Model-Driven System Capacity Planning Under
Workload Burstiness

Giuliano Casale, Ningfang Mi, Evgenia Smirni
College of William and Mary
Computer Science Department

23187-8795 Williamsburg, Virginia
{casale, ningfang, esmiy@cs.wm.edu

Abstract—In this paper, we define and study a new class of the first time the analytical performance evaluation of ctaxp
capacity planning models calledMAP queueing networks. MAP  environments with nonrenewal workloads and immediately

gueueing networks provide the first analytical methodologyto finds application in the capacity planning of multi-tier lirc
describe and predict accurately the performance of complex
tectures and storage systems.

systems operating under bursty workloads, such as multi-&r ) . .
architectures or storage arrays. Burstiness is a feature tht signif- Capacity planning based on product-form queueing net-
icantly degrades system performance and thatannot be captured works [3] has been extensively used in the past, since these

explicitly by existing capacity planning models. MAP queuéng  models enjoy simple solution formulas and low computationa
networks address this limitation by describing computer sgtems cost of exact and approximate algorithms [5], [7]. However,

as closed networks of servers whose service times are Markan d Web llel d st t ft hibit hi
Arrival Processes (MAPs), a class of Markov-modulated poin modern VWeb, parallel, and storage systems often exni 9

processes that can model general distributions and burstiess. In  Variability in their service processes [2] and are theretoest
this paper, we show that MAP queueing networks provide relible modeled by networks of queues with first-come first-served
performance predictions even if the service processes araisty.  (FCFS) queues and general independent (GI) service [6],
We propose a methodology to solve MAP queueing networks 161 [37]. Queueing networks with general independent) (Gl
by two state space transformations, which we call Linear Redc- . .
tion (LR) and Quadratic Reduction (QR). These transformations service [6], [16], [37] have been proposed as a solution, but
dramatically decrease the number of states in the underlyig although these models are much more accurate than product-
Markov chain of the queueing network model. From these form networks, theycannotbe used for robust performance
reduced state spaces, we obtain two classes of bounds on &y predictions if the service process is nonrenewal [9].
performance indexes, e.g., throughput, response time, liations. In this paper, we overcome the limitations of existing mod-
Numerical experiments show that LR an QR bounds achieve . . - .
good accuracy. We also illustrate the high effectiveness tfie LR eling tech_nlques by prov_ldlng a bound analysis methodolqu
and QR bounds in the performance analysis of a real multi-tie ~for queueing networks with nonrenewal workloads. We define
architecture subject to TPC-W workloads that are characteized and study a class of closed queueing networks, that we call
as bursty. These results promote MAP queueing networks as a MAP queueing networkswhere service times are modeled
new robust class of capacity planning models. by Markovian Arrival Processes (MAPs). MAPs belong to
a family of point processes which can easily model general
distributions as well as the main features of nonrenewakwor
loads, such as autocorrelation in service times [31]. Ators
Capacity planning of modern computer systems requiresfty fitting measurements into MAPs are available [1], [11],
account for the presence of nonrenewal features in workloaf22] together with automatic fitting tools [12].
such as short-range or long-range temporal dependencé whicBecause of the well-known difficulty of extending exact so-
significantly affect performance [25], [26], [28], [36],8B A lution formulas outside the product-form case, we studyrigou
typical example of temporal dependence is workload burstinalysis techniques for MAP networks. With the exception of
ness, where the sizes of consecutive jobs processed by ttiee general ABA bounds [30], which provide good estimates
system are correlated, e.g., the arrival of a long job islyikeonly for very low or very high population values, no bounding
to be followed by the arrival of another long job (and vicetechniques for nonrenewal networks exist and this is duleeo t
versa for short jobs). Time-varying workloads of this typéack of exact results which are needed to prove the bounding
are naturally modeled as nonrenewal workloads with temipogaoperty. In this paper, we overcome this classic limitatio
dependence among consecutive requests. and obtain provable bounds on performance indexes also in
Because of the complexity of their analysis, only smalion-product-form networks.
nonrenewal models based on one or two queues have beefhe proposed nonrenewal bounds derive from the analysis
considered in the literature, mostly in matrix analytic hwats of the Markov process underlying the MAP queueing network.
research [31]. We address the current lack of more geneBacause of the state space explosion, the queueing neswork’
provisioning models by introducing and analyzing a newslagquilibrium behavior cannot be determined exactly, but we
of closed queueing networks which can account for tempoaigue that it can still be bounded accurately by descritieg t
dependence in the service processes. Our analysis enablesystem with “reduced” state spaces, which we cadirginal

I. INTRODUCTION



state spacesMarginal state spaces capture the behavior of workloads (Section II).

the network conditioned on a given queue being busy or. We define MAP queueing networks as a generalization

idle and can be obtained from two transformations called of existing queueing networks that can model nonrenewal

Linear Reduction (LR) and Quadratic Reduction (QR). The workloads (Section IIl).

intuition behind the LR reductions is that, for each queue in+« We develop the LR transformation and the related LR

the network, the arrival process changes only dependingeont  bounds on performance indexes of MAP queueing net-

busy or idle state of the other queues. Therefore, we propose works (Sections IV and V).

to describe in the marginal state spaces only this busy/idles We present the QR transformation and QR bounds for the

condition rather than the whole distribution of jobs across analysis of MAP queueing networks with delays and/or

the queueing network as in the original state space. The QR load-dependent queues (Sections VI).

reduction adds information on the number of jobs needed ine We show validation results on random models and repre-

case of load-dependent service. sentative case studies proving that the LR and QR bounds
A fundamental property of marginal state spaces obtained capture very well mean performance indexes of MAP

by the LR transformation is that the number of states grows queueing networks (Section VII).

linearly with the number of jobs in the network; thus, the « Finally, Section VIII shows an example of performance

analysis remains computationally tractable also on models analysis, based on the QR bounds, of a real multi-tier

with large populations. For example, a MAP queueing net- architecture subject to TPC-W workloads [19].

work with three queues and one hundred jobs has underlyingye stress that MAP queueing networks are a superset
Markov chain composed by0'* states, but LR marginal of existing non-product-form networks with Gl workloads.
state spaces reduce it to abaljf00 states only. We then Therefore, the presented analytic methodology has a wide
derive exactbalance equations for the equilibrium behaviogpplicability. The LR and QR bounds are corroborated by
of the LR marginal state spaces. The number of these exagfensive numerical validation, where we show that they
equations grows Combinatoria”y with the model size, blgchieve very low accuracy errors on a set 10]’7 000 ran-
it is yet insufficient for determining exactly the equilibm dom models, promoting MAP queueing networks as versatile
probabilities of the marginal state spaces. Here, we st models of modern computer systems. Specifically, the QR
how these formulas can be combined with linear programmiggunds are indispensable for the frequent case of capacity
[4], [29] for the computation of bounds on mean value indexeglanning models with delay servers that represent usek thin
We then generalize MAP queueing networks to allow thgmes between consecutive download requests. The AMPL
inclusion of queues with load-dependent service ratess TRpecification [18] of the LR and QR bounds is available for
feature is useful to describe resources, such as delagrsaii  download atht t p: / / www. cs. wm edu/ MAPQN/ .
flow-equivalent servers [13], which change speed dynalyical
as a function of the number of locally enqueued jobs. In
particular, delay servers are often fundamental in capacit
planning models to describe user think times between sub\We review previous work on non-product-form queueing
mission of consecutive requests to the system [19]. Maiivatnetwork models with FCFS queues and general independent
by the observation that LR bounds cannot be applied to lod@! or renewal) service [5]; we point the reader to [5], [14],
dependent MAP queueing networks, we derive a more gendg] for general background on queueing network modeling
state space transformation, called Quadratic Reductid®),(Qand Markov processes.
that can be used to bound the performance of load-dependerilosed networks of FCFS queues enjoy a product-form
models. QR bounds are observed to provide similar accura&gjution if all service times are exponentially distribdite
to LR bounds, but since the number of states of QR margiridl. If one or more servers have renewal service, such as
state spaces grows quadratically with the number of jobs lyperexponential or Coxian [15], the product-form theongsl
the network, they should be used only to evaluate modélet apply and approximate methods are used for evaluating
with load-dependent servers where LR bounds do not apgdgrformance [5].
For instance, on the state space with'? states discussed An approximation based on Markov renewal theory is
above, the QR transformation considar®, 000 states which, developed by Reiser in [34]. For each queue, the MVA
although more expensive that the LR transformation whickirival theorem [35] is generalized to include the coeffitie
uses only3, 600 states, still remain much less than in the exaef variation (CV) of the GI service process. Experiments in
state space. [6], [16] show that this approach, although simple, is prame
Outline and summary of contribution§he main contribu- large approximation errors.
tion of this paper is to present a new methodology for the In [37], Zahorjan et al. obtain an approximate mean value
efficient analytic solution of queueing networks with nonreanalysis (AMVA) by decomposition-aggregation [14]. The
newal workloads. This methodology automatically applies underlying Markov process of the network is decomposed
gueueing networks with renewal workloads as well. The dtat@ccording to the active phases at the Gl servers. Eachipartit
contributions and outline of this work are as follows. is evaluated in isolation by Mean Value Analysis [35] and the
« We review existing approximations and decompositioresults are weighted to approximate the Gl network. Vailiat
methods for product-form and Gl queueing networks arrésults of the AMVA decomposition-aggregation show good
discuss their applicability to models with nonrenewadccuracy.

