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Overview 

•  Multiple Comparisons Problem (MCP) 
– Which of my 100,000 voxels are “active” 

•  Controlling MCP with FWE methods 
– Random Field Theory 
– Permutation 

•  Evaluations 
– Real data & simulations 

•  Conclusions 
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Functional Magnetic 
Resonance Imaging  (fMRI) 

•  Magnetic properties of blood vary 
–  Blue blood → Red blood 
–  Paramagnetic → Diamagnetic 

•  BOLD 
–  Blood Oxygenation Level Dependent effect 
–  ↑ Blood flow    ↑ fMRI Signal 

–    

Tap 
fingers 

Rest 



4 

fMRI Perspective 

•  4-Dimensional Data 
–  1,000 multivariate observations, 

each with 100,000 elements 
–  100,000 time series, each  

with 1,000 observations 
•  Usual approach 

is the time-series 
perspective 

1,000 

1 

2 

3 
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Hypothesis Testing in fMRI 

•  Massively Univariate Modeling 
– Fit model at each voxel 
– Create statistic images of effect 

•  Which of 100,000 voxels are significant? 
– α=0.05 ⇒ 5,000 false positives! 

t > 0.5 t > 1.5 t > 2.5 t > 3.5 t > 4.5 t > 5.5 t > 6.5 
Must we threshold? 
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Multiple Comparisons 
Problem (MCP) 

•  Standard Hypothesis Test 
–  Controls Type I error of each test, 

at say 5% 
–  “Type I Error” only defined 

for single test 

•  Must control false positive rate over image 
–  What false positive rate? 
–  Chance of 1 or more Type I errors 
–  Chance of 50 or more? 
–  Expected fraction of false positives? 

5% 
0 
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MCP Solutions: 
Measuring False Positives 

•  Familywise Error Rate (FWER) 
– Familywise Error 

•  Existence of one or more false positives 

– FWER is probability of familywise error 
•  False Discovery Rate (FDR) 

– R voxels declared active, V falsely so 
•  Observed false discovery rate: V/R 

– FDR = E(V/R) 
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FWER MCP Solutions 

•  Bonferroni 
•  Maximum Distribution Methods 

– Random Field Theory 
– Permutation 
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FWER MCP Solutions: 
Bonferroni 

•  Based on truncation of Boole’s formula 
    FWER = P(FWE) 

  = P( ∪i {Ti ≥ u} | Ho) 
  ≤ Σi P( Ti ≥ u | Ho) 

•  Corrected Threshold 
– Use P-value threshold α = 0.05/V 

•  to test V voxels 
– Or statistic threshold uα : P( Ti ≥ uα | Ho) = α 

•  Corrected P-value 
– min{ P-value × V, 1 } 
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FWER MCP Solutions 

•  Bonferroni 
•  Maximum Distribution Methods 

– Random Field Theory 
– Permutation 
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FWER MCP Solutions:  
Controlling FWER w/ Max 

•  FWER & distribution of maximum 
  FWER  = P(FWE) 

  = P( ∪i {Ti ≥ u} | Ho) 
  = P( maxi Ti ≥ u | Ho) 

•  100(1-α)%ile of max distn controls FWER 
FWER = P( maxi Ti ≥ uα | Ho) = α 

–  where 
   uα = F-1

max (1-α) 
 

. uα 

α 
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FWER MCP Solutions 

•  Bonferroni 
•  Maximum Distribution Methods 

– Random Field Theory 
– Permutation 
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FWER MCP Solutions: 
Random Field Theory 

•  Euler Characteristic χu 
– Topological Measure 

•  #blobs - #holes 

– At high thresholds, 
just counts blobs   

– FWER = P(Max voxel ≥ u | Ho) 
  = P(One or more blobs | Ho) 
  ≈ P(χu ≥ 1 | Ho) 
  ≈ E(χu | Ho) 

Random Field 

Suprathreshold Sets 

Threshold 

No holes 

Never more 
than 1 blob 
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RFT Details: 
Expected Euler Characteristic  
E(χu) ≈ λ(Ω)  |Λ|1/2 (u 2 -1) exp(-u 2/2) / (2π)2 

–  Ω  → Search region  Ω ⊂ R3  
–  λ(Ω)  → volume 
–  |Λ|1/2  → roughness 

•  Assumptions 
–  Multivariate Normal 
–  Stationary* 
–  ACF twice differentiable at 0 

