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Edge AI Systems

Edge AI focuses on operating AI 

systems with edge computing

Edge computing goals:

• Ultra-low latency / real-time

• Increased data privacy

• Lower energy footprint

The trend keeps growing:

• Cloud-Edge-IoT continuum

• Edge accelerators

• 5G / 6G

• Tiny ML

• ...

G. Casale – Slide 2/31

         Industrial IoT

Self-driving cars & AI traffic monitoring

AI-enabled telerobotic surgery

Real-time sport analytics

Augmented reality for hospitality



Data transfer latency vs. Local processing

Deep Neural Network (DNN) Models at the Edge G. Casale – Slide 3/31

• Resource constraints:

– Task offloading and partitioning of large DNN models

– MobileNet-v2: ~650MB vs. GPT-v3: ~350GB

What challenges do we face in performance engineering of Edge AI systems?

Y. Kang et al. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge, Proceedings of ASPLOS.

IoT

Cloud

Edge



Deep Neural Network (DNN) Models at the Edge G. Casale – Slide 4/31

S. Bianco, et al. Benchmark Analysis of Representative Deep Neural Network Architectures, IEEE Access

R. Desislavov, et al., Trends in AI inference energy consumption: Beyond the performance-vs-parameter laws of deep learning, Sustainable Computing.

Real-time 

What challenges do we face in performance engineering of Edge AI systems?

• Performance-Accuracy tradeoffs

o Accuracy not a first-class citizen in classic performance engineering

o Visible correlations arise with throughput and energy consumption
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• DNN model tuning

– Weight pruning

– Quantization

– Knowledge distillation

– Lossy compression

– Neural Architecture Search

• Adaptive DNN models

– How shall we leverage these capabilities for performance engineering?

D Liu, H Kong, X Luo, W Liu, R Subramaniam. Bringing AI To Edge: From Deep Learning’s Perspective. Neurocomputing.

Eshratifar, A. E., et al. BottleNet: A Deep Learning Architecture for Intelligent Mobile Cloud Computing Services, IEEE/ACM ISLPED.



1. How can we leverage early-exits for performance tuning?

 Emerging research on scheduling early exits

2.   How to partition and deploy DNNs?

o     Performance-aware online DNN splitting methods

  Combining classic performance evaluation with GNNs

Roadmap G. Casale – Slide 6/31

TMC'23

DSN'24

TC'23



How can we leverage early-exits for

performance tuning?

Joint work with:

Manuel Roveri

(Politecnico di 

Milano, Italy)

Yichong Chen

(Imperial College

London, UK)



• An Intermediate Classifier (IC) can produce an early classification output

• Early exit is controlled by a confidence threshold      

Early exit in CNNs G. Casale – Slide 8/31

• Example – forcing exit at layer l:

IC disabled IC disabled

Early exit condition:

IC Threshold

IC IC IC

• Thresholds trained with the CNN or afterwards.

IC

Output classification

Confidence



• How to schedule early exit online to reduce data loss?

Scheduling early exits for reliability G. Casale – Slide 9/31

Memory bufferLoss

Casale, G., & Roveri, M. (2023). Scheduling Inputs in Early Exit Neural Networks. IEEE Transactions on Computers.

• Research questions:

RQ1. How to deal with accuracy and its tradeoffs with performance and reliability?

RQ2. What family of scheduling methods are best for early exits?

• Edge AI system metrics: latency, accuracy, loss ratio.

Accuracy Al

Processing time pl

On-device lookup table



• Single-exit schedulers: restrict feasible threshold values to {0,1}

Accuracy in adaptive DNNs G. Casale – Slide 10/31

1.0 1.0 1.0
Accuracy: 84.3%

Latency: 138 × 106 MACs

0.9 1.0 1.0

Accuracy: 82.2%

     Latency: 56 × 106 MACs

Accuracy: 77.9%

Latency: 167 × 106 MACs

• Accuracy and latency change with the data distribution!

1.0 0.0

A2 (profilable offline)

(25-layer CNN + CIFAR10)



• Deterministic scheduling:

– Without arrivals, reduces to discrete scheduling with compressible resources (NP-hard)

– A time budget B is assigned based on arrival rate after each completion

Single-exit knapsack scheduler G. Casale – Slide 11/31

knapsack problem

Fit time budget

Schedule at most k jobs

Maximize accuracy

Num. jobs to exit at layer l

Time budget

k spare job slots in buffer

Accuracy A1, Processing time p1

A2, p2

A3, p3

A4, p4

0     1     2     ...

0-0.5

0.5-1
...