II. PREVIOUSWORK



In [16], Eager et al. improve the results in [34] and [37].
The response time at the Gl queue used in Reiser's method

TABLE |
SUMMARY OF MAIN NOTATION

is replaced by a more effective interpolation which also  «a;(n;)
accounts for the response time at the other queues. [16] also B
improves the decomposition method in [37] and makes it Cyli(i)
compatible with the iterative AMVA framework to achieve hkeuk
lower computational costs on networks with several queues. 4, j,m
Marie’s method and the maximum entropy method (MEM) Iy
assume a product-form for the equilibrium state probadbdit Jy (1, h)
of the Gl network and approximate the model accordingly ki
[5]. MEM relies on formulas involving only the mean and K

the coefficient of variation; Marie’s method is more general K’,’;W
and uses specialized relations for Coxian distributionari&s M
method provides good accuracy in models with Gl servers with £,
a computational effort that depends on the number of i@nati ”N
used [6]. ni
The diffusion approximation (DA) method has been suc- il
cessfully applied in the analysis of single queues with non- Wf’%’j];)

renewal service times [21]. However, in queueing networks ks, )
it is much harder to determine the equilibrium of the under-w(nz,h,nj,k)
lying Brownian motion without numerical techniques be@aus N
product-form formulas exist only under restrictive asstions ¥ (Z_i,; h)
[21]. As an additional difficulty, the results of DA hold unde g
heavy-load assumptions that make them accurate only when %.; @”
all queues are in heavy-usage, which may be unrealistic in k
real systems. Since Brownian motion is a second-order model 1,

it is also impossible to evaluate the impact of higher-order l{"}

: h

service rate scaling for queuewith n; enqueued jobs

states(ii, k) wherej is busy in phase:

mean queue-length of quedevithin B]’?

vector of zeros with a one in thieth position
phase indexes

gueue indexes

states(#, k) wherej is idle in phasek
utilization of queuei in phaseh within B]’? U IJ‘?
active phase at queuein k

number of phases in quedls MAP
maximumkK;, 1 <:< M

phase vector, i.e., active phases

number of queues in the network

mean service rate of queue

completion rate of queug phasek — h
number of jobs in the network

number of jobs at queugin 77

population vector, i.e., job allocation

routing prob. from queue to queuej

prob. of state(7, k)

prob. ofn; jobs in queue in phaseh within B;?
prob. ofn; jobs in queue in phaseh

andn; jobs in queuej in phasek

prob. ofn; jobs in4 in phaseh within IJ’?
rate (i, k) — (i — & + &,k'), ki = k, k, = h
rate qi}h from states where queuehasn; jobs
mean queue-length at queue

mean queue-length at queuén phasek

mean utilization of queue

mean utilization of queue in phasek

moments of service times v; background trans. rate of quedephasek — h
; Vi mean visit ratio at queue (V; = 1)
The Chandy-Herzog-Woo (CHW) method [13], [24] re- X mean throughput (measured at queue 1)

places an arbitrary subsystem by a flow equivalent server
which preserves the mean throughput of the original subsyst

in each feasible state. If the subsystem includes Gl servers o . )
CHW is known to be less accurate than Marie’s method [6PTOCess is independent of both the job allocation across the

Applicability to Nonrenewal ModelsTo the best of our 9Ueues and the state of other service processes._The network
knowledge, the only analysis of the accuracy of Gl ags composed byl queues and populated by statistically
proximation methods when applied to closed networks witRdistinguishable jobs (single class model), which procee
nonrenewal service has been recently provided in [9]. TiHarough the queues according to a state-independent goutin
discussion in [9] proves that GI approximations either do rRFheéme. That is, upon departure from a setyex job joins
apply to networks with nonrenewal workloads, because th8{/€u€j with fixed probabilityp; ;. Without loss of generality,
completely ignore the temporal dependence between senlidg average visit ratio gtwith respect to the number of visits
times, or they are very inaccurate and unable to capture fedueuel is Vj, thusV; = 1.
trend of performance indexes such as utilizations or respon The service process at quedeis modeled by a MAP
times as in the case of decomposition/aggregation [14] awéth K; > 1 phases. General service can be approximated
Asymptotic Bound Analysis (ABA) [30]. Related remarksaccurately by a MAP [11]. IfK; = 1, then the MAP reduces
are also given in Section VIII where we illustrate modelinge an exponential distribution, otherwise it generatesiser
inaccuracies of product-form and Gl queueing networks én tlime samples that are phase-type (PH) distributed [31]t Tha
evaluation of an e-commerce system with bursty workloadds, hyperexponential, hypoexponential, Erlang, and Qoxia
are all allowed service time distributions; nonrenewal/mer
is also supported, e.g., Markov Modulated Poisson Process

1. MAP QUEUEING NETWORKS MMPPY. Int Y b IPEY 1171, It should
We introduce the class of MAP queueing networks sup- ), Interrupted Poisson Process (IPP) [L7]. It shou

. . S s e nevertheless remarked that MAP fitting can be still a
porting nonrenewal service which is studied in the rest ef ”Ehallenging problem if the data has an irregular temporal
paper. A summary of the main notation is given in Table I.

dependence structure, see [22] for a review. We point to [11]
for a new technique, called Kronecker Product Composition
A. Model Definition (KPC), that can provide MAP fitting of higher-order moments
We consider a closed network with single-server queug¥)d temporal dependence structure of arbitrary processes.
which serve jobs according to a MAP service time processThe transition from phaske to phaseh for the MAP service
and under work-conserving FCFS scheduling. The servipeocess of queué has rate¢f’h and produces a service



completion with probabilitytf’h; if h==~kitis tf’k =1. We
define " = t""¢!" to be the rate of job completions in
phasek that leave the MAP in phade v = (1—t"") ¢k,

k # h is the complementary rate of transitions not associated
with job completions that only change the MAP active phase
(background transition) We point the reader to [22] and

references therein for background on MAPs and MAP fitting. Ryq =1

Fig. 1. Example network composed by two exponential quendsaaMAP

B. Underlying Markov Process queue.
General MAP service requires to maintain information at %
the process level on the current service phase at each queue. E;
A feasible network state in the queueing network underlying il bt w? w2
. Lo R 200,1) 1101, (002, 002,3; (101,2f (200,2
Markov process is a tuplgi, k), whereri = (nq,na,...,na), Pt ZET , P g1 P g1
0<n; <N, Zj‘i 1 ni = N, describes the number of jobs inp.au||w Py | b2 e Py ol Py oia | |2
L5 2.2

each queue, ankd = (ky, ka, ..., k), 1 < k; < K;, specifies L _,

the active phase for each service process. According to this Pkt — Pk

space, the Markov process transitions haveqfiféfrom state Pua| w2 Busy condition subspace of ©  Busy condition subspace of pmm'luz
= - o queue 3 in phase 1 queue 3 in phase 2

(7, k) to (T —é&;+€;, k'), k; = k, k] = h, whereé, is a vector

of zeros with a one in théth position; the rate is given by

Fig. 2. Underlying Markov process of the network in Figurenthe simple
., kh : : case when the MAP is a MMPP(2) process; the job populatioN is 2.
ko) Pk i # J,

