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Abstract—In this paper, we define and study a new class of
capacity planning models calledMAP queueing networks. MAP
queueing networks provide the first analytical methodologyto
describe and predict accurately the performance of complex
systems operating under bursty workloads, such as multi-tier
architectures or storage arrays. Burstiness is a feature that signif-
icantly degrades system performance and thatcannot be captured
explicitly by existing capacity planning models. MAP queueing
networks address this limitation by describing computer systems
as closed networks of servers whose service times are Markovian
Arrival Processes (MAPs), a class of Markov-modulated point
processes that can model general distributions and burstiness. In
this paper, we show that MAP queueing networks provide reliable
performance predictions even if the service processes are bursty.

We propose a methodology to solve MAP queueing networks
by two state space transformations, which we call Linear Reduc-
tion (LR) and Quadratic Reduction (QR). These transformations
dramatically decrease the number of states in the underlying
Markov chain of the queueing network model. From these
reduced state spaces, we obtain two classes of bounds on arbitrary
performance indexes, e.g., throughput, response time, utilizations.
Numerical experiments show that LR an QR bounds achieve
good accuracy. We also illustrate the high effectiveness ofthe LR
and QR bounds in the performance analysis of a real multi-tier
architecture subject to TPC-W workloads that are characterized
as bursty. These results promote MAP queueing networks as a
new robust class of capacity planning models.

I. I NTRODUCTION

Capacity planning of modern computer systems requires to
account for the presence of nonrenewal features in workloads,
such as short-range or long-range temporal dependence which
significantly affect performance [25], [26], [28], [36], [38]. A
typical example of temporal dependence is workload bursti-
ness, where the sizes of consecutive jobs processed by the
system are correlated, e.g., the arrival of a long job is likely
to be followed by the arrival of another long job (and vice-
versa for short jobs). Time-varying workloads of this type
are naturally modeled as nonrenewal workloads with temporal
dependence among consecutive requests.

Because of the complexity of their analysis, only small
nonrenewal models based on one or two queues have been
considered in the literature, mostly in matrix analytic methods
research [31]. We address the current lack of more general
provisioning models by introducing and analyzing a new class
of closed queueing networks which can account for temporal
dependence in the service processes. Our analysis enables for

the first time the analytical performance evaluation of complex
environments with nonrenewal workloads and immediately
finds application in the capacity planning of multi-tier archi-
tectures and storage systems.

Capacity planning based on product-form queueing net-
works [3] has been extensively used in the past, since these
models enjoy simple solution formulas and low computational
cost of exact and approximate algorithms [5], [7]. However,
modern Web, parallel, and storage systems often exhibit high
variability in their service processes [2] and are therefore best
modeled by networks of queues with first-come first-served
(FCFS) queues and general independent (GI) service [6],
[16], [37]. Queueing networks with general independent (GI)
service [6], [16], [37] have been proposed as a solution, but
although these models are much more accurate than product-
form networks, theycannot be used for robust performance
predictions if the service process is nonrenewal [9].

In this paper, we overcome the limitations of existing mod-
eling techniques by providing a bound analysis methodology
for queueing networks with nonrenewal workloads. We define
and study a class of closed queueing networks, that we call
MAP queueing networks, where service times are modeled
by Markovian Arrival Processes (MAPs). MAPs belong to
a family of point processes which can easily model general
distributions as well as the main features of nonrenewal work-
loads, such as autocorrelation in service times [31]. Algorithms
for fitting measurements into MAPs are available [1], [11],
[22] together with automatic fitting tools [12].

Because of the well-known difficulty of extending exact so-
lution formulas outside the product-form case, we study bound
analysis techniques for MAP networks. With the exception of
the general ABA bounds [30], which provide good estimates
only for very low or very high population values, no bounding
techniques for nonrenewal networks exist and this is due to the
lack of exact results which are needed to prove the bounding
property. In this paper, we overcome this classic limitation
and obtain provable bounds on performance indexes also in
non-product-form networks.

The proposed nonrenewal bounds derive from the analysis
of the Markov process underlying the MAP queueing network.
Because of the state space explosion, the queueing network’s
equilibrium behavior cannot be determined exactly, but we
argue that it can still be bounded accurately by describing the
system with “reduced” state spaces, which we callmarginal
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state spaces. Marginal state spaces capture the behavior of
the network conditioned on a given queue being busy or
idle and can be obtained from two transformations called
Linear Reduction (LR) and Quadratic Reduction (QR). The
intuition behind the LR reductions is that, for each queue in
the network, the arrival process changes only depending on the
busy or idle state of the other queues. Therefore, we propose
to describe in the marginal state spaces only this busy/idle
condition rather than the whole distribution of jobs across
the queueing network as in the original state space. The QR
reduction adds information on the number of jobs needed in
case of load-dependent service.

A fundamental property of marginal state spaces obtained
by the LR transformation is that the number of states grows
linearly with the number of jobs in the network; thus, the
analysis remains computationally tractable also on models
with large populations. For example, a MAP queueing net-
work with three queues and one hundred jobs has underlying
Markov chain composed by1012 states, but LR marginal
state spaces reduce it to about3, 600 states only. We then
derive exact balance equations for the equilibrium behavior
of the LR marginal state spaces. The number of these exact
equations grows combinatorially with the model size, but
it is yet insufficient for determining exactly the equilibrium
probabilities of the marginal state spaces. Here, we illustrate
how these formulas can be combined with linear programming
[4], [29] for the computation of bounds on mean value indexes.

We then generalize MAP queueing networks to allow the
inclusion of queues with load-dependent service rates. This
feature is useful to describe resources, such as delay stations or
flow-equivalent servers [13], which change speed dynamically
as a function of the number of locally enqueued jobs. In
particular, delay servers are often fundamental in capacity
planning models to describe user think times between sub-
mission of consecutive requests to the system [19]. Motivated
by the observation that LR bounds cannot be applied to load-
dependent MAP queueing networks, we derive a more general
state space transformation, called Quadratic Reduction (QR),
that can be used to bound the performance of load-dependent
models. QR bounds are observed to provide similar accuracy
to LR bounds, but since the number of states of QR marginal
state spaces grows quadratically with the number of jobs in
the network, they should be used only to evaluate models
with load-dependent servers where LR bounds do not apply.
For instance, on the state space with1012 states discussed
above, the QR transformation considers370, 000 states which,
although more expensive that the LR transformation which
uses only3, 600 states, still remain much less than in the exact
state space.

