?
- Cluster-wise (extent) Results

Equivalent Independent Elements

RFT methods not "RESEL Bonferroni"
 – Consider corrected P-values *P^c* for statistic *t*

$$P_{\text{Bonf}}^{c} \propto V \times e^{t^{2}/2} t^{-1}$$
$$P_{\text{RFT}}^{c} \propto R \times e^{t^{2}/2} t^{2}$$

V - # of voxels R - # of RESELs

- No "equivalent" V for all thresholds t

- But this assumes RFT works
 - What if there *were* an equivalent number of independent spatial elements

Equivalent Independent Elements

- FWE control with $\max_i T_i$ $-F_{\max_i T_i}(t) = \prod_i F_{T_i}(t) = (F_T(t))^V$ $= (F_T(t))^{\theta V}$ for some θ ?
- In terms of P-values
 - $-\max_i T_i > t \iff \min_i P_i < \gamma$

 $-F_{\min_i P_i}(\gamma) = 1 - (1 - F_P(\gamma))^{\theta V} = 1 - (1 - \gamma)^{\theta V}$

• Use simulations to ask...

- Is there an θ such that $F_{\min_i P_i}(\gamma)$ behaves like the minimum of θV independent voxels? 42

Simulations: Min P CDF's

Min P CDFs

- Higher threshold (smaller P) doesn't help
- For low / moderate
 smoothness,
 equivalent
 independent
 approach
 promising

Monte Carlo Evaluations

- Voxel-wise (intensity) Results Equivalent Independent Elements?
- Cluster-wise (extent) Results

Familywise Cluster Size Threshold

- RF & Perm adapt to smoothness
- RFT not bad above 3 FWHM sm.

Familywise Rejection Rates

• Interesting that gets worse with larger df.

FWE Corrected p-values

• For df=9 biased smoothness estimation improves rejection rate

10

8

6

Smoothness: FWHM

12

C

2

0.01

П

Performance Summary

• Bonferroni

- Not adaptive to smoothness
- Not so conservative for low smoothness
- Random Field
 - Adaptive
 - Conservative for low smoothness & df
 - Not so bad for cluster size inference
- Permutation
 - Adaptive (Exact)

Understanding Performance Differences

- RFT Troubles
 - Multivariate Normality assumption
 - True by simulation
 - Smoothness estimation
 - Not much impact
 - Smoothness
 - You need lots, more at low df
 - High threshold assumption
 - Doesn't improve for α_0 less than 0.05

Massive Empirical Evaluation

- Monte Carlo doesn't capture weirdness of real data
- In last 5 years, explosion of open resting fMRI data repositories
 - Suddenly null (task)
 fMRI data is plentiful

First-Level (single subject) fMRI

- Eklund (2012) analyzed **1,484** resting fMRI datasets from public repositories
- Fed through standard SPM pipeline, with 8 different "pretend" paradigms

Paradigm	Activity periods (s)	Rest periods (s)
B1	10	10
B2	15	15
B3	20	20
B4	30	30
E1	2	6
E2	4	8
E3	1–4 (R)	3-6 (R)
E4	3-6 (R)	4-8 (R)

Eklund et al. (2012). Does parametric fMRI analysis with SPM yield valid results? An empirical study of 1484 rest datasets. *NeuroImage*, 61(3), 565–78.

Computed Familywise Error (FWE) Rates

- Many settings had awful FWE!
 - Block worse than event; fast TR worse that slow

Massive Empirical Evaluation – Take II

- Previous result only for first level fMRI
- 2nd level fMRI doesn't depend on 1st level
 P-values
 Intra-subject model for Subject k
 Inter-subject group
- Data quality also an issue

Massive Empirical Evaluation – Take II

- Same fcon1000 repository, just 2 largest sites: Beijing & Cambridge
- Second level analyses
 - -1-sample t-test: n = 20, 40

-2-sample t-test: $n_1 = n_2 = 10, 20$

Parameter	Values used		
fMRI data	Beijing (198 subjects), Cambridge (198 subjects)		
Block activity paradigms	B1 (10 s on off), B2 (30 s on off)		
Event activity paradigms	E1 (2 s activation, 6 s rest), E2 (1 - 4 s activation, 3 - 6 s rest, randomized)		
Smoothing	4, 6, 8, 10 mm FWHM		
Analysis type	One sample t-test (group activation), two sample t-test (group difference)		
Number of subjects	20, 40		
Inference level	Voxel, cluster		
Cluster defining threshold	p = 0.01 (z = 2.3), p = 0.001 (z = 3.1)		

Massive Group fMRI Evaluation Voxel-wise

Voxel-wise inference OK
 – Sometimes very conservative!

Massive Group fMRI Evaluation Cluster-wise CFT p=0.01

- Cluster-wise a catastrophe!
 - Rarely valid at cluster forming threshold (CFT) p=0.01 – default CFT in FSL

Massive Group fMRI Evaluation Cluster-wise CFT p=0.001

Cluster-wise CFT p=0.001 better
 Valid ≈ 50% time, depending on design

Massive Group fMRI Evaluation "ad hoc", CFT p=0.001 K>10

- Authors often use "folk" multiple testing method
- P=0.001 and only clusters of 10 voxels or more
- This has 50-80% FWE

Massive Group fMRI Eval: What's going wrong?

- RFT Assumptions
 - Gaussian errors
 - Spatial ACF has 2 derivatives at origin
 - For cluster-size only
 - Spatial ACF has Gaussian shape
 - CFT "sufficient" high
 - Stationary (spatially homogeneous smoothness)

What's wrong with FSL's FLAME1

- Univariate P-values are conservative
 - Nothing to do with RFT!
 - Turns out to be artifact of using completely null data ($\sigma_{BTW} = 0$)
 - Using non-null (σ_{BTW}>0) data for same-vs-same 2group comparison, resolves this. But then results sin

61

es this. But then results similar (not shown) to FSL $OLS \otimes$

Massive Group fMRI Eval: Spatial ACF

• Much heavier tails than Gaussian pdf!

62

Massive Group fMRI Eval: Spatial Distⁿ of False Clusters

• Great smoothness in "default mode" areas

63

What always works? Permutation!

• How does this compare on real (non-null) data?

Usually, would say "non-parametric so much less powerful"

In light of evaluations, "non-parametric valid, parametric inflated signficance"

Conclusions

- Gaussian Monte Carlo results show...
 - *t* random field results conservative for
 - Low df & smoothness
 - 9 df & ≤ 12 FWHM; 19 df & < 10 FWHM
 - Nonparametric methods perform well overall
- Real data evaluations
 - RFT Voxel-wise OK, but conservative
 - Cluster-wise P=0.01 invalid danger danger danger
 - Cluster-wise P=0.001 sometimes OK, sometimes invalid
- Permutation embarrassingly parallelizable, GPU friendly
 - See BROCCOLI
- Standard tools avaiable!
 - FSL: randomise SPM: SnPM toolbox

References

- TE Nichols and AP Holmes. Nonparametric Permutation Tests for Functional Neuroimaging: A Primer with Examples. *Human Brain Mapping*, 15:1-25, 2002.
- Eklund, A., Nichols, T., & Knutsson, H. (2015). Can parametric statistical methods be trusted for fMRI based group studies? http://arxiv.org/abs/1511.01863