1)

hi vf’h —i—pi,i,uf’h, 1=j and k # h.
IV. STATE SPACE REDUCTION

In (1), ql’f’jh is for i #£ j the rate of departures fromto j

triggering a phase transition ifs service process from phake
to h; otherwise it accounts for the background transitiofié

General approximation techniques for non-product-form
models, such as decomposition, are reviewed in Section Il.
o These approaches often start from the idea of applying a

kR
and the rate of the self-looping jobs;.;"". Note that the state space transformation to reduce model complexity. For

case fori = j andk - h s not EXp“C.'tlY gccpunted since it instance, approximate lumping is used in decomposition to
corresponds to the diagonal of the infinitesimal generatorqg

S . rtition the state space into macrostates that can beatedlu
the Markov process. This diagonal is computed to make e %%lsolation [5] P

row sum to zero. - o
However, existing state space reductions introduce approx

Th_e s_ize of the infinitesimal generator corre;ponds to,tlﬂﬂation errors that cannot be bounded in sign or in magni-
cardinality of the related global balance equations and it j\,4a This leaves a high degree of uncertainty on the final

of the order Of(N+J]\\f4 1,) (K"L;;njf_l),_where_Kmam is the approximation accuracy. In this section we develop a new
maximum of K, 1 < 7 < M; this size quickly becomes ¢;njiy of state space reductions that daest introduce any
computatmnalIy_p_roh|b|t|ve. o degree of approximation and still simplifies model analysis
As a summarizing example, the MAP network in Figure ¥he proposed reduction is therefore exact, but because of
with routing probabilitiesps 1, p12, P13 = 1 —pi1 — P12 several differences from exact lumping, the transfornmatio

at the first queue angl, 1 = 1, p31 = 1, at the remaining cannot be reduced to lumping or to any method presented
queues has underlying Markov process as in Figure 2. In theprevious work.

last figure, two queues are exponential with rates= ;"'
and i, = py', respectively; the third queue is a MAP with o ,
K; = 2 phases having" = 0 for k # h, that is a A Busy Condition Reduction
MMPP(2) process. The notation, e.g002, 1) indicates that ~ We introduce a state space reduction that scales linearly
the exponential queues are idle and the MAP queue has twith the population size. We use the term “busy condition”
jobs and is in phasé; in (110,2) where the MAP queue to identify the set of statesvhere a given queue is busy in
is empty, the phase@ is the phase left active by the lasta certain phase, which is similar to a conditional state spac
served job. Forp;; = 0.1 and p;» = 0.7 the network except that probability values are not normalized. For each
reduces to Balbo’s model used in the numerical experimemdel we generat® (k2. M?) reduced state spaces with
in [6]; throughout the paper we illustrate some of the pregpbsdimensionO (V) as follows.
techniques using this model. Definition 1 (Marginal State Spaces): Let the busy condi-
tion subspaceBy = {(7i',k') : n; > 1,k; = k} be the set

Lin this representation of queuts MAP, M?’} is the element in rows of states of the MAP network where q‘@“‘s busy a_nd_ n
and columnh of the D3 matrix; vf’h is in row k and columnh of Do, see phasek. Themarginal state spaaf queuei in phaseh within
[11], [22] for background on thelDo,D1) representation of MAPs. B;? is the state space describing the withﬁf of queuei’s

1



length O

'} queue 2
= length 1

Busy condition subspace o
queue 3 in phase 1

queue &
length 2

/' queue 3
%' length 1

Busy condition subspace of
queue 3 in phase 1

(©

Marginal State Space

queue 2

Busy condition subspace ¢
queue 3 in phase 1

(b)

Marginal State Space
et
J—
unknown rat@

queue 3
phase 1

Busy condition subspace of
queue 3 in phase 1

(d)

balance or mean value analysis).

The main idea motivating the busy condition reduction is as
follows. Even if some rates are unknown, we can derive bal-
ance equations both for the equilibrium inside each margina
space or between the probabilities of multiple marginatepa
These balances arexact relations that limit the feasible
values of the unknown equilibrium state of the MAP network.
Although these balances are not sufficient alone to uniquely
identify the equilibrium probabilities, we argue that they
restrict the number of candidate solutions of the model & th
point that any linear function defined on the equilibriunteta
such as throughput, utilizations, or mean queue-lengts, c
only assume a limited set of values and thus can be bounded
tightly. The definition of LR bounds based on this approach
is described in Section V.

1) Marginal Probabilities: The marginal probability

k(nl, h) of having n; jobs in queue: during phaseh,

1 < h < K;, while queuej is busy in phase:, 1 < k <
K, completely characterizes the marginal state spaces. Each
marginal probability can be computed as

Fig. 3. Example of marginal state spaces for the model inreigu

queue-length while its phase is 1 < h < K;, (the cases w5 (ni, h) = 3 k/)eBk:n;:m,k;:h}W(ﬁ/,E’),

1 =7 and h = k are both considered).

Since in a non-product-form network the state of a quel\f@ereB is the busy condition subspace of quegiein
implicitly depends also on the activity of the rest of th@hasek By definition, it is 7} (n; = N,h) = 0 for i # j,
network, the marginal state spaces allow to explore in % (7, = 0,k) = 0, Wk(naah) = 0 for b # k and
compact way the mutual relations between any two queue’ﬁ(nj, > Zh 7t (nj, k) for j # i, n; > 1. The last
¢ and j. A probabilistic definition of marginal state space isnequality follows |mmed|ately by observing thag?(nj,k)
given later in Section IV-A1l. Two example marginal spacesccounts for all states i1, /(n;, k) plus the states within
for the model in Figure 2 obtained for the busy condmom;lC wherei is idle.

subspace3} are shown in Figure 3. The dashed ovals indicate’ Because any event in the underlying Markov process in-

states in the original state space in Figure 2 that are intiglic volves at most two-phases and two queues, that is, source
accounted for in the marginal state spaces for que@sd and destination queues for job departures with a possible
for queues in phasel, depicted in Figures 2(b) and 2(d),phase transition at the source queue, the marginal prtiebil
respectively. Figures 3(a)-(b) are obtained by observimg tr*(n,;, n) still capture all departures and phase changes in the
exponential queué = 2 in its only phaseh = 1 within model. Therefore, the knowledge of aff (n;, h)'s is sufficient
Bj. Since queue3 is always busy inBj, it has queue- o compute all mean performance indexes of interest in the

lengthng > 1 and the queue-length of queecan only original state space, including: the utilization of queuee.,
beny = 0 or ny = 1. Note that the rate of transitions fromg;, — K U, where we denote by’ the utilization ofi

ny = 1 to ny = 0 depends only on queu®s service rate jp phasé“k lthat is
ue; the rate fromn, = 0 to no = 1 depends instead on
job completions at the other queues and in the original state Uk =30 o Yoty wh(ne, h) (2)
space is equal ta (101, 1)p; 21 Which is unknows without
the equilibrium probabilityx(101,1). Figure 3(b) similarly
de§cr|bes the queue-lengths of quéug phasel W'thm B3, the throughput which by the Utilization Law [24] is
which can be onlyns = 1 or n3 = 2 since queuss is busy.
The_ unknown transition rate is in this cgs(alOl, 1)1_31,3#1. X — Z ;‘41 @ U1 = U1/ VA,
Figure 3 clearly shows that our approasmmot equivalent to
an exact lumping or a decomposition-aggregation for att led8at is the mean rate OfJObS flowing out of quauassumed as
three reasons: the latter techniques are applied to thesenfgference for network completions and wheredenotes the
state space and not to busy subspaces only, the aggreg@@an rate of the MAP service process at quépthe mean
are always non-overlapping (two busy subspaces instead 8a§ue-length of queugis Q; = Zk L QF, with
overlap, e.g..Bs1 and B; 1), and in each aggregasdl rates  «—N
are known so that it can be analyzed by other techniques (e.qg. Qi = 2in=1 M mf (i, k) (3)
decomposition solves each macrostate in isolation by ¢loleing the mean queue-length oin phasek. Note that these
) _ indexes are also sufficient to compute response and regidenc
We henceforth assume that global balance solutions for MAfvark

is prohibitively expensive, therefore the equilibrium ipabilites are all .times by Little’s Law, see [24]. In particular, the respotisee
unknown. isR=N/X.

wheret, 1 <t < M, is an arbitrary queue since the summation
is always equal to the probability of the busy subsp&e



2) Single Busy Subspace of a Single QueWe charac- balances, callednharginal balancesshows that MAP service
terize the equilibrium reached at steady state by marginalposes an equilibrium between the departure and the brriva
spaces. We focus on the marginal state spaces which descpimeess of queué in groups of states belonging to different
a single busy subspao@;? and use the population constrainbusy subspaces. Marginal balance derives from global bajan
S>>, ni = N. Although an obvious condition, it is impossiblebut characterizes only the set of marginal queue-lengthasro
to impose it if the state space is transformed in such a whilities which makes it always computationally tractablte
to hide some of then;’s, as in the marginal state spacedalance is expressed as follows.