Outline and summary of contributions. The main contribu-
tion of this paper is to present a new methodology for the
efficient analytic solution of queueing networks with nonre-
newal workloads. This methodology automatically applies to
queueing networks with renewal workloads as well. The stated
contributions and outline of this work are as follows.

• We review existing approximations and decomposition
methods for product-form and GI queueing networks and
discuss their applicability to models with nonrenewal

workloads (Section II).
• We define MAP queueing networks as a generalization

of existing queueing networks that can model nonrenewal
workloads (Section III).

• We develop the LR transformation and the related LR
bounds on performance indexes of MAP queueing net-
works (Sections IV and V).

• We present the QR transformation and QR bounds for the
analysis of MAP queueing networks with delays and/or
load-dependent queues (Sections VI).

• We show validation results on random models and repre-
sentative case studies proving that the LR and QR bounds
capture very well mean performance indexes of MAP
queueing networks (Section VII).

• Finally, Section VIII shows an example of performance
analysis, based on the QR bounds, of a real multi-tier
architecture subject to TPC-W workloads [19].

We stress that MAP queueing networks are a superset
of existing non-product-form networks with GI workloads.
Therefore, the presented analytic methodology has a wide
applicability. The LR and QR bounds are corroborated by
extensive numerical validation, where we show that they
achieve very low accuracy errors on a set of10, 000 ran-
dom models, promoting MAP queueing networks as versatile
models of modern computer systems. Specifically, the QR
bounds are indispensable for the frequent case of capacity
planning models with delay servers that represent user think
times between consecutive download requests. The AMPL
specification [18] of the LR and QR bounds is available for
download athttp://www.cs.wm.edu/MAPQN/.

II. PREVIOUS WORK

We review previous work on non-product-form queueing
network models with FCFS queues and general independent
(GI or renewal) service [5]; we point the reader to [5], [14],
[24] for general background on queueing network modeling
and Markov processes.

Closed networks of FCFS queues enjoy a product-form
solution if all service times are exponentially distributed
[3]. If one or more servers have renewal service, such as
hyperexponential or Coxian [15], the product-form theory does
not apply and approximate methods are used for evaluating
performance [5].

An approximation based on Markov renewal theory is
developed by Reiser in [34]. For each queue, the MVA
arrival theorem [35] is generalized to include the coefficient
of variation (CV) of the GI service process. Experiments in
[6], [16] show that this approach, although simple, is proneto
large approximation errors.

In [37], Zahorjan et al. obtain an approximate mean value
analysis (AMVA) by decomposition-aggregation [14]. The
underlying Markov process of the network is decomposed
according to the active phases at the GI servers. Each partition
is evaluated in isolation by Mean Value Analysis [35] and the
results are weighted to approximate the GI network. Validation
results of the AMVA decomposition-aggregation show good
accuracy.
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In [16], Eager et al. improve the results in [34] and [37].
The response time at the GI queue used in Reiser’s method
is replaced by a more effective interpolation which also
accounts for the response time at the other queues. [16] also
improves the decomposition method in [37] and makes it
compatible with the iterative AMVA framework to achieve
lower computational costs on networks with several queues.

Marie’s method and the maximum entropy method (MEM)
assume a product-form for the equilibrium state probabilities
of the GI network and approximate the model accordingly
[5]. MEM relies on formulas involving only the mean and
the coefficient of variation; Marie’s method is more general
and uses specialized relations for Coxian distributions. Marie’s
method provides good accuracy in models with GI servers with
a computational effort that depends on the number of iterations
used [6].

The diffusion approximation (DA) method has been suc-
cessfully applied in the analysis of single queues with non-
renewal service times [21]. However, in queueing networks
it is much harder to determine the equilibrium of the under-
lying Brownian motion without numerical techniques because
product-form formulas exist only under restrictive assumptions
[21]. As an additional difficulty, the results of DA hold under
heavy-load assumptions that make them accurate only when
all queues are in heavy-usage, which may be unrealistic in
real systems. Since Brownian motion is a second-order model,
it is also impossible to evaluate the impact of higher-order
moments of service times.

The Chandy-Herzog-Woo (CHW) method [13], [24] re-
places an arbitrary subsystem by a flow equivalent server
which preserves the mean throughput of the original subsystem
in each feasible state. If the subsystem includes GI servers,
CHW is known to be less accurate than Marie’s method [6].

Applicability to Nonrenewal Models: To the best of our
knowledge, the only analysis of the accuracy of GI ap-
proximation methods when applied to closed networks with
nonrenewal service has been recently provided in [9]. The
discussion in [9] proves that GI approximations either do no
apply to networks with nonrenewal workloads, because they
completely ignore the temporal dependence between service
times, or they are very inaccurate and unable to capture the
trend of performance indexes such as utilizations or response
times as in the case of decomposition/aggregation [14] and
Asymptotic Bound Analysis (ABA) [30]. Related remarks
are also given in Section VIII where we illustrate modeling
inaccuracies of product-form and GI queueing networks in the
evaluation of an e-commerce system with bursty workloads.

III. MAP QUEUEING NETWORKS

We introduce the class of MAP queueing networks sup-
porting nonrenewal service which is studied in the rest of the
paper. A summary of the main notation is given in Table I.