*  Stationary 
–  Only cluster results need stationary 
–  Most accurate when stat. holds 

Only very 
upper tail 
approximates 
1-Fmax(u) 
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Random Field Theory 
Smoothness Parameterization 

 
•  E(χu) depends on |Λ|1/2 

–  Λ  roughness matrix: 

•  Smoothness  
parameterized as  
Full Width at Half Maximum 
–  FWHM of Gaussian kernel  

needed to smooth a white 
noise random field to  
roughness Λ 

Autocorrelation Function 

FWHM 
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•  RESELS – Resolution Elements  
–  1 RESEL = FWHMx × FWHMy × FWHMz 
–  RESEL Count R 

•  R = λ(Ω) √ |Λ|   ß The only data-dependent part of E(χu) 
•  Volume of search region in units of smoothness 
•  Eg: 10 voxels, 2.5 voxel FWHM smoothness, 4 RESELS 

. 

•  Wrong RESEL interpretation 
–  “Number of independent ‘things’ in the image” 

•  Nichols & Hayasaka, 2003, Stat. Meth. in Med. Res. 

Random Field Theory 
Smoothness Parameterization 
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Random Field Intuition 

•  Corrected P-value for voxel value t  
  Pc  = P(max T > t) 

  ≈ E(χt) 
  ≈ λ(Ω) |Λ|1/2 t2 exp(-t2/2) 

•  Statistic value t increases 
–  Pc decreases (but only for large t) 

•  Search volume increases 
–  Pc increases (more severe MCP) 

•  Roughness increases (Smoothness decreases) 
–  Pc increases (more severe MCP) 
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•  General form for expected Euler characteristic 
•   χ2, F, & t fields • restricted search regions • D dimensions • 

E[χu(Ω)] = Σd Rd (Ω) ρd (u) 

RFT Details: 
Super General Formula 

Rd (Ω): d-dimensional Minkowski 
  functional of Ω	
 – function of dimension, 
   space Ω and smoothness: 

 
 R0(Ω)  =  χ(Ω) Euler characteristic of Ω	
	R1(Ω)  =  resel diameter 
	R2(Ω)  =  resel surface area 
	R3(Ω)  =  resel volume 

 

ρd (Ω): d-dimensional EC density of Z(x)	
 – function of dimension and threshold, 
   specific for RF type: 

E.g. Gaussian RF:  

 ρ0(u)  =  1- Φ(u) 	

	ρ1(u)  =  (4 ln2)1/2 exp(-u2/2) / (2π) 

	ρ2(u)  =  (4 ln2)    exp(-u2/2) / (2π)3/2 

	ρ3(u)  =  (4 ln2)3/2 (u2 -1)   exp(-u2/2) / (2π)2 

	ρ4(u)  =  (4 ln2)2    (u3 -3u) exp(-u2/2) / (2π)5/2 
 
 Ω	
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5mm FWHM 

10mm FWHM 

15mm FWHM 

•  Expected Cluster Size 
– E(S) = E(N)/E(L) 
–  S cluster size 
– N suprathreshold volume 
λ({T > uclus}) 

– L number of clusters 

•  E(N) = λ(Ω) P( T > uclus ) 
•  E(L) ≈ E(χu) 

– Assuming no holes 

Random Field Theory 
Cluster Size Tests 



•  Gaussian Random Fields (Nosko, 1969)  
 

– D: Dimension of RF 
•  t Random Fields (Cao, 1999) 

– B: Beta distn 

– U’s: χ2’s 
–  c chosen s.t. 

E(S) = E(N) / E(L) 20 

Random Field Theory 
Cluster Size Distribution 
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Random Field Theory 
Cluster Size Corrected P-Values 

•  Previous results give uncorrected P-value 
•  Corrected P-value 

– Bonferroni 
•  Correct for expected number of clusters 
•  Corrected Pc = E(L) Puncorr 

– Poisson Clumping Heuristic (Adler, 1980) 
•  Corrected Pc = 1 - exp( -E(L) Puncorr ) 
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Random Field Theory 
Strengths & Weaknesses  

•  Closed form results for E(χu) 
–  Z, t, F, Chi-Squared Continuous RFs 

•  Results depend only on volume & smoothness 

•  Smoothness assumed known 
•  Sufficient smoothness required 

–  Results are for continuous random fields 
–  Smoothness estimate becomes biased 

•  Multivariate normality 
•  Several layers of approximations 

 

Lattice Image 
Data 

≈ 

Continuous Random 
Field 
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FWER MCP Solutions 

•  Bonferroni 
•  Maximum Distribution Methods 

– Random Field Theory 
– Permutation 
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Nonparametric 
 Permutation Test 

•  Parametric methods 
– Assume distribution of 

statistic under null 
hypothesis 

•  Nonparametric methods 
– Use data to find  

distribution of statistic 
under null hypothesis 

– Any statistic! 