... ... ... ...

... ... ... ...

... ... ... ...

On-device lookup table



Single-exit queueing scheduler G. Casale – Slide 12/31

• Stochastic scheduling:

– DNN latency from steady-state M/GI/1/K queue

• Control knob: probability of exiting after a DNN layer

– Service becomes a mixture distribution (GI)

Loss ratio approximation

GI

Capacity K

• Optimal schedule obtained via a Linear Program (LP) 

– Maximize target accuracy

– Constraint on maximum acceptable loss ratio



• 6 CNNs (28-56 processing layers; 8-24 exit points; CIFAR10/100 data)

Simulation of real technological scenarios G. Casale – Slide 13/31
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• Cope with data-dependent accuracy while training

– Thresholds now arbitrary

– Trial-and-error via Bayesian Optimization

– Optimize accuracy and M/GI/1/K loss

Data-driven multi-exit scheduling G. Casale – Slide 14/31
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• AdaEE: multi-armed bandit (MAB) to schedule early exits

– Reward metric: Confidence gain - Performance overhead

Setting confidence thresholds in evolving environments G. Casale – Slide 15/31

Upper Confidence Bound (UCB):

Exploitation Exploration

R. G. Pacheco et al. AdaEE: Adaptive Early-Exit DNN Inference Through Multi-Armed Bandits. ICC 2023.

Confidence gain

exit-last

exit-first

data-driven

knapsack

Loss ratio

A
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u
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cy

RPi 4B; 8 exit points; Poisson arrivals

ada-ee

queueing model

• Driving early-exits with confidence gains

– Single-exit: <1s to update the policies

– Data-driven difficult to operate online:

- minutes to update the policies

- significant computational footprint



Takeaways on early-exits G. Casale – Slide 16/31

Metric Offline (accuracy-based) Online (confidence-based)

Accuracy Data-driven Knapsack

Latency control Data-driven & Queueing model Queueing model

Loss control Data-driven & Queueing model Queueing model

Robustness 

across scenarios

Data-driven & Knapsack Knapsack

Some takeaways:

• We can tap into early-exit ICs to establish a novel performance tuning control knob

• Deterministic methods are highly robust

• Confidence gain offers a viable surrogate to accuracy

• Queueing-informed data-driven scheduling is promising for future research

Open challenge:

• How to schedule early-exits in the distributed setting?



Performance-aware DNN splitting and placement

Joint works with:

Shreshth Tuli

(Imperial College

London & Happening, 

UK)

Nick Jennings

(Loughborough U, 

UK)

Zifeng Niu

(Imperial College

London, UK)

Manuel Roveri

(Politecnico di 

MIlano, Italy)



State-of-the-art: DNN layer-wise partitioning G. Casale – Slide 18/31

• Ideal split point determined from layer characteristics

– Convolutional: large output data, Pooling: smaller output data; FC layers: high latency

– Prediction on processing time on target hardware obtained via regression

Y. Kang et al. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge, Proceedings of ASPLOS.

H. Liang et al. DNN Surgery: Accelerating DNN Inference on the Edge Through Layer Partitioning, IEEE TCC 2023.

AlexNet

High transmission cost High processing cost

Ideal split point

• Many popular DNNs have a linear topology (chain)



• DNN placement is critical, e.g. IoT devices without on-air update

• State-of-the-art mainly relies on integer-linear programming (ILP)

– Binary variables map layers to edge & IoT nodes

– Constraints on memory, processing time, DNN layer dependencies, network range, ...

Designing an Edge AI placement G. Casale – Slide 19/31

S. Disabato, M. Roveri, C. Alippi. Distributed Deep Convolutional Neural Networks for the Internet of Things. IEEE TC, 2021.

No shared DNN layers Shared DNN layers

Edge node

Edge node

Edge node

Edge node

IoT deviceIoT device



• Graph-based deterministic models are appropriate for periodic workloads

• The same approach cannot easily capture stochastic arrivals

Modeling data loss metrics G. Casale – Slide 20/31

S. Disabato, M. Roveri, C. Alippi. Distributed Deep Convolutional Neural Networks for the Internet of Things. IEEE TC, 2021.

S. Suresh, W. Whitt, The heavy-traffic bottleneck phenomenon in open queueing networks, Oper. Res. Lett. 9 (6) (1990) 355–362.

Early-exit

Arv. rate 1

Arv. rate 2

700Mhz/4GB

1.5Ghz/8GB

Arv. rate 3

900Mhz/2GB

1.5GHz/2GB4GHz/16GB

Too complex to approximate 

analytically!