A. Model Definition

We consider a closed network with single-server queues,
which serve jobs according to a MAP service time process
and under work-conserving FCFS scheduling. The service

TABLE I
SUMMARY OF MAIN NOTATION

αi(ni) service rate scaling for queuei with ni enqueued jobs
Bk

j states(~n,~k) wherej is busy in phasek
Ck

j (i) mean queue-length of queuei within Bk
j

~ei vector of zeros with a one in thei-th position
h, k, u, k∗ phase indexes

i, j, m queue indexes
Ik
j states(~n,~k) wherej is idle in phasek

Jk
j (i, h) utilization of queuei in phaseh within Bk

j ∪ Ik
j

ki active phase at queuei in ~k
Ki number of phases in queuei’s MAP

Kmax maximumKi, 1 ≤ i ≤ M
~k phase vector, i.e., active phases
M number of queues in the network
µi mean service rate of queuei

µk,h
i

completion rate of queuei, phasek → h
N number of jobs in the network
ni number of jobs at queuei in ~n
~n population vector, i.e., job allocation

pi,j routing prob. from queuei to queuej
π(~n,~k) prob. of state(~n,~k)

πk
j (ni, h) prob. ofni jobs in queuei in phaseh within Bk

j

π(ni, h, nj , k) prob. ofni jobs in queuei in phaseh
andnj jobs in queuej in phasek

π̄k
j (ni, h) prob. ofni jobs in i in phaseh within Ik

j

qk,h
i,j rate (~n,~k) → (~n − ~ei + ~ej , ~k′), ki = k, k′

i = h

qk,h
i,j (ni) rate qk,h

i,j from states where queuei hasni jobs
Qi mean queue-length at queuei
Qk

i mean queue-length at queuei in phasek
Ui mean utilization of queuei
Uk

i mean utilization of queuei in phasek
vk,h

i background trans. rate of queuei, phasek → h
Vi mean visit ratio at queuei (V1 = 1)
X mean throughput (measured at queuei = 1)

process is independent of both the job allocation across the
queues and the state of other service processes. The network
is composed byM queues and populated byN statistically
indistinguishable jobs (single class model), which proceed
through the queues according to a state-independent routing
scheme. That is, upon departure from a serveri, a job joins
queuej with fixed probabilitypi,j . Without loss of generality,
the average visit ratio atj with respect to the number of visits
at queue1 is Vj , thusV1 = 1.

The service process at queuei is modeled by a MAP
with Ki ≥ 1 phases. General service can be approximated
accurately by a MAP [11]. IfKi = 1, then the MAP reduces
to an exponential distribution, otherwise it generates service
time samples that are phase-type (PH) distributed [31]. That
is, hyperexponential, hypoexponential, Erlang, and Coxian
are all allowed service time distributions; nonrenewal service
is also supported, e.g., Markov Modulated Poisson Process
(MMPP), Interrupted Poisson Process (IPP) [17]. It should
be nevertheless remarked that MAP fitting can be still a
challenging problem if the data has an irregular temporal
dependence structure, see [22] for a review. We point to [11]
for a new technique, called Kronecker Product Composition
(KPC), that can provide MAP fitting of higher-order moments
and temporal dependence structure of arbitrary processes.

The transition from phasek to phaseh for the MAP service
process of queuei has rateφk,h

i and produces a service
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completion with probabilitytk,h
i ; if h = k it is tk,k

i = 1. We
defineµk,h

i = tk,h
i φk,h

i to be the rate of job completions in
phasek that leave the MAP in phaseh; vk,h

i = (1− tk,h
i )φk,h

i ,
k 6= h is the complementary rate of transitions not associated
with job completions that only change the MAP active phase
(background transitions)1. We point the reader to [22] and
references therein for background on MAPs and MAP fitting.

B. Underlying Markov Process

General MAP service requires to maintain information at
the process level on the current service phase at each queue.
A feasible network state in the queueing network underlying
Markov process is a tuple(~n,~k), where~n = (n1, n2, . . . , nM ),
0 ≤ ni ≤ N ,

∑M
i=1 ni = N , describes the number of jobs in

each queue, and~k = (k1, k2, . . . , kM ), 1 ≤ ki ≤ Ki, specifies
the active phase for each service process. According to this
space, the Markov process transitions have rateqk,h

i,j from state

(~n,~k) to (~n−~ei +~ej, ~k
′), ki = k, k′

i = h, where~et is a vector
of zeros with a one in thet-th position; the rate is given by

qk,h
i,j =

{

pi,jµ
k,h
i , i 6= j,

vk,h
i + pi,iµ

k,h
i , i = j and k 6= h.

(1)

In (1), qk,h
i,j is for i 6= j the rate of departures fromi to j

triggering a phase transition ini’s service process from phasek
to h; otherwise it accounts for the background transitionsvk,h

i

and the rate of the self-looping jobspi,iµ
k,h
i . Note that the

case fori = j andk = h is not explicitly accounted since it
corresponds to the diagonal of the infinitesimal generator of
the Markov process. This diagonal is computed to make each
row sum to zero.

The size of the infinitesimal generator corresponds to the
cardinality of the related global balance equations and it is
of the order of

(

N+M−1
N

)(

Kmax+M−1
Kmax

)

, whereKmax is the
maximum of Ki, 1 ≤ i ≤ M ; this size quickly becomes
computationally prohibitive.

As a summarizing example, the MAP network in Figure 1
with routing probabilitiesp1,1, p1,2, p1,3 = 1 − p1,1 − p1,2

at the first queue andp2,1 = 1, p3,1 = 1, at the remaining
queues has underlying Markov process as in Figure 2. In the
last figure, two queues are exponential with ratesµ1 ≡ µ1,1

1

and µ2 ≡ µ1,1
2 , respectively; the third queue is a MAP with

K3 = 2 phases havingµk,h
3 = 0 for k 6= h, that is a

MMPP(2) process. The notation, e.g.,(002, 1) indicates that
the exponential queues are idle and the MAP queue has two
jobs and is in phase1; in (110, 2) where the MAP queue
is empty, the phase2 is the phase left active by the last
served job. Forp1,1 = 0.1 and p1,2 = 0.7 the network
reduces to Balbo’s model used in the numerical experiments
in [6]; throughout the paper we illustrate some of the proposed
techniques using this model.

1In this representation of queuei’s MAP, µk,h
i is the element in rowk

and columnh of the D1 matrix; vk,h
i

is in row k and columnh of D0, see
[11], [22] for background on the (D0,D1) representation of MAPs.