5% 

Parametric Null Distribution 

5% 

Nonparametric Null Distribution 
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Controlling FWER: 
Permutation Test 

•  Parametric methods 
– Assume distribution of 

max statistic under null 
hypothesis 

•  Nonparametric methods 
– Use data to find  

distribution of max statistic 
under null hypothesis 

– Again, any max statistic! 

5% 

Parametric Null Max Distribution 

5% 

Nonparametric Null Max Distribution 
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Permutation Test 
& Exchangeability 

•  Exchangeability is fundamental 
– Def: Distribution of the data unperturbed by 

permutation 
– Under H0, exchangeability justifies permuting data 
– Allows us to build permutation distribution 

•  Subjects are exchangeable 
– Under Ho, each subject’s A/B labels can be 

flipped 
•  fMRI scans not exchangeable under H0 
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Permutation Test 
& Exchangeability 

•  fMRI scans are not exchangeable 
–  Permuting disrupts order, temporal autocorrelation 

•  Intrasubject fMRI permutation test 
–  Must decorrelate data, model before permuting 
–  What is correlation structure? 

•  Usually must use parametric model of correlation 
–  E.g. Use wavelets to decorrelate 

•  Bullmore et al 2001, HBM 12:61-78 

•  Intersubject fMRI permutation test 
–  Create difference image for each subject 
–  For each permutation, flip sign of some subjects 
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Real Data Example 

•  fMRI Study of Working Memory    
–  12 subjects, block design  Marshuetz et al (2000) 
–  Item Recognition 

•  Active:View five letters, 2s pause, 
 view probe letter, respond 

•  Baseline: View XXXXX, 2s pause, 
 view Y or N, respond 

•  Second Level RFX 
–  Difference image, A-B constructed 

for each subject 
–  One sample, smoothed variance t test 

D 

yes UBKDA 

Active 

N 

no XXXXX 

Baseline 
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Permutation Test 
Example 

•  Permute! 
–  212 = 4,096 ways to flip 12 A/B labels 
– For each, note maximum of t image 
. 

Permutation Distribution 
Maximum  t 

Maximum Intensity Projection 
Thresholded t 
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Permutation Test 
Example 

•  Compare with Bonferroni 
– α = 0.05/110,776 

•  Compare with parametric RFT 
–  110,776  2×2×2mm voxels 
–  5.1×5.8×6.9mm FWHM smoothness 
–  462.9  RESELs 
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t11 Statistic, RF & Bonf. Threshold t11 Statistic, Nonparametric Threshold 

uRF   = 9.87 
uBonf = 9.80 
5 sig. vox.  

uPerm = 7.67  
 
58 sig. vox. 

Smoothed Variance t Statistic, 
Nonparametric Threshold 

378 sig. vox. 

Test Level vs. t11 Threshold 



Does this Generalize? 
RFT vs Bonf. vs Perm. 

  t Threshold  
(0.05 Corrected)  

 df RF Bonf Perm 
Verbal Fluency  4 4701.32  42.59  10.14  
Location Switching  9 11.17  9.07 5.83 
Task Switching  9 10.79  10.35  5.10 
Faces: Main Effect  11 10.43  9.07 7.92 
Faces: Interaction  11 10.70  9.07 8.26 
Item Recognition  11 9.87 9.80 7.67 
Visual Motion  11 11.07  8.92 8.40 
Emotional Pictures  12 8.48 8.41 7.15 
Pain: Warn ing 22 5.93 6.05 4.99 
Pain: Anticipation  22 5.87 6.05 5.05 
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Monte Carlo Evaluations 

•  What’s going wrong? 
– Normality assumptions? 
– Smoothness assumptions? 

•  Use Monte Carlo Simulations 
– Normality strictly true 
– Compare over range of smoothness, df 

•  Previous work 
– Gaussian (Z) image results well-validated 
–  t image results hardly validated at all! 