Data Loss

throughput



Execution steps

Modeling an Edge AI placement as a GNN G. Casale – Slide 21/31

Device3Device1

Device2

• We focus on linear DNN pipelines (a service chain)

• DNN placement seen as a heterogeneous graphs

1xDNN layer

2xDNN layers2xDNN layers

i-th service chain



Graph neural networks for Edge AI performance prediction G. Casale – Slide 22/31
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Graph Attention Network (GAT)

𝑉1

𝑉2

𝑉4

𝑉3

ℎ1

ℎ2

ℎ3

Message passing GNN

• GNN surrogate trained on simulation and/or system data

– Input features: system and workload parameters: arrival rates, RAM size, CPU GHz, …

– Output features performance metrics: throughputs, latencies, loss ratio, …

Embedding

ℎ4 ℎ4

Update Update

Graph Isomorphism Network (GIN)

𝜎



ChainNet: a customized GNN for performance prediction G. Casale – Slide 23/31

• Off-the-shelf GNNs need to implicitly learn performance laws from scratch

• ChainNet: a customized GNN tailored to system performance metrics

– End-to-end service flow embedding:

– DNN fragment embedding:

– Device embedding:
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Attention to model "multiclass" interactions

Message passing within execution steps

Message passing across execution steps



• Modelling throughput in ChainNet

ChainNet GNN: custom message passing G. Casale – Slide 24/31
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ChainNet: results G. Casale – Slide 25/31

• 71% loss ratio reduction in real-world technological scenario

– 2×OrangePi Zero, 2×Raspberry Pi A+, and 1×Raspberry Pi 3A+

• Systematic reduction also visible in generalization tests via simulation

50000 training models 

10000 test models
Simulated annealing with GNNs
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Online DNN layer-wise splitting G. Casale – Slide 26/31

X. Tang et al. Joint Multiuser DNN Partitioning and Computational Resource Allocation for Collaborative Edge Intelligence, IEEE IoT 2021.

H. Liang et al. DNN Surgery: Accelerating DNN Inference on the Edge Through Layer Partitioning, IEEE TCC 2023.

• Ideal split point can vary over time with the uplink speed

• Actual performance on the device also varies non-linearly with the number of cores

 

• This may require online DNN split and placement to cope with actual performance

VGG-16 (High/Medium/Low uplink speed)

Allocated cores
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• SplitNets learning
– Semantically disparate classes require largely disjoint sets of features

How to best parallelize DNN execution? G. Casale – Slide 27/31

J. Kim, Y. Park, G. Kim, and S. J. Hwang, “SplitNet: Learning to semantically split deep networks for parameter reduction and model parallelization,” ICML, 2017.

Tuli, S., Casale, G., & Jennings, N. R. Splitplace: AI augmented splitting and placement of large-scale neural networks in mobile edge environments. TMC, 2013.

• Semantic splits vs layer-wise splits
– Lower accuracy, but parallelizable

– Requires re-training

• How to choose at runtime the best DNN split topology taking into account performance?



• Contextual Multi-Armed Bandit (MAB) decides split-type

– Reward proportional to SLA compliance and accuracy

– Two contexts: High response time / Low response time w.r.t. SLA

 

SplitPlace: Dynamic DNN splitting G. Casale – Slide 28/31

Tuli, S., Casale, G., & Jennings, N. R.. Splitplace: AI augmented splitting and placement of large-scale neural networks in mobile edge environments. IEEE TMC.

Semantic split

Semantic split

Layer split

SplitPlace vs. Layer-wise vs. Pruning

ResNet50-V2 / MobileNetV2 / InceptionV3

Layer split

• SplitPlace architecture with "digital twin" for placement



Conclusion



Summary G. Casale – Slide 30/31

• We can recast early-exits as a mechanism to tune performance and reliability

• We can tailor GNNs to performance prediction tasks:

https://github.com/imperial-qore/ChainNet

• Runtime DNN splitting and placement

https://github.com/imperial-qore/ChainNet


• The number of software products embedding DNNs keeps growing

– Increasing collaboration of DevOps teams and Data science teams (eg MLOps)

– The boundary between traditional services and DNN inference is fading!

•  Edge AI splitting and placement has many commonalities with SPE

– Many  opportunities for cross-fertilization

Opportunities for research in ICPE G. Casale – Slide 31/31

How shall software performance engineering evolve to support AI systems?

Search-based 

software engineering

Product lines DNN variants (splits, compression, ...)

Orchestration DNN partitioning & placement

Network Architecture Search

... ...
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