µ2

p1,3

p1,2

p1,1

µ1

p    =1
2,1

p    =1
3,1

Queue 1

M

M

MAP

Queue 3

Queue 2

Fig. 1. Example network composed by two exponential queues and a MAP
queue.
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µ1p1,3

3µ1,1

µ1p1,3

3µ2,2

Busy condition subspace of 
queue 3 in phase 1

Busy condition subspace of 
queue 3 in phase 2

Fig. 2. Underlying Markov process of the network in Figure 1 in the simple
case when the MAP is a MMPP(2) process; the job population isN = 2.

IV. STATE SPACE REDUCTION

General approximation techniques for non-product-form
models, such as decomposition, are reviewed in Section II.
These approaches often start from the idea of applying a
state space transformation to reduce model complexity. For
instance, approximate lumping is used in decomposition to
partition the state space into macrostates that can be evaluated
in isolation [5].

However, existing state space reductions introduce approx-
imation errors that cannot be bounded in sign or in magni-
tude. This leaves a high degree of uncertainty on the final
approximation accuracy. In this section we develop a new
family of state space reductions that doesnot introduce any
degree of approximation and still simplifies model analysis.
The proposed reduction is therefore exact, but because of
several differences from exact lumping, the transformation
cannot be reduced to lumping or to any method presented
in previous work.

A. Busy Condition Reduction

We introduce a state space reduction that scales linearly
with the population size. We use the term “busy condition”
to identify the set of stateswhere a given queue is busy in
a certain phase, which is similar to a conditional state space
except that probability values are not normalized. For each
model we generateO(K2

maxM2) reduced state spaces with
dimensionO(N) as follows.

Definition 1 (Marginal State Spaces): Let the busy condi-
tion subspaceBk

j = {(~n′, ~k′) : n′
j ≥ 1, k′

j = k} be the set
of states of the MAP network where queuej is busy and in
phasek. Themarginal state spaceof queuei in phaseh within
Bk

j is the state space describing the withinBk
j of queuei’s
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queue 3
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Busy condition subspace of
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(c)

  2
3µ1,1

unknown rate

queue 3
phase 1

Busy condition subspace of
queue 3 in phase 1

   1

Marginal State Space

(d)

Fig. 3. Example of marginal state spaces for the model in Figure 2

queue-length while its phase ish, 1 ≤ h ≤ Ki, (the cases
i = j and h = k are both considered).
Since in a non-product-form network the state of a queue
implicitly depends also on the activity of the rest of the
network, the marginal state spaces allow to explore in a
compact way the mutual relations between any two queues
i and j. A probabilistic definition of marginal state space is
given later in Section IV-A1. Two example marginal spaces
for the model in Figure 2 obtained for the busy condition
subspaceB1

3 are shown in Figure 3. The dashed ovals indicate
states in the original state space in Figure 2 that are implicitly
accounted for in the marginal state spaces for queue2 and
for queue3 in phase1, depicted in Figures 2(b) and 2(d),
respectively. Figures 3(a)-(b) are obtained by observing the
exponential queuei = 2 in its only phaseh = 1 within
B1

3 . Since queue3 is always busy inB1
3 , it has queue-

length n3 ≥ 1 and the queue-length of queue2 can only
be n2 = 0 or n2 = 1. Note that the rate of transitions from
n2 = 1 to n2 = 0 depends only on queue2’s service rate
µ2; the rate fromn2 = 0 to n2 = 1 depends instead on
job completions at the other queues and in the original state
space is equal toπ(101, 1)p1,2µ1 which is unknown2 without
the equilibrium probabilityπ(101, 1). Figure 3(b) similarly
describes the queue-lengths of queue3 in phase1 within B1

3 ,
which can be onlyn3 = 1 or n3 = 2 since queue3 is busy.
The unknown transition rate is in this caseπ(101, 1)p1,3µ1.

Figure 3 clearly shows that our approachis not equivalent to
an exact lumping or a decomposition-aggregation for at least
three reasons: the latter techniques are applied to the entire
state space and not to busy subspaces only, the aggregates
are always non-overlapping (two busy subspaces instead can
overlap, e.g.,B3,1 andB2,1), and in each aggregateall rates
are known so that it can be analyzed by other techniques (e.g.,
decomposition solves each macrostate in isolation by global

2We henceforth assume that global balance solutions for MAP network
is prohibitively expensive, therefore the equilibrium probabilities are all
unknown.

balance or mean value analysis).
The main idea motivating the busy condition reduction is as

follows. Even if some rates are unknown, we can derive bal-
ance equations both for the equilibrium inside each marginal
space or between the probabilities of multiple marginal spaces.
These balances areexact relations that limit the feasible
values of the unknown equilibrium state of the MAP network.
Although these balances are not sufficient alone to uniquely
identify the equilibrium probabilities, we argue that they
restrict the number of candidate solutions of the model to the
point that any linear function defined on the equilibrium state,
such as throughput, utilizations, or mean queue-lengths, can
only assume a limited set of values and thus can be bounded
tightly. The definition of LR bounds based on this approach
is described in Section V.

1) Marginal Probabilities: The marginal probability
πk

j (ni, h) of having ni jobs in queuei during phaseh,
1 ≤ h ≤ Ki, while queuej is busy in phasek, 1 ≤ k ≤
Kj, completely characterizes the marginal state spaces. Each
marginal probability can be computed as

πk
j (ni, h) =

∑

{(~n′,~k′)∈Bk
j :n′

i=ni,k
′

i=h} π(~n′, ~k′),

where Bk
j is the busy condition subspace of queuej in

phasek. By definition, it is πk
j (ni = N, h) ≡ 0 for i 6= j,

πk
j (nj = 0, k) ≡ 0, πk

j (nj , h) ≡ 0 for h 6= k, and
πk

j (nj , k) ≥
∑Ki

h=1 πh
i (nj , k) for j 6= i, nj ≥ 1. The last

inequality follows immediately by observing thatπk
j (nj , k)

accounts for all states in
∑Ki

h=1 πh
i (nj , k) plus the states within

Bk
j wherei is idle.
Because any event in the underlying Markov process in-

volves at most two-phases and two queues, that is, source
and destination queues for job departures with a possible
phase transition at the source queue, the marginal probabilities
πk

j (ni, h) still capture all departures and phase changes in the
model. Therefore, the knowledge of allπk

j (ni, h)’s is sufficient
to compute all mean performance indexes of interest in the
original state space, including: the utilization of queuei, i.e.,
Ui =