We therefore define a new population constraint for the busyTheorem 3 (Marginal Balance): The arrival rate at queue

condition subspace. when its queue-length is; jobs,1 < n; < N —1, is balanced
Theorem 1: Define by the rate of departures when the queue-length;is 1, i.e.,
CF(i) = Yop o1 Sy mam (i 1), (4)

as the mean queue-lengthioin the busy condition subspace Y"1, 575 5709 S Bk, )
BY, thus CF(j) = QF. Then within BY the C¥(i) sum to j#i o ’ PR
NU}, e, = Zj_;l_ Dts Xt g i (s + 1K), (7)
M . i
>ie1 Cf (i) = NUY, ®) !

1§]‘;§ If{JU . 5 dth lati traint h forall 1 < ¢ < M. In the casen; = 0 the marginal
roof: Using (2) and the population constraint we A& alance specializes to the more informative relation

M N K
NUJI'C =D e M Znt:() > he W;'C (ne, h)
and choosing the arbitrary quedaequal to: K; —K; k
g ¥4 d ! Z%l dok1 2onl qf,ihﬁf(ni =0,u)
k _ M N K; k(o N M k(; YE)
NUF = 2tz Dozt 2 T (0 1) = 3y O ) = LS e = 18, (®)
m J#i '
3) Multiple Busy Subspaces of a Single QueWe obtain
a constraint for multiple busy subspaces which resembighich holds for each phase, 1 < u < K;, with 1 <7 < M.
the global balance equations of the MAP service process Proof: (Outline of the proof, see [8] for a complete

considered in |solat|o_nl. . L derivation.)The statement is a consequence of the state space
. Thep_rer_n 2: The utilizations of queudn its &; phases are partitioning that separates the states whidnas no more than
in equilibrium, i.e., n; enqueued jobs from the states where the queue-length is
M kb M hk at leastn; + 1 jobs. Their exchanged probability flux must
2j=1 hgl 6y UF = Xj= hgl ai; Ul's  (6) be balanced at steady state. The flux from the partition for
h#k if j=i h#k if j=i statesn; to the partition for state:; + 1 is equal to the rate
forall 1<i<M,1<k<K,. of a job completed anywhere in the network being routed to
Proof: (Outline of the proof, see [8] for a completedueue:. This is the left hand side of (7), which also accounts

derivation.) Consider the cut separating the group of statéar all possible phases of the job’s departing qugund the
Gi where queue is in phasek from the complementary setdestination queué. The opposite flux fromn; + 1 to n; has
of statesC. where queue is in phaseh # k. The outgoing rate equal to the right hand side of (7), which is the set of all
probability flux fromg: is the left hand side of (6) and must bePossible departures fromthat are not routed to itself.
balanced at steady state by an equal incoming flow generateg¢tollowing the proof of the marginal balance conditions, we
by the phase change transitionsdjy This probability flux is obtain an additional balance between marginal probadsliti
exactly the right hand side of (6), which completes the proof Corollary 1:

Let k*, 1 < k* < K;, be a phase of queug the following

The derived equation imposes that the MAP in isolation angd - -« holds for each queue-length 0 < n; < N — 2
the MAP observed in the busy subspaces of quehiave the -t ’

same stochastic properties, which is expected if the servic
process of queugis independent of the job allocation across —um Kj N~Kj kb g
the network and of the service processes of the other queues.zéjé 2ca Loz (45575 (i + LK)

4) Marginal Balance Conditions:Compared to the pre- K; k,h Ki  k*k_ g

4) Marg ! : P Pre- SRy g (s, w) + KL g (s + 1, 0)
vious balances which only involve means such as queue- utk* k£k*

L . . ; i M E* k" g+ K; k.k

lengths or l_Jt|I|zat|ons, the balancgs descrllbed in thisieec _ SLi(ab 75 (ng + 2,k%) + KL (¢ 7 (ng + 1, k)
calledmarginal balancesare more informative as they relate G ' k#£k*
individual marginal probabilities. + " F ik (n, Ki  kh k(.

We have found that there exists a form of partial balance v Z;ﬁi R
between marginal state spaces, although the class of models +3 bt i Wf(ni +1,k), (9

considered in this paper is non-product-form. This newsctds kK



forall 1 <:< M. Forn; = N — 1 the balance reduces to Whereﬁf(nj = 0, k) is the probability ofIJ’? and

B qflkwf (n; +1,k%) Cr(i) = Zm—l Zh L a7y (na, ) (16)
wE Kk is the mean queue-length ofin phaseh within IJ’?.
T Z- Zk 1 Yy Z ! g5 75 (ni, ) The balance equations obtained for the idle reduction are
kb k bk often redundant with the balances of the busy ones. Therefor
N ZJ”; Zk’; L (qz (it 1, k) +Z" B gij ™ (nit1,k)) we are not interested in developing a comprehensive cleract

ization of this reduction. We point out two relations denmiyi
from manipulations of the global balance equations which
characterizer U IJ’? where j is in phasek; these formulas
cannot be expressed within the probability space of the busy
subspace only.

Theorem 4: The sum of mean queue-lengths during the
subspaceBF U I satisfies

+ Z k=1 qz‘,i 771‘ F(ni+1,k), (10)
kAE"

forall 1 <i< M.

Proof: The proof follows similarly to the proof of The-
orem 3 by now considering the set of states whelas no
more tham,; enqueued jobs except for phase 1 < k* < K,
where its population can be no more thant-1. The theorem _ _
follows imposing the equilibrium at the interface with thet s LG + L) = NS TR h), (A7)
of states where the marginal queue-length is at least 1

and in phasé # k* and at least; + 2 and in phasé*. = forall 1<i<M,1<j<M1<k<Kj;

Proof: Letting EB;?UI]’? = Z(ﬁﬁ)erUIf, we have

B. Idle Condition Reduction N Y prurs W(ﬁ k)=, > prors e (7, k)

The idle condition reduction can be regarded to as the _ e (7, ) + 5 e ner (i,
complementary of the busy condition reduction described in = 1(23 (i Zl (7 ) _
the previous section. We consider the idle condition sutespa =) 1(CJ( )+ Ci()),

I’C where queug is empty and the last served job has left the
MAP process ajj in phasek, 1 < k < K;. We obtain a set
of O(Kma:M?) reduced state spaces With dimens@aV)
by describing the evolution Withimj’? of the queue-length of

where the last passage follows by definition @i ) and
Ci(t) as mean queue-lengths iB} and I¥. Starting from
the same term we also have

during phase:, 1 < h < K;. The related marginal probability NZBkuzk (i, k) > NZKi Jk( h)
function is
. since the utilization of any queug 1 < ¢ < M, during
7*(ng, h) =2 YeSH(nim) T n(i', k'), (11) BFUTIF cannot be greater than the sum of the probabilities
B . of all states ofBF U IF. |
where the marginal space 8 (n;,h) = {(77, ’) e IF : Theorem 5: The performance indexes in busy and idle
ni = n;, ki = h}, the idle subspace |3§k = {(n k) : — subspaces are related by the following equation

0, k; = k}. Further, by the given deflmtlon i (nj, h) = 0 if K, . hokrh
n; > 1 or h # k and similarly to the busy cond|tion reduction Zh:l-, Za 14, Q + ZJ 1 Zh 195 Ui

™*(n; k) > oK #h(n,, k) for j # i, n; > 1. Note that

g\ = h=1 "4 \""7» L k ; M h,k ~Ah
from the complementarity af¥ (n;, h) andz¥(n;, h), the total ZJ e Sh Yl 1‘131 i (3’ ZZ;C 2j=1 iy Qi

state space probability is immediately obtained as (18)

