Automated multi-paradigm analysis of extended and layered queueing models with LINE

Giuliano Casale Department of Computing Imperial College London g.casale@imperial.ac.uk

LINE Solver (line-solver.sf.net)

- MATLAB library for system performance and reliability analysis based on queueing theory
- Ver 2.0.0: Major tool overhaul and refactoring

Installation information is available in the **README** file.

Skip to: Videos | Downloads | Resources

LINE

Sourceforge site

Performance and Reliability Analysis Engine

	What is LINE?					
Home Downloads	LINE is an open source MATLAB library for system performance and reliability analysis based on queueing theory. Main features					
Manual Wiki						
API	The tool offers a language to specify extended queueing networks and layered queueing networks together with analytical and simulation-based techniques for their solution.					
Videos						
Resources	Models are solved in LINE with either native algorithms (CTMC, fluid, simulation, MVA,) or via external solvers, such					
Support	as JMT, LQNS, and BuTools. The tool output metrics include throughputs, utilizations, response times, queue-lengths, and state probabilities. Metrics can be averages or distribution/percentiles, either in steady-state or transient regime.					
Help forum Report a bug Request a feature	Download					
	Download the latest release for MATLAB (version 2018a or later) or clone the source code repository.					

What's new

- I. <u>Object-oriented language</u> to model extended and layered queueing networks (EQNs / LQNs)
- II. Model specification <u>fully decoupled</u> from analysis paradigm
- III. Seamless integration with JMT, LQNS, BuTools solvers
- Line in numbers:
 - 40+ algorithms
 - 13 types of analyses
 - 13 sched./routing strategies
- 100+ lang. classes
- 14 node types
- 4 metrics

JMT Integration

Seamless two-way integration:

- Define a model in MATLAB, visualize it in JMT
- Define a model in JMT, auto-generate LINE script

Å MATLAB R2018a - aca	demic use						
HOME PL	OTS APPS					💹 JSIMgraph - Graphical Queueing Netw 🗕 🗆 🗙	
🗘 🔶 🛅 🔀 📕 🕨 C:	▶ Users ▶ csg ▶ Di	opbox 🕨 code	<u>F</u> ile <u>E</u> dit <u>D</u> efine <u>S</u> olve <u>H</u> elp				
>> model = Netw			🗅 📂 🕅 🦙 🗅 🖻 🗙 🎎 🗠 🍽 🐺 🐼 🕨 💷 🔲				
<pre>source = Source(model, 'mySource'); queue = QueueingStation(model, 'myQueue', SchedStrategy.FCFS); sink = Sink(model, 'mySink');</pre>							S = 0
<pre>oclass = OpenClass(model, 'myClass');</pre>							
<pre>source.setArrival(oclass, Exp(1));</pre>							
<pre>queue.setService(oclass, Exp(2));</pre>							
<pre>model.link(Network.serialRouting(source,queue,sink));</pre>							
SolverJMT(mode) ans =	.).getAvgTable		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
2×6 <u>table</u>							mySource myCileue mySink
Station	Class	QLen	Util	RespT	Tput		mySource myQueue mySink
'mySource'	'myClass'	0	0	0	0.99694		
'myQueue'	'myClass'	0.90717	0.49595	0.98731	0.99547		
>> model.jsimgView							
JMT Model: C:\U	Jsers\csg\AppDa	ta\Local\Te	mp\isima\tp	187cd49a 9e	52 4d4a 9b55 a4d	c0dc0a0bf8.jsimg	

EQN Analysis

Continuous-Time Markov Chains

SolverCTMC(model).getAvg

Fluid ODEs

SolverFluid(model).getAvg

 $\frac{d\boldsymbol{x}(t)}{dt} = F(\boldsymbol{x}(t)), t \ge 0,$

Java Modelling Tools SolverJMT(model).getAvg

Mean-Value Analysis

SolverMVA(model).getAvg

 $Q_i(N-1) = \frac{N-1}{N}Q_i(N)$

EQN Analysis

Matrix-Analytic Methods

SolverMAM(model).getAvg

$$P=egin{pmatrix} B_0 & B_1 & B_2 & B_3 & \cdots \ A_0 & A_1 & A_2 & A_3 & \cdots \ & A_0 & A_1 & A_2 & \cdots \ & & A_0 & A_1 & \cdots \ dots & dots & dots & dots & dots & dots & dots \end{pmatrix}$$

Normalizing Constant

SolverNC(model).getAvg

 $Q_i(N-1) = \frac{N-1}{N}Q_i(N)$

Stochastic Simulation

SolverSSA(model).getAvg

LQNS/LQSIM

SolverLQNS(Iqnmodel).getAvg

Line

Parametric Solvers (LQN, Rand. Env.)

SolverLN(model, @(layer) SolverJMT(layer)) Layered Solver

SolverEnv(models, env, @(submodel) SolverFluid(submodel))

Demos

- 1. A M/M/1 queue
- 2. A multiclass M/G/1 queue
- 3. Machine interference problem
- 4. Round-robin load balancing
- 5. Modelling a re-entrant line
- 6. A queueing network with caching
- 7. Response time distribution and percentiles
- 8. Optimizing a performance metric