∑Ki

k=1 Uk
i , where we denote byUk

i the utilization ofi
in phasek, that is

Uk
i =

∑N
nt=0

∑Kt

h=1 πk
i (nt, h) (2)

wheret, 1 ≤ t ≤ M , is an arbitrary queue since the summation
is always equal to the probability of the busy subspaceBk

i ;
the throughput which by the Utilization Law [24] is

X =
∑K1

k=1

∑K1

h=1

∑M
j=1 qk,h

1,j Uk
1 = U1µ1/V1,

that is the mean rate of jobs flowing out of queue1 assumed as
reference for network completions and whereµ1 denotes the
mean rate of the MAP service process at queue1; the mean
queue-length of queuei is Qi =

∑Ki

k=1 Qk
i , with

Qk
i =

∑N
ni=1 ni πk

i (ni, k) (3)

being the mean queue-length ofi in phasek. Note that these
indexes are also sufficient to compute response and residence
times by Little’s Law, see [24]. In particular, the responsetime
is R = N/X .
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2) Single Busy Subspace of a Single Queue:We charac-
terize the equilibrium reached at steady state by marginal
spaces. We focus on the marginal state spaces which describe
a single busy subspaceBk

j and use the population constraint
∑M

i=1 ni = N . Although an obvious condition, it is impossible
to impose it if the state space is transformed in such a way
to hide some of theni’s, as in the marginal state spaces.
We therefore define a new population constraint for the busy
condition subspace.

Theorem 1: Define

Ck
j (i) =

∑N
ni=1

∑Ki

h=1 niπ
k
j (ni, h), (4)

as the mean queue-length ofi in the busy condition subspace
Bk

j , thus Ck
j (j) = Qk

j . Then withinBk
j the Ck

j (i) sum to
NUk

j , i.e.,
∑M

i=1 Ck
j (i) = NUk

j , (5)

1 ≤ k ≤ Kj.
Proof: Using (2) and the population constraint we have

NUk
j =

∑M
i=1 ni

∑N
nt=0

∑Kt

h=1 πk
j (nt, h)

and choosing the arbitrary queuet equal toi

NUk
j =

∑M
i=1

∑N
ni=1

∑Ki

h=1 niπ
k
j (ni, h) =

∑M
i=1 Ck

j (i).

3) Multiple Busy Subspaces of a Single Queue:We obtain
a constraint for multiple busy subspaces which resembles
the global balance equations of the MAP service process
considered in isolation.

Theorem 2: The utilizations of queuei in its Ki phases are
in equilibrium, i.e.,

∑M
j=1

Ki
∑

h=1
h 6=k if j=i

qk,h
i,j Uk

i =
∑M

j=1

Ki
∑

h=1
h 6=k if j=i

qh,k
i,j Uh

i , (6)

for all 1 ≤ i ≤ M , 1 ≤ k ≤ Ki.
Proof: (Outline of the proof, see [8] for a complete

derivation.) Consider the cut separating the group of states
Gi

k where queuei is in phasek from the complementary set
of statesCi

k where queuei is in phaseh 6= k. The outgoing
probability flux fromGi

k is the left hand side of (6) and must be
balanced at steady state by an equal incoming flow generated
by the phase change transitions inCi

k. This probability flux is
exactly the right hand side of (6), which completes the proof.

The derived equation imposes that the MAP in isolation and
the MAP observed in the busy subspaces of queuei have the
same stochastic properties, which is expected if the service
process of queuei is independent of the job allocation across
the network and of the service processes of the other queues.

4) Marginal Balance Conditions:Compared to the pre-
vious balances which only involve means such as queue-
lengths or utilizations, the balances described in this section,
calledmarginal balances, are more informative as they relate
individual marginal probabilities.

We have found that there exists a form of partial balance
between marginal state spaces, although the class of models
considered in this paper is non-product-form. This new class of

balances, calledmarginal balances, shows that MAP service
imposes an equilibrium between the departure and the arrival
process of queuei in groups of states belonging to different
busy subspaces. Marginal balance derives from global balance,
but characterizes only the set of marginal queue-length proba-
bilities which makes it always computationally tractable.The
balance is expressed as follows.

Theorem 3 (Marginal Balance): The arrival rate at queuei
when its queue-length isni jobs,1 ≤ ni ≤ N −1, is balanced
by the rate of departures when the queue-length isni +1, i.e.,

∑M
j=1
j 6=i

∑Kj

k=1

∑Kj

h=1

∑Ki

u=1 qk,h
j,i πk

j (ni, u)

=
∑M

j=1
j 6=i

∑Ki

k=1

∑Ki

h=1 qk,h
i,j πk

i (ni + 1, k), (7)

for all 1 ≤ i ≤ M . In the caseni = 0 the marginal
balance specializes to the more informative relation

∑M
j=1
j 6=i

∑Kj

k=1

∑Kj

h=1 qk,h
j,i πk

j (ni = 0, u)

=
∑M

j=1
j 6=i

∑Ki

k=1 qk,u
i,j πk

i (ni = 1, k), (8)

which holds for each phaseu, 1 ≤ u ≤ Ki, with 1 ≤ i ≤ M .

Proof: (Outline of the proof, see [8] for a complete
derivation.)The statement is a consequence of the state space
partitioning that separates the states wherei has no more than
ni enqueued jobs from the states where the queue-length is
at leastni + 1 jobs. Their exchanged probability flux must
be balanced at steady state. The flux from the partition for
statesni to the partition for stateni + 1 is equal to the rate
of a job completed anywhere in the network being routed to
queuei. This is the left hand side of (7), which also accounts
for all possible phases of the job’s departing queuej and the
destination queuei. The opposite flux fromni + 1 to ni has
rate equal to the right hand side of (7), which is the set of all
possible departures fromi that are not routed toi itself.

Following the proof of the marginal balance conditions, we
obtain an additional balance between marginal probabilities.