S S (T (g k) + 7 (b)) =1, (12) forall 1<i<M,1<k<K,.
, o N Proof: (Outline of the proof, see [8] for a complete
forall 1 <4 < M. Moreover, let the utilization of queuein  gerivation.) The proof follows similarly to that of Theorem 2

phaseh within BY U I} be by weighting the contribution of each group of statesrhy
, B We point to the technical report [8] for an extensive defoat
JEGh) = SO0 (78 (g, h) + 7 (ng, h)). (13) _
where by definition the second term in the summation may be
rewritten as V. LINEAR REDUCTION BOUNDS
N N We obtain the LR bounds using the results for the busy and
2oni=1 7 (niy h) = mi(nj = 0, k), (14) " the idle condition reductions. We determine the values ef th

which similarly to (12) relates the busy and idle reductions marginal probabilities

Balances similar to those given for the busy conditiop — {W (ns,h), ¥i,7, k7h,ni}u{ﬁ-‘;€(ni7h>’ Vi, 5k, hyng}
reduction can be derived for the idle time reduction. For
instance, following the proof of (5) one immediately obginS© that the linear functiotf(r) is a bound on a performance
the population constraint Metric fezact = f(Tewact), Wherem ... is the set of exact
equilibrium probabilities of the MAP network. In the case

Sl Ck(i) = N7k (n; = 0,k), (15) of lower boundsfmin < fesact, the values of the marginal



TABLE Il

LINEAR AND QUADRATIC REDUCTION EFFECTIVENESS
LR lower bound

fmin = min f(ﬂ')

subject to: total states total states

/* preliminary definitions®/ marginal spaces original space
o (2)'(3)';54)'(13)’(16); ]\34 E])\(]) ng 1 81I1_ RlO" 9 3? R104 5.30 - 10°
C,g U) = Q5 Ki _n . o 3 100 2 3.64-10° 3.67-10°  2.06-10"
my (g, k) = 20,1y mit (g, k), i ny > 1,40 # 5 3 200 2 | 724-10° 145-10°  8.12-10°
m*(ny, k) > ZhK;‘l 7h(ng, k), ifn; >1,i+#j; 5 50 2 5.10-10°  2.60 - 10° 1.27 - 10°
7 (nj,h) =0, if n; =0; 5 100 2 1.01-10* 1.02-10° 1.84 - 107
ﬁc(nj, h) =0, it bk 5 200 2 2.01-10"  4.04-10°  2.80-10°
ﬂj—“(n- h) =0 if m; = N, i # 10 50 2 2.04-10* 1.04-10°  5.03-10'
g, ’ oo ’ 10 100 2 4.04-10" 4.08-10°  1.71-10"
i (nj,h) =0, if ny > 1; 10 200 2 || 804-10* 1.62-107  7.04-10"

/* exact characterizatiori/
eg. (5), (6), (7). (8), (9), (10), (15), (17), (18);
/* reduction constraintg/
eq. (12), (14);
[* feasibility of resultst/
7 (ni, h) >0, for all 7% (n;, h) € .

7k (ni, h) > 0, for all %(n;, h) € .

To appreciate the reduction of the state space, Table I
compares the number of states in the LR marginal state
spaces with the original state space size in models wittefarg
population and number of queues. The column with results
for the QR transformation is discussed in Section VI-A. In
the table, all queues have MAP service times with,,..
phases. The number of states in the LR marginal state spaces
grows linearly in the population size, whereas the growth fo
the original state space is combinatorial. Here, the redluce

probabilities in can be determined using linear programmingPaces have cardinality that can be several orders of naignit

Fig. 4. Linear program determining a lower bound on an ahjtiinear
performance indeXezact = f(Tezact)-

[4] as follows. smaller than the original state space.
Proposition 1 (LR Lower Bound): The program in Figure 4
returns a lower bound,in, < f(Tezact)- A. Discussion

Proof: All the relations in the linear program are exact as
we have proved in the previous sections; therefore wezact
is a feasible solution. Since linear programming alwaysrret
the optimum solution

The balances obtained in Section IV provide a quite ac-
curate characterization of the underlying Markov procefss o
the MAP network. However, the number of exact relations
remains much smaller than the number of the marginal prob-
min f(w) = min{f(m)| feasible 7}, abilities 7% (n;, h) and 7%(n,;,h). We stress that our exact
. emact cract characterization is in general under-determined and ieescr
we qonclude thatnin f(mr) < f(m ) becauser ISa 3 family of possible equilibria for the underlying Markov
feasible value Ofﬂ.". . . . . ) rocess, among which we cannot distinguish the exact one.
The last _proposmon generalizes immediately if the Imeihe linear programming approach we have adopted selects
program is reformulated to compute an upper bound ( e equilibrium that provides a worst-case or best-casadbou
Upper Bound) fnaz = max f(m) = f(mesace); therefore o o oiven herformance metric.
the same constraints in Figure 4 can t.)e used _bOth for UPP€Racause of the complexity of the feasibility region desedib
and _Ic_)wer bounds and only the objective function has to lfﬁl (2)-(18), it is also very hard to establish the relative
modified. . . . importance of each equation with respect to the others, as
The computatpnal COSt_S Of the LR technique are inde Il as determining analytical linear independence caorut
f_ea3|ble for practical apphcaﬂons, e.g. we have solee t mong the balance equations. In our experiments, we have
linear program for a model with ten MAP(2) queues an equently observed that removing either equation (7) &) (1

iv - 5(.) Jotbs.ufsmjg a_n ir(l)toertlrc])r p0||nE[.soIve%rt|hn approx'maéel?feduces significantly the quality of the bounds. Conversety
four minutes, forlv = € solution ot the sameé MOCdel, 5y found that (9) and (10) improve accuracy only on certain
is found in approximately ten minutes suggesting good sc

bility. | L th lexity of tina bounds hwit 1odels. Standard sensitivity analysis of linear progra#is [
abiiity. In general, the complexity of computing 9 oundstwi may be used as a tool for investigating the relative impaean
the linear program in Figure 4 grows &Xlp(M*K,,0. +

4 i of a certain balance equation for the model under study.
MN, K2, M2?N)), wherelp(r, c) is the computational cost a y

of solving a linear program withr rows andc columns. The
number of rows is either dominated by the number of possible
marginal balances for the cagg > 1 that isO(M N) or by the An important generalization of the LR bounding technique
number of inequalities (17) which grows @M 2K,,..); the is the analysis of models including load-dependent servers
number of columns i) (K2, M?N) because the cardinalityi.e., resources that dynamically change their rate of servi

max

of « is upper bounded b§K 2, M2N. according to the number of enqueued jobs. This extension is

axr

VI. ANALYSIS OF LOAD-DEPENDENTMODELS



fundamental to use in MAP queueing networks the followintimes are exponentially distributed with rate growing &ng
types of resources: with the queue-length size; thus, resoutdeecomes a delay

. delay serversi.e., resources where jobs receive immedferver [24].
ately service without queueing. Delay servers are impor-In order to show that the balance equations found in Section
tant to model a customertiink timebefore submitting a IV do notgeneralize to the load-dependent case without a ma-
new request to the system. It is a classic result that a dejay change of the state space reduction, consider for exampl
server with exponential service times can be modeled # marginal balance (7). The left-hand side of (7) captures
a queue where the service rate grows linearly with trdepartures from queug using the tem‘quihﬂf(ni,U)- Since
number of enqueued jobs [24]. We use this property tbe queue-length; does not appear explicitly im;?(ni,u),
support the inclusion of delay servers with exponentig order to replacqf_’ih with qul.h(nj) we first need to express
service times in MAP queueing networks. alson;. This is not possible with the linear reduction described

« load-dependent deviceise., resources that model certainn the previous sections which does not allow to jointly egsr
physical devices where service times are affected by the andn; and thus requires a more general class of marginal
current queue-length size. For instance, disk drives catate spaces.

be approximated as load-dependent stations [32]. Definition 2: Thequadratic marginal state spasqueuei

« flow equivalent serveys.e., service centers that abstraci, phase: and queus in phasek is the state space describing
a sub-network of several queues by reproducing its megjx joint state of queué’s queue-length while its phase s
throughput as a function of the sub-network popula- < 1, < K, and queug’s queue-length while its phase is
tion [13]. It is easy to find examples showing that, fof <, < k;. The cardinality of the quadratic marginal state

MAP queueing networks, flow equivalent aggregation ispaces grows a§)(N2k2, ) and the underlying marginal
in general an approximate method, i.e., replacing SOFE?obability function is

exponential queues of a MAP queueing network wit
a flow equivalent server affects the value of the mean _ _ _

: m(n;, k,n;,u) = Z(
performance indexes.