34 

Monte Carlo Evaluations 
Challenges 

•  Accurately simulating t images 
– Cannot directly simulate smooth t images 
– Need to simulate ν smooth Gaussian images 

(ν  = degrees of freedom) 

•  Accounting for all sources of variability 
– Most M.C. evaluations use known smoothness 
– Smoothness not known 
– We estimated it residual images 
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Monte Carlo Evaluations 
•  Simulated One Sample T test 

–  32x32x32 Images  (32,767 voxels) 
–  Smoothness:  0, 1.5, 3, 6,12 FWHM 
–  Degrees of Freedom: 9, 19, 29 
–  Realizations: 3000 

•  Permutation 
–  100 relabelings 
–  Threshold: 95%ile of permutation distn of maximum 

•  Random Field 
–  Threshold: { u : E(χu | Ho) = 0.05 } 

Autocorrelation Function 

FWHM 
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Monte Carlo Evaluations 

•  Voxel-wise (intensity) Results 
 Equivalent Independent Elements? 

•  Cluster-wise (extent) Results 
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Familywise 
Error 
Thresholds 

•  RF & Perm 
adapt to 
smoothness 

•  Perm & Truth 
close 

•  Bonferroni 
close to truth 
for low 
smoothness 

 9 df 

19 df 

more 
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Familywise 
Rejection 
Rates 
•  Bonf good on 

low df, 
smoothness 

•  Bonf bad for 
high 
smoothness 

•  RF only good 
for high df, 
high 
smoothness 

•  Perm exact 

 9 df 

19 df 

more 
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Familywise 
Rejection 
Rates 

•  Smoothness 
estimation 
is not (sole) 
problem 

 9 df 

19 df 

cont 
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Monte Carlo Evaluations 

•  Voxel-wise (intensity) Results 
 Equivalent Independent Elements? 

•  Cluster-wise (extent) Results 



•  RFT methods not “RESEL Bonferroni” 
– Consider corrected P-values Pc for statistic t 

– No “equivalent” V for all thresholds t 
•  But this assumes RFT works 

– What if there were an equivalent number of 
independent spatial elements 

41 

Equivalent Independent 
Elements 

12/
Bonf

2 −×∝ teVP tc

22/
RFT

2

teRP tc ×∝
V – # of voxels 
 

R – # of RESELs 
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Equivalent Independent 
Elements 

•  FWE control with maxi Ti 
– Fmaxi Ti

 (t) = ΠiFTi
(t) = (FT(t))V  

                 = (FT(t))θV         for some θ? 
•  In terms of P-values 

– maxi Ti > t   ↔   mini Pi < γ 
– Fmini Pi

 (γ) = 1-(1-FP(γ))θV =  1-(1-γ)θV  

•  Use simulations to ask... 
–  Is there an θ such that Fmini Pi

 (γ) behaves like the 
minimum of θV independent voxels? 
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Simulations: Min P CDF’s 
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Min P 
CDFs 

•  Higher 
threshold 
(smaller P) 
doesn’t help 

•  For low / 
moderate 
smoothness, 
equivalent 
independent 
approach 
promising C

um
ul

at
iv

e 
P

ro
ba

bi
lit

y 
/ F

W
E

 C
or

re
ct

ed
 P

-V
al

ue
 

Minimum P-Value 

αcorr = 0.05` 
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Monte Carlo Evaluations 

•  Voxel-wise (intensity) Results 
 Equivalent Independent Elements? 

•  Cluster-wise (extent) Results 
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Familywise 
Cluster Size 
Threshold 

•  RF & Perm 
adapt to 
smoothness 

•  RFT not bad 
above 3 
FWHM sm. 

 9 df, u = 0.01 

19 df, u = 0.01 

SKIP 
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Familywise 
Rejection 
Rates 

•  Interesting 
that gets 
worse with 
larger df. 