Corollary 1:
Let k∗, 1 ≤ k∗ ≤ Ki, be a phase of queuei; the following
balance holds for each queue-lengthni, 0 ≤ ni ≤ N − 2,

∑M
j=1
j 6=i

∑Kj

k=1

∑Kj

h=1(q
k,h
j,i πk

j (ni + 1, k∗)

+
∑Ki

u=1
u6=k∗

qk,h
i,j πk

j (ni, u)) +
∑Ki

k=1
k 6=k∗

qk∗,k
i,i πk∗

i (ni + 1, k∗)

=
∑M

j=1
j 6=i

(qk∗,k∗

i,j πk∗

i (ni + 2, k∗) +
∑Ki

k=1
k 6=k∗

(qk,k
i,j πk

i (ni + 1, k)

+ qk,k∗

i,j πk
i (ni + 2, k) +

∑Ki

h=1
h 6=k

qk,h
i,j πk

i (ni + 1, k)))

+
∑Ki

k=1
k 6=k∗

qk,k∗

i,i πk
i (ni + 1, k), (9)



7

for all 1 ≤ i ≤ M . For ni = N − 1 the balance reduces to

∑Ki

k=1
k 6=k∗

qk∗,k
i,i πk∗

i (ni + 1, k∗)

+
∑M

j=1
j 6=i

∑Kj

k=1

∑Kj

h=1

∑Ki

u=1
u6=k∗

qk,h
i,j πk

j (ni, u)

=
∑M

j=1
j 6=i

∑Ki

k=1
k 6=k∗

(qk,k
i,j πk

i (ni+1, k)+
∑Ki

h=1
h 6=k

qk,h
i,j πk

i (ni+1, k))

+
∑Ki

k=1
k 6=k∗

qk,k∗

i,i πk
i (ni + 1, k), (10)

for all 1 ≤ i ≤ M .
Proof: The proof follows similarly to the proof of The-

orem 3 by now considering the set of states wherei has no
more thanni enqueued jobs except for phasek∗, 1 ≤ k∗ ≤ Ki,
where its population can be no more thanni +1. The theorem
follows imposing the equilibrium at the interface with the set
of states where the marginal queue-length is at leastni + 1
and in phasek 6= k∗ and at leastni + 2 and in phasek∗.

B. Idle Condition Reduction

The idle condition reduction can be regarded to as the
complementary of the busy condition reduction described in
the previous section. We consider the idle condition subspace
Ik
j where queuej is empty and the last served job has left the

MAP process atj in phasek, 1 ≤ k ≤ Kj. We obtain a set
of O(KmaxM2) reduced state spaces with dimensionO(N)
by describing the evolution withinIk

j of the queue-length ofi
during phaseh, 1 ≤ h ≤ Ki. The related marginal probability
function is

π̄k
j (ni, h) =

∑

(~n′,~k′)∈S̄k
j (ni,h) π(~n′, ~k′), (11)

where the marginal space is̄Sk
j (ni, h) = {(~n′, ~k′) ∈ Ik

j :

n′
i = ni, k

′
i = h}, the idle subspace isIk

j = {(~n,~k) : nj =
0, kj = k}. Further, by the given definitions,̄πk

j (nj , h) ≡ 0 if
nj ≥ 1 or h 6= k and similarly to the busy condition reduction
πk

j (nj , k) ≥
∑Ki

h=1 π̄h
i (nj , k) for j 6= i, nj ≥ 1. Note that

from the complementarity ofπk
j (ni, h) andπ̄k

j (ni, h), the total
state space probability is immediately obtained as

∑Ki

h=1

∑N
ni=0(π

k
j (ni, h) + π̄k

j (ni, h)) = 1, (12)

for all 1 ≤ i ≤ M . Moreover, let the utilization of queuei in
phaseh within Bk

j ∪ Ik
j be

Jk
j (i, h) =

∑N
ni=1(π

k
j (ni, h) + π̄k

j (ni, h)). (13)

where by definition the second term in the summation may be
rewritten as

∑N
ni=1 π̄k

j (ni, h) = πh
i (nj = 0, k), (14)

which similarly to (12) relates the busy and idle reductions.
Balances similar to those given for the busy condition

reduction can be derived for the idle time reduction. For
instance, following the proof of (5) one immediately obtains
the population constraint

∑M
i=1 C̄k

j (i) = Nπ̄k
j (nj = 0, k), (15)

whereπ̄k
j (nj = 0, k) is the probability ofIk

j and

C̄k
j (i) =

∑N
ni=1

∑Ki

h=1 niπ̄
k
j (ni, h) (16)

is the mean queue-length ofi in phaseh within Ik
j .

The balance equations obtained for the idle reduction are
often redundant with the balances of the busy ones. Therefore,
we are not interested in developing a comprehensive character-
ization of this reduction. We point out two relations deriving
from manipulations of the global balance equations which
characterizeBk

j ∪ Ik
j where j is in phasek; these formulas

cannot be expressed within the probability space of the busy
subspace only.

Theorem 4: The sum of mean queue-lengths during the
subspaceBk

i ∪ Ik
i satisfies

∑M
t=1(C

j
k(t) + C̄j

k(t)) ≥ N
∑Ki

h=1 Jk
j (i, h), (17)

for all 1 ≤ i ≤ M , 1 ≤ j ≤ M , 1 ≤ k ≤ Kj .
Proof: Letting

∑

Bk
j
∪Ik

j
≡

∑

(~n,~k)∈Bk
j
∪Ik

j

, we have

N
∑

Bk
j
∪Ik

j
π(~n,~k) =

∑M
t=1

∑

Bk
j
∪Ik

j
ntπ(~n,~k)

=
∑M

t=1(
∑

Bk
j

ntπ(~n,~k) +
∑

Ik
j

ntπ(~n,~k))

=
∑M

t=1(C
j
k(t) + C̄j

k(t)),

where the last passage follows by definition ofCj
k(t) and

C̄j
k(t) as mean queue-lengths inBk

j and Ik
j . Starting from

the same term we also have

N
∑

Bk
j
∪Ik

j
π(~n,~k) ≥ N

∑Ki

h=1 Jk
j (i, h)

since the utilization of any queuei, 1 ≤ i ≤ M , during
Bk

j ∪ Ik
j cannot be greater than the sum of the probabilities

of all states ofBk
j ∪ Ik

j .
Theorem 5: The performance indexes in busy and idle

subspaces are related by the following equation

∑Ki

h=1,
h 6=k

∑M
j=1 qk,h

i,j Qk
i +

∑M
j=1,
j 6=i

∑Ki

h=1
qh,k
i,j Uh

i

=
∑M

j=1,
j 6=i

∑Kj

h=1

∑Kj

u=1 qh,u
j,i Jk

i (j, h)+
∑Ki

h=1,
h 6=k

∑M
j=1 qh,k

i,j Qh
i ,

(18)

for all 1 ≤ i ≤ M , 1 ≤ k ≤ Ki.
Proof: (Outline of the proof, see [8] for a complete

derivation.)The proof follows similarly to that of Theorem 2
by weighting the contribution of each group of states byni.
We point to the technical report [8] for an extensive derivation.