The remainder of this section is organized as follows. In

Section VI-A we discuss how the exact balance equatiogﬁbject to the symmetry constraink(n;,k, nj,u) =
found in Section IV generalize to the load-dependent ca nj,u,ng, k), forall0 <n; < N,0<n; <N,1<k<K,,
In particular, we argue that a more general reduction of the.",, « K;. - 0 -

state space, where the number of states grows quadraticﬁ\"zomparison of the total number of states in the marginal
with the population/N, is required to reduce the model sizeS

ﬁ’,];’):n;.:nj,n;:ni7 W(ﬁ/, /{/), (20)

K=k, k,=u

hil ina th ; f th tai T tate spaces generated by the quadratic reduction with the
while preserving Ine exactness of the representation. Iﬁginal state space and the linear reduction is given ineTHb

finding is consistent with previous work on product-forrq.he table indicates that the QR transformation, althoughemo

net\(/jvolrks, where éhet_colrl‘npalga%);]al costs 0(; ioatcri]—d?pend Qbensive than the LR transformation, is still highly sbéa
models grow quadratically (V) compared to the linear with respect to the number of states in the original Markov
O(N) complexity of the constant-rate case [24]. Therefore, V\ﬁ}]rocess

0

define the Quadratic Reduction (QR) bounds resulting fr

this new description of the state space and illustrate th%iquhe prtoga::nlluey(nj,?,m,?) al:jow tge %gne:{a/htzattlrc])n IOf d
accuracy on case studies. e exact balance equations found in Section o the load-

dependent case. The resulting formulas are obtained using
replacement rules of the type:
A. Load-Dependent MAP Queueing Networks

k

MAP queueing networks immediately generalize to the ¢\ 7t (nj,u)  —  Son i q (ni)m(ni, k,nj,w), (21)
load-dependent case l_3y Le}Eting service rates be a fungfion Oquihw;‘(nj, k) — 27127:1 qf_’ih(nj)w(ni,u,nj, k), (22)
the queue-length. Defing;"(n;) as the rate of transitions ", b ’
from state(i, k) to (i — & + &, k'), where the current queue- G5 7 (g k) — g5y (ng)m(ng = 0,u,ny, k), (23)
length of stationi is n; andk and £k’ differ only for k; = k,

k! = h. This rate can be computed as 1 <k, h,u < K;, which derive from the fact that in theorem

proofs the ratesﬁ}h cannot be factored out of the summations
qf"jh(ni) :ai(ni)qf’jh, (19) if these rates are load-dependent. For example, using the
oh ' replacement rules, the marginal balance (7) becomes in the
whereg;"" is defined as in (1) and;(n;), 1 <n; < N, is a |oad-dependent case
user-specified scaling function for the service rate ofictat
when its queue-length size ig. According to this definition, M K K, K N bk
if n; = 1, for all stations1 < i < M, then all service Zﬂj’ﬂ Dokt 2onit 2wt 2ame—1 45 ()T (g, Ky ng, w)
processes are constant-rate and this case reduces togh®tla v —k: K kh, . ‘
MAP networks considered in the previous sections; othewis Z;Q 2t Lpta @y (i + m(ni + 1k, ni 4+ 1, k),
the model is a load-dependent MAP queueing network. In
particular, if ¢} (n;) = niu;, and K; = 1, then the service for 1 <i < M, 1 < n; < N — 1. Using the same approach,
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the balance (18) generalizes similarly as
QR lower bound

ZhK;L Z;\il 27]:2:1 qi]h(nl)nlﬂ'(n“ k,ni, k)+ fm”l = min f(ﬂ')
h# subject to:
Z Zh . Zm_l q” F(ni)m(ng, hyng, h) I* preliminary definitionst/

N ed. (2),(3),(4),(13),(16);
= ZJ 1 Zh 1 Zu 1 an_l qu "t () D imo (4, Ky, ) ZZZO ZkKil w(nj, k,nj, k) =1,forall 1 <j<M;

7 ﬂ'(nj,k,nz,h)—() if i =4, ni=n; h#Ek,
+ ZZ:% ijl Zm:l qi-,j F(naynim(n, hyni, ), m(n;, k,n;, ) if i =j, n; #n;y;
forall 1 <i< M, 1<k < K;. The expression of the other w(ny, k,n; ) — F(m h,n; k) for all n;, nj, by k;

load-dependent balance equations are obtained simitathet _ —N-n, o
two extensions illustrated above. /*ﬁ(n”lf[ nﬁ’ k) « Z"zt—omz’l_l m(ng, kni h), 107,
The replacement rules also show that in the quadratic stateex?;l)c (2;ac(:6e)r|z($)|o(8) (9), (10), (15), (17), (18):
space we do not need to distinguish between busy and i efeaS|b|I|ty of results/
condition, since these are now immediately determined by t w(n;, ks, h) > 0 for all (nj, k,ni, h) € 7
state of queuein 7(n;, k,n;,u). Thatis, the subset of values Ms s iy ) = s J e '
n; = 0 refers to the idle condition, the subset> 1 refers to
the busy condition of queue Therefore, some of the equations
used in the LR bounds to impose consistency between the TABLE IlI
busy and idle condition equations are not needed in the loadWPUT PARAMETERS USED IN THE GENERATION OF RANDOM MODELS
dependent analysis, e.g., (14) can be removed.
A further advantage of the quadratic state space reductios

Fig. 5. Linear program defining the QR lower bound

. ) . ) Network Value MAP(2) Value

is that the increased detail of the representation allows to—37 3 mean random 110, 1]
formulate balance equations that cannot be expressedhth t Pi,j r«’ﬁn_do[m in[o, 1% kCV rand?jm in_[fg-B, 10]]
: : P ; N all in [10, 1000 skewness random if2, 250
linear state space reduction. These additional equatiake m # of MAPS 1 o random in[.00, .99]

bounds defined on the quadratic marginal state spaces always
slightly more accurate than the LR bounds.

Theorem 6: The quadratic state space reduction satisfies N . . -
the following second-order population constraint: gound in Figure 4 are the different preliminary definitiotig

addition of (24), and the removal of the reduction constgain
2%71 Zﬁ[i - s Zkle ningm(ng, h,n;, k) = N2, (12) and (14). All equations numbered from (2) to (18) should
(24) be first generalized to the load-dependent case using the
replacement rules given in Section VI-A. Due to the incrdase

Proof: Consider the summation number of probability terms, the computational cost of tHe Q
- i 2 2 27172 2
S — Z(ﬁ By (m +n2 + . g )2 (7, B). bounds is of th_e order (ﬂ)_(lp(M K2, .N? M?K2 _ N?)), _
’ where the dominant cost is enforcing all symmetry constsain
Since for all statesi; + no + ..., 4ny = N, we have r(n; k,nj,u) = r(nj,u,ni,k).
immediately
S = Z(ﬁﬁ) N2%r(ii k) = N? Z(ﬁ,g) n(it, k) = N2. VII. ACCURACY VALIDATION

We assess the accuracy of the LR and QR bounds us-
[P ~ ing the following validation methodology. We consider both
S=>50 ngl Z(ﬁ_,,;) nin;m(f, k), randomly-generated models and representative case studie

which can be decomposed into the left hand side of (2). see Table Ill for a description of random model parameters.
We evaluate the maximal relative error of response time