 9 df 

19 df 

more 
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FWE 
Corrected 
p-values 

•  For df=9 
biased 
smoothness 
estimation 
improves 
rejection 
rate 

 9 df 

19 df 

cont 
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Performance Summary 
•  Bonferroni 

–  Not adaptive to smoothness 
–  Not so conservative for low smoothness 

•  Random Field 
–  Adaptive 
–  Conservative for low smoothness & df 
–  Not so bad for cluster size inference 

•  Permutation 
–  Adaptive (Exact) 
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Understanding Performance 
Differences 

•  RFT Troubles 
– Multivariate Normality assumption 

•  True by simulation 

– Smoothness estimation 
•  Not much impact 

– Smoothness 
•  You need lots, more at low df 

– High threshold assumption 
•  Doesn’t improve for α0 less than 0.05 

HighThr 



Massive Empirical 
Evaluation 

•  Monte Carlo doesn’t capture weirdness of 
real data 

•  In last 5 years, explosion 
 of open resting fMRI  
data repositories 
– Suddenly null (task) 

fMRI data is plentiful 

51 



First-Level (single subject) 
fMRI 

•  Eklund (2012) analyzed 1,484 resting fMRI 
datasets from public repositories 

•  Fed through standard SPM pipeline, with 8 
different “pretend” paradigms 

52 Eklund et al. (2012). Does parametric fMRI analysis with SPM yield valid 
results? An empirical study of 1484 rest datasets. NeuroImage, 61(3), 565–78.  



Computed Familywise Error 
(FWE) Rates 

•  Many settings had awful FWE! 
– Block worse than event; fast TR worse that slow 

53 



Massive Empirical 
Evaluation – Take II 

•  Previous result only for first level fMRI 
•  2nd level fMRI doesn’t depend on 1st level 

P-values 
•  Data  

quality 
also an  
issue 

54 

Inter-subject group model	Intra-subject model for Subject k	



Massive Empirical 
Evaluation – Take II 

•  Same fcon1000 repository, just 2 largest 
sites: Beijing & Cambridge 

•  Second level analyses 
–  1-sample t-test: n = 20,  40 
–  2-sample t-test: n1 = n2=10,  20 

55 
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Massive Group fMRI Evaluation 
Voxel-wise 

•  Voxel-wise inference OK 
– Sometimes very conservative! 



Massive Group fMRI Evaluation 
Cluster-wise CFT p=0.01 

•  Cluster-wise a catastrophe! 
– Rarely valid at cluster forming threshold 

(CFT) p=0.01 – default CFT in FSL 
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Massive Group fMRI Evaluation 
Cluster-wise CFT p=0.001 

•  Cluster-wise CFT p=0.001 better 
– Valid ≈ 50% time, depending on design 

58 



Massive Group fMRI Evaluation 
“ad hoc”, CFT p=0.001 K>10 

•  Authors often use 
“folk” multiple 
testing method 

•  P=0.001 and only 
clusters of 10 voxels 
or more 

•  This has 50-80% 
FWE 
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Massive Group fMRI Eval: 
What’s going wrong? 

•  RFT Assumptions 
– Gaussian errors 
– Spatial ACF has 2 derivatives at origin 
– For cluster-size only 

•  Spatial ACF has Gaussian shape 
•  CFT “sufficient” high  
•  Stationary (spatially homogeneous smoothness) 
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What’s wrong with FSL’s 
FLAME1 

•  Univariate P-values are 
conservative 
– Nothing to do with RFT! 
– Turns out to be artifact 

of using completely null 
data (σBTW = 0) 

– Using non-null (σBTW>0)  
data for same-vs-same 2-
group comparison, 
resolves this. 61 

But then results similar (not shown) to FSL OLS L 



Massive Group fMRI Eval: 
Spatial ACF 

•  Much heavier tails than Gaussian pdf! 

62 



Massive Group fMRI Eval: 
Spatial Distn of False Clusters 
•  Great smoothness in “default mode” areas 
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What always works?  
Permutation! 

•  How does this compare on real (non-null) 
data? 

64 

Usually, would say 
“non-parametric so 
much less powerful” 
 
In light of 
evaluations, 
“non-parametric 
valid, parametric 
inflated signficance” 
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Conclusions 
•  Gaussian Monte Carlo results show… 

–  t random field results conservative for 
•  Low df & smoothness 
•  9 df & ≤12 FWHM;   19 df & < 10 FWHM 

–  Nonparametric methods perform well overall 

•  Real data evaluations 
–  RFT Voxel-wise OK, but conservative 
–  Cluster-wise P=0.01 invalid danger danger danger 
–  Cluster-wise P=0.001 – sometimes OK, sometimes invalid 

•  Permutation embarrassingly parallelizable, GPU friendly 
–  See BROCCOLI 

•  Standard tools avaiable! 
–  FSL: randomise   SPM: SnPM toolbox 
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