V. L INEAR REDUCTION BOUNDS

We obtain the LR bounds using the results for the busy and
the idle condition reductions. We determine the values of the
marginal probabilities

π = {πk
j (ni, h), ∀ i, j, k, h, ni}∪ {π̄k

j (ni, h), ∀ i, j, k, h, ni}

so that the linear functionf(π) is a bound on a performance
metric fexact ≡ f(πexact), whereπexact is the set of exact
equilibrium probabilities of the MAP network. In the case
of lower boundsfmin ≤ fexact, the values of the marginal
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LR lower bound

fmin = min f(π)
subject to:
/* preliminary definitions*/

eq. (2),(3),(4),(13),(16);
Ck

j (j) = Qk
j ;

πk
j (nj , k) ≥

∑Ki

h=1 πh
i (nj , k), if nj ≥ 1, i 6= j;

πk
j (nj , k) ≥

∑Ki

h=1 π̄h
i (nj , k), if nj ≥ 1, i 6= j;

πk
j (nj , h) = 0, if nj = 0;

πk
j (nj , h) = 0, if h 6= k;

πk
j (ni, h) = 0, if ni = N , i 6= j;

π̄k
j (nj , h) = 0, if nj ≥ 1;

/* exact characterization*/
eq. (5), (6), (7), (8), (9), (10), (15), (17), (18);

/* reduction constraints*/
eq. (12), (14);

/* feasibility of results*/
πk

j (ni, h) ≥ 0, for all πk
j (ni, h) ∈ π.

π̄k
j (ni, h) ≥ 0, for all π̄k

j (ni, h) ∈ π.

Fig. 4. Linear program determining a lower bound on an arbitrary linear
performance indexfexact = f(πexact).

probabilities inπ can be determined using linear programming
[4] as follows.

Proposition 1 (LR Lower Bound): The program in Figure 4
returns a lower boundfmin ≤ f(πexact).

Proof: All the relations in the linear program are exact as
we have proved in the previous sections; thereforeπ = π

exact

is a feasible solution. Since linear programming always returns
the optimum solution

min f(π) = min{f(π) | feasible π},

we conclude thatmin f(π) ≤ f(πexact) becauseπexact is a
feasible value ofπ.
The last proposition generalizes immediately if the linear
program is reformulated to compute an upper bound (LR
Upper Bound)fmax = max f(π) ≥ f(πexact); therefore
the same constraints in Figure 4 can be used both for upper
and lower bounds and only the objective function has to be
modified.

The computational costs of the LR technique are indeed
feasible for practical applications, e.g., we have solved the
linear program for a model with ten MAP(2) queues and
N = 50 jobs using an interior point solver in approximately
four minutes; forN = 100 the solution of the same model
is found in approximately ten minutes suggesting good scal-
ability. In general, the complexity of computing bounds with
the linear program in Figure 4 grows asO(lp(M2Kmax +
MN, K2

maxM2N)), wherelp(r, c) is the computational cost
of solving a linear program withr rows andc columns. The
number of rows is either dominated by the number of possible
marginal balances for the caseni ≥ 1 that isO(MN) or by the
number of inequalities (17) which grows asO(M2Kmax); the
number of columns isO(K2

maxM2N) because the cardinality
of π is upper bounded by2K2

maxM2N .

TABLE II
L INEAR AND QUADRATIC REDUCTION EFFECTIVENESS

total states total states
marginal spaces original space

M N Kmax LR QR
3 50 2 1.84 · 10

3
9.36 · 10

4
5.30 · 10

3

3 100 2 3.64 · 10
3

3.67 · 10
5

2.06 · 10
4

3 200 2 7.24 · 10
3

1.45 · 10
6

8.12 · 10
4

5 50 2 5.10 · 10
3

2.60 · 10
5

1.27 · 10
6

5 100 2 1.01 · 10
4

1.02 · 10
6

1.84 · 10
7

5 200 2 2.01 · 10
4

4.04 · 10
6

2.80 · 10
8

10 50 2 2.04 · 10
4

1.04 · 10
6

5.03 · 10
10

10 100 2 4.04 · 10
4

4.08 · 10
6

1.71 · 10
13

10 200 2 8.04 · 10
4

1.62 · 10
7

7.04 · 10
15

To appreciate the reduction of the state space, Table II
compares the number of states in the LR marginal state
spaces with the original state space size in models with larger
population and number of queues. The column with results
for the QR transformation is discussed in Section VI-A. In
the table, all queues have MAP service times withKmax

phases. The number of states in the LR marginal state spaces
grows linearly in the population size, whereas the growth for
the original state space is combinatorial. Here, the reduced
spaces have cardinality that can be several orders of magnitude
smaller than the original state space.

A. Discussion

The balances obtained in Section IV provide a quite ac-
curate characterization of the underlying Markov process of
the MAP network. However, the number of exact relations
remains much smaller than the number of the marginal prob-
abilities πk

j (ni, h) and π̄k
j (ni, h). We stress that our exact

characterization is in general under-determined and describes
a family of possible equilibria for the underlying Markov
process, among which we cannot distinguish the exact one.
The linear programming approach we have adopted selects
the equilibrium that provides a worst-case or best-case bound
on a given performance metric.