The generalized balances developed above allow the defin
tion of a new class of upper and lower performance bounb_‘ unds with respect to the exact global balance solution of
as shown in the next section. e MAP queueln.g netvx{ork Due to the state space explosmp
the experimentation using exact global balance solutiens i
) ) prohibitive for MAP networks with four or more queues and
B. Quadratic Reduction (QR) Bounds population N > 100. Given its meanCV, skewness, and
Based on the exact characterization of load-dependent MARtocorrelation decay ratg,, a MAP(2) is generated using
gueueing networks discussed above, we defindlthadratic the exact moment and autocorrelation matching formulas in
Reduction (QR) boundsith a linear programming approach[11]. For each random queueing network model, we use the
similar to the LR bounds. The linear program used for thaear programs in Figures 4-5 to compute upper and lower
QR bounds is shown in Figure 5; here, e.g., the referenceltB and QR bounds,,,, and X,,;, on the mean throughput
(7) refers to the generalization of (7) obtained by applytimg f(7) = X. Then, using Little's Law, we get the response
replacement rules for the load-dependent case given inréhe gime boundsR,,.;,, = N/ Xz and Ryae = N/ X nin Which
vious section. The main changes with respect to the LR loware used to compute absolute relative errors with respect to

However, expandingn; + nz + ..., +ny)? we have also
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TABLE IV - . .
RESULTS OFRANDOM EXPERIMENTS In a preliminary version of this paper [9], we have reported

a complete sensitivity analysis of LR bounds with respect to
the parameters considered in Table Ill. The results in [, [

Maximgl (;?elative EUOVA indicate that the LR bounding methodology is very robust
M _mean stddev median max with respect to perturbations of the MAP distribution and
Rz 3 0.013 0.021 0.004 0.141 b . h . . . e
R... 3 0022 0020 0019 0.126 urstiness characteristics. Changes in the routing pilitoeth

have limited impact on the maximum error too and the worst
case is found to be in models with balanced routing. [9]

the exact response timB. We do not report errors on otherre.ports sensitivity experiments on gueueing network mdel
larger number of MAPs or larger number of queues.

t
measures due to lack of space, but we have observed tff . .
P R BoundsIn order to validate the relative accuracy of the

they are in the same range as those of response time. .
validation has used the GNU Linear Programming Kit [20 bounds with respect to the LR bounds, we have sqlved the
me random models considered above by interpreting them

to solve the linear programs of LR and QR bounds on load-d dent models. Thi be d v b i
Intel Xeon 3.73GHz starting from an AMPL specification [18]?ls oad-dependent models. This can be done easily by Setling
e scaling factora;(n) = 1 for all queuesi and queue-

AMPL specifications of the proposed bounds are available f .
P prop ength valuesl < n < N. The numerical results of these

download atht t p: / / www. ¢cs. wmn edu/ MAPQN . . . . .
random experiments are essentially identical to those show
in Table 1V: the maximum errors of the upper and lower QR
A. Random Models bounds remain4.1% and12.6%, respectively. Also the other
LR Bounds In order to evaluate the general quality oftatistical indicators in Table IV change by less tttatil %.
the LR bounds, we have evaluatéf, 000 random models. These results suggest that using the QR bounds does not imply
The models are generated drawing random numbers froninareased accuracy with respect to the LR bounds, althcwegh t
uniform probability distribution and according to the speccomputational costs of the former are much higher than those
fications in Table Ill. Each random model is solved for albf the latter. Nevertheless, the QR transformation remtias
possible populations valu€s € [10,1000] and the following only feasible technique for load-dependent queueing riisvo
absolute value of the maximal relative error is computed where the LR bounds cannot be applied. This justifies the use

Rina(N) — Regaet(N) of QR bounds.
Rezact(N) ’

where R....:(N) is the response time of the exact solutiofp- Balbo's Model
computed for the network considered with populatignand Following the last observation in the previous subsection,
Ryna(N) is the LR bound evaluated with the same populave now focus on the validation of QR bound accuracy on a
tion, either R4 (N) or R, (N). We stress that the\,,;, case study of load-dependent MAP queueing networks. Here,
error function is a conservative estimator since it retuhes we do not consider random load-dependent models because
maximumerror of Ry, over all evaluated populations. Thusyandom scaling factorsy;(n;) are hardly representative of
although we have often observed the convergence of the BReal system behavior, i.e., load-dependency tends to have
bounds to the exact response time value for lakgethis is regular analytical shapes (e.qg., “inverted U-shapes” inl@®
accurate asymptotic behavior is not accounted by Mg, of memory thrashing phenomena [33]).
metric and only the worst case error is measured. We use the QR bounds to evaluate the example network
Table IV indicates that the LR bounds perform extremelgiven in Figure 1 when this is augmented with a delay server
well. The table reports absolute maximal relative erfoe that is placed on the feedback loop of queue 1. Because of
0%, 1 = 100%) over10, 000 random MAP queueing networksthe presence of a delay server, the model is load-dependent
for the response timé&? = N/X (R.,=lower LR bound, with as(n4) = n4, where the index associated to the delay
Rinaz=upper LR bound). The mean errorli% — 2% for both  server is4. Similarly to Balbo’s example model, the routing
bounds with a small standard deviation; the median is leggobability from queue 1 to queue 2ps » = 0.7, from queue
than the mean, indicating that the asymmetry of the error dik to queue 3 i, 3 = 0.2 while the probability of entering
tribution is more concentrated on small errors. The maximuimto the feedback loop of the delay servepisy = 0.1. Since
error is found to bel4.2% for the response time upper boundhe feedback loop now includes the delay server, it is always
and 12.6% for the lower bound. We have inspected carefully; ; = 0 and a job completed at the delay server re-enters the
these cases and found that models with more 8k error system by first joining queue 1. We use this configuration to
in at least one of the two bounds account for obfy of the evaluate the accuracy of the QR bounds as a function of the
total number of experiments. Furthermore, in these modefsmber of jobsV and of the mean think tim& at the delay
the LR lower bound seems to deteriorate by high variabilitserver. Because of the prohibitive cost of the exact evialnat
and burstiness, while the worst case error of the LR uppefa queueing network with four stations and tens of jobs, we
bound is found for MAPs with low or moderate burstinessise the relative gap between the upper and lower bounds as a
The difference in sensitivity to MAP parameters is a positivdescriptor of the QR bounds accuracy.
property of the LR bounds, as inaccuracies in one bound carirhe accuracy results of QR bounds on Balbo’s model
be compensated by the accuracy of the other bound. augmented with the delay server are given in Table V. The

Abnd = max
N
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TABLE V

BALBO’SMODEL: QR BOUND ACCURACY ON RESPONSETIMES Fig. 6. MAP queueing network model of TPC-W e-commerce syste

Z/u;' N bndgap] Z/uz' N bnd gap
0.5 10 5.1% 3 10 7.5% Exponential MAP(2)
0.5 25 2.3% 3 25 3.1%
1 10 6.2% 4 10 8.8%
1 25 2.7% 4 25 3.6% Front Server DB Server
1 50 1.6% 4 50 2.1%
2 10 6.8% 5 10 12.2% Clients
2 25 2.8% 5 25 4.5%
2 50 1.7% 5 50 2.5%

9.0. We have used the following experimental setup: the Web
. A _ server and the application server are installed on the seone f

metric *bnd gap” indicates the relative G_’rrm”am/Rmm — L server, a 1-way 3.2 GHz Pentium D; the database resides on a
between upper and lower response time bounds. The tagj%ay 3.2 GHz Pentium D, and the incoming TPC-W requests
reports a sensitivity analysis with respect 2 and Z: N janart from two 2-way 3.2 GHz Pentium D machines. Further
ranges between0 and 50, _a”‘LZ is instead defined by itS yetajls on the multi-tier architecture can be found in [12F).
_ratlo to the mean service time; - of thibottleneglf FESOUICe, | the TPC-W benchmark, the requests are directed to a set
.e., queues, and ranges bgtwedmug and 5. ._In this of HTML pages which include both static images served lo-
model, low values ofZ indicate networks where jobs tendcally from the front server and dynamic content retrievexirfr
to queue at the bottlenec;k resource, quauand where the the database server. The HTTP requests are generated by a set
system behaves not too differently from a modgl with constan,e clients, called Emulated Browsers (EBs), which generate
rate servers only. _Conversgly, whéhis large, jobs ten_d_ © 5 new request inZ seconds after completing the download
gpend most of the|r_ cycle time at the delay server waiting 9 the previously requested page (HTML and images). The
join the queues; this makes the model much more CompISétribution of the think times is negative exponential fwit
than constant—rate MAP queueing ne_tworks. rate Z~!. Because of the closed-loop structure of the TPC-
. The results in Table V for increasing values ﬁf_andN. W workload, where EBs wait HTTP replies before delivering
indicate that the good accuracy of the QR bounds is CONSISRIL 1oyt request, the number of simultaneous active sassion
with.the results of the random model validation, showing g upper bounded byV and the system can be modeled as
maximum gap between upper and lower QR bounds of abQqutt':losed network. We model this closed system as a MAP
12%. The _results also indicate t_hat QR bo“”?‘ accuracy d‘?xeueing network composed by two servers representing the
affected d|ffere_ntly _by changes i@ or IV: for increasing ont ang database servers, respectively, followed by aydel
val_ues.of thg think timeZ, thg .QR bound accuracy decrease§erver that models the think tim&sof the EBs. An illustration
which is attributed to the difficulty of estimating the numbe ¢ ..« vap queueing network is given in Figure 6. We point

of "’?"“"e jo_bs circulating outside the dela_ly server. Cosely to [10] for a discussion on why this queueing network proside
for increasing values of the total populatidfh the QR bound a realistic model of the TPC-W system
accuracy increases, dropping to an error of just— 2% for The service processes of the two queues in Figure 6 are

medium congestion levels\{ = 50). a]rameterized consistently with the processes obtainfiDin

: Seumrggrizing,r:his CSSE stugy basgg on thz analytical Imoj%m measurements of the browsing mix workload of the
in | ] n |catest. atQ ounds provide good accuracy 1eVerhc \y penchmark. The service process at the front server
for different choices of the think timg and of the number of .

. ; L is modeled as an exponential process with mean service time
jobs N. The most important observation is that the QR bound/%l — 5.58 ms; the think times have mean equalZo= 500

ms. The service process at the database, instead, is found to

luati X ; der burst i & significantly affected by burstiness and therefore ittisdi
evaluating system performance under burstiness conditon ... "> two-phase MAP with meap; ' — 3.26 ms, CV equal

meaningful (_)nly if there are .e.nOL.'gh requests to creatg Iart%e4’ skewness equal t8.58, and autocorrelation decay rate
fluctuations in the system utilization and queue-lengths t72 — 0.86. For increasing values al, the measuredmean

often requires large populations. service demand of both servers changes as reported in Table
VI; thus, also in the model we scale the mean service time
VIIl. A NALYSIS OF TPC-WE-COMMERCE SYSTEM at the two servers according to the values in the table for all

In this section, we present an application of MAP queueirfg@Sses of models considered in this section. o
networks to the performance analysis of an enterprise -appli Since measurements on the real system are obtained in terms
cation running on a multi-tier architecture. We considee tHPf Server utilizations, in Table VIl we focus on the perfor-
e-commerce system studied in [10], [27] subject to a TPC-{ance analysis of the utilizatiobi; (N) of the front servek.
benchmark [19], which simulates the operations of an online

bookstore. The e-commerce system is Composed by a Wef’j\lote that since the utilization is inversely proportionalthe end-to-end
response times, the considerations in the previous sediiorthe lower (resp.

server (Apache), an application server (Tomcat),_and a-bag per) QR response time bounds apply here to the upper (mspr) QR
end database (MySQL 5.0); all machines run Linux Redhatization bounds.
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TABLE VI TABLE VI
MEAN SERVICE DEMANDS OF FRONT AND DATABASE SERVERS PERFORMANCEANALYSIS OF TPC-WE-COMMERCE SYSTEM. Bold
entries are errors greater tha6% with respect to the measured utilization.

Mean service time [ms]

N/EBs | front server | DB server Front Server UtilizationU/; (N)
25 5.58 3.26 MAP QN PF QN GI QN | Real System
50 5.00 2.75
N Lower  Exact Upper | MVA Exact Measured
75 5.00 3.38 QR OR
100 5.32 3.38 -
150 532 452 25 0.2591 0.2631 0.2730 | 0.2727  0.2659 0.2733

50 | 0.4457 0.4550 0.4883 | 0.4875 0.4578 0.4602
75 | 0.6262 0.6405 0.7091 | 0.7194 0.6466 0.6495
100 | 0.7572 0.7800 0.8066 | 0.9479  0.8410 0.7445
150 | 0.7269 0.7687 0.7829 | 0.9997  0.9370 0.7379

Here, we report the results for the MAP queueing network
analysis (exact global balance, upper and lower QR bounds), IX. CONCLUSIONS
for product-form queueing networks (PF QN) analyzed by '

the MVA algorithm, and for GI queueing networks (Gl QN) Recent workload characterizations have shown that nonre-

solved exactly by global balance. The last column repoxs tREWal service processes are good abstractions of reahsyste

mean measured utilization values at the front server on a t\xy(g)rkloads, especially of those found in storage systems _and
hours experiments with the browsing mix of TPC-W, whertVeb servers [26], [28], [36]. We have observed that existing

utilization samples are collected every five seconds. Werkm 9Ueu€ing network models, which always consider renewal ser

that this model can be analyzedly by the QR bounds since Vice processes and do not account for nonrenewal featuchs su
the presence of think times between consecutive request@fo@utocorrelation in service times, can grossly overesém

the system has imposed the inclusion of a delay server in ffleUnderestimate actual system performance. ,
queueing network. We have presented a solution to this problem by studying a

new class of MAP closed networks that supports nonrenewal
We first make the obvious observation that modeling metBervice. We have introduced a class of exact state space
ods do not provide results that are identical to the measurie@uctions that are computationally tractable and alloe th
values, e.g., even if we solve MAP queueing networks usirgficient computation of upper and lower linear reduction
an exact evaluation of the underlying Markov chain, the pre¢tR) and quadratic reduction (QR) bounds on arbitrary MAP
dicted utilization is always slightly different from thealeone network performance indexes, such as utilizations, thneug
because of the unavoidable parameterization errors dgl‘ivbutS, response times, and queue-lengths. QR bounds are more
from estimating service characteristics from measurecea expensive to evaluate than LR bounds, but their fundamental
The results in Table VII can be interpreted by first notingdvantage is that they generalize also to the evaluation of
that the quality of the different modeling techniques clemgmodels with delay servers and load-dependent service times
radically in the jump fromV < 75 to N > 100. As observed To the best of our knowledge, this is the first time that bounds
before, medium or large populations are needed to make t8e queueing networks with nonrenewal service are obtained
effects of burstiness significant for system performaneel&’ The LR and QR bounds AMPL specification together with ad-
VIl indicates that forV < 75 all methods are essentiallyditional resources on MAP queueing networks are available a
accurate with an approximation error no more thar8% of ht t p: / / www. cs. wn edu/ MAPQN/ . Experiments indicate
the measured utilization for the MVA method whéh= 75; that the LR and QR bounds are extremely accurate, showing
in these cases, GI models are the most accurate, suggesi&g low relative error on the response time estimates.
that the distribution, and not the burstiness, of the sertiines Finally, we have shown the applicability of the proposed
is the main determinant of system performance. For 100, bounds to the capacity planning of a real TPC-W e-Commerce
instead, the performance effects of burstiness are stradg gystem. Numerical results indicate that MAP queueing net-
the much increased accuracy of MAP queueing networlrks evaluated either exactly or with bounds are always
solutions is immediately visible compared to product-famd very close to the measured server utilization values, wdsere
Gl models, which suffer large errors up 85.48% (0.9997) traditional MVA and GI models show considerable errors up to
and 26.98% (0.9370) of the measured utilization (0.7379)35% and27% of the measured values, respectively, arguing for
respectively. MAP queueing networks, instead, have a smgilke adoption of MAP queueing networks for capacity planning
approximation error also on these problematic cases. of system with bursty workloads.

Summarizing, the results of this section on the performance
analysis of a real system indicate that MAP queueing netsvork ACKNOWLEDGEMENT
are a much more robust performance analysis methodologyrhis work was supported by the National Science Foun-
than product-form and Gl models. The proposed QR boundation under grants CNS-0720699 and CCF-0811417 and
introduce approximation errors on the global balance gmiut by a gift from HPLabs. The authors thank the anonymous
that are much lower than the inaccuracies of product-forch areferees for useful comments on the paper. The authors also
Gl estimates. This performance analysis example on a r#@nk Gianfranco Balbo, Jeff Buzen, Larry Dowdy, Giuseppe
system provides a strong argument for the adoption of MA®erazzi, Murray Woodside, and Qi Zhang who greatly helped
gueueing networks for capacity planning. in improving the quality of this paper.
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