Because of the complexity of the feasibility region described
by (2)-(18), it is also very hard to establish the relative
importance of each equation with respect to the others, as
well as determining analytical linear independence conditions
among the balance equations. In our experiments, we have
frequently observed that removing either equation (7) or (18)
reduces significantly the quality of the bounds. Conversely, we
have found that (9) and (10) improve accuracy only on certain
models. Standard sensitivity analysis of linear programs [4]
may be used as a tool for investigating the relative importance
of a certain balance equation for the model under study.

VI. A NALYSIS OF LOAD-DEPENDENTMODELS

An important generalization of the LR bounding technique
is the analysis of models including load-dependent servers,
i.e., resources that dynamically change their rate of service
according to the number of enqueued jobs. This extension is
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fundamental to use in MAP queueing networks the following
types of resources:

• delay servers, i.e., resources where jobs receive immedi-
ately service without queueing. Delay servers are impor-
tant to model a customer’sthink timebefore submitting a
new request to the system. It is a classic result that a delay
server with exponential service times can be modeled as
a queue where the service rate grows linearly with the
number of enqueued jobs [24]. We use this property to
support the inclusion of delay servers with exponential
service times in MAP queueing networks.

• load-dependent devices, i.e., resources that model certain
physical devices where service times are affected by the
current queue-length size. For instance, disk drives can
be approximated as load-dependent stations [32].

• flow equivalent servers, i.e., service centers that abstract
a sub-network of several queues by reproducing its mean
throughput as a function of the sub-network popula-
tion [13]. It is easy to find examples showing that, for
MAP queueing networks, flow equivalent aggregation is
in general an approximate method, i.e., replacing some
exponential queues of a MAP queueing network with
a flow equivalent server affects the value of the mean
performance indexes.

The remainder of this section is organized as follows. In
Section VI-A we discuss how the exact balance equations
found in Section IV generalize to the load-dependent case.
In particular, we argue that a more general reduction of the
state space, where the number of states grows quadratically
with the populationN , is required to reduce the model size
while preserving the exactness of the representation. This
finding is consistent with previous work on product-form
networks, where the computational costs of load-dependent
models grow quadratically asO(N2) compared to the linear
O(N) complexity of the constant-rate case [24]. Therefore, we
define the Quadratic Reduction (QR) bounds resulting from
this new description of the state space and illustrate their
accuracy on case studies.

A. Load-Dependent MAP Queueing Networks

MAP queueing networks immediately generalize to the
load-dependent case by letting service rates be a function of
the queue-length. Defineqk,h

i,j (ni) as the rate of transitions
from state(~n,~k) to (~n−~ei +~ej, ~k

′), where the current queue-
length of stationi is ni and~k and~k′ differ only for ki = k,
k′

i = h. This rate can be computed as

qk,h
i,j (ni) = αi(ni)q

k,h
i,j , (19)

whereqk,h
i,j is defined as in (1) andαi(ni), 1 ≤ ni ≤ N , is a

user-specified scaling function for the service rate of station i
when its queue-length size isni. According to this definition,
if ni = 1, for all stations1 ≤ i ≤ M , then all service
processes are constant-rate and this case reduces to the class of
MAP networks considered in the previous sections; otherwise,
the model is a load-dependent MAP queueing network. In
particular, if qk,h

i,j (ni) = niµi, andKi = 1, then the service

times are exponentially distributed with rate growing linearly
with the queue-length size; thus, resourcei becomes a delay
server [24].

In order to show that the balance equations found in Section
IV do not generalize to the load-dependent case without a ma-
jor change of the state space reduction, consider for example
the marginal balance (7). The left-hand side of (7) captures
departures from queuej using the termqk,h

j,i πk
j (ni, u). Since

the queue-lengthnj does not appear explicitly inπk
j (ni, u),

in order to replaceqk,h
j,i with qk,h

j,i (nj) we first need to express
alsonj . This is not possible with the linear reduction described
in the previous sections which does not allow to jointly express
ni andnj and thus requires a more general class of marginal
state spaces.

Definition 2: Thequadratic marginal state spaceof queuei
in phaseh and queuej in phasek is the state space describing
the joint state of queuei’s queue-length while its phase ish,
1 ≤ h ≤ Ki, and queuej’s queue-length while its phase isk,
1 ≤ k ≤ Kj. The cardinality of the quadratic marginal state
spaces grows asO(N2K2

max) and the underlying marginal
probability function is

π(nj , k, ni, u) =
∑

(~n′,~k′):n′

j=nj ,n′

i=ni,

k′

j=k,k′

i=u

π(~n′, ~k′), (20)

subject to the symmetry constraintπ(ni, k, nj, u) =
π(nj , u, ni, k), for all 0 ≤ ni ≤ N , 0 ≤ nj ≤ N , 1 ≤ k ≤ Ki,
1 ≤ u ≤ Kj .
A comparison of the total number of states in the marginal
state spaces generated by the quadratic reduction with the
original state space and the linear reduction is given in Table II.
The table indicates that the QR transformation, although more
expensive than the LR transformation, is still highly scalable
with respect to the number of states in the original Markov
process.

The probabilitiesπ(nj , k, ni, u) allow the generalization of
the exact balance equations found in Section IV to the load-
dependent case. The resulting formulas are obtained using
replacement rules of the type:

qk,h
i,j πk

i (nj , u) →
∑N

ni=1 qk,h
i,j (ni)π(ni, k, nj, u), (21)

qk,h
j,i πu

i (nj , k) →
∑N

nj=1 qk,h
j,i (nj)π(ni, u, nj, k), (22)

qk,h
j,i π̄u

i (nj , k) → qk,h
j,i (nj)π(ni = 0, u, nj, k), (23)

1 ≤ k, h, u ≤ Ki, which derive from the fact that in theorem
proofs the ratesqk,h

i,j cannot be factored out of the summations
if these rates are load-dependent. For example, using the
replacement rules, the marginal balance (7) becomes in the
load-dependent case

∑M
j=1
j 6=i

∑Kj

k=1

∑Kj

h=1

∑Ki

u=1

∑N
ni=1 qk,h

j,i (nj)π(nj , k, ni, u)

=
∑M

j=1
j 6=i

∑Ki

k=1

∑Ki

h=1 qk,h
i,j (ni + 1)π(ni + 1, k, ni + 1, k),

for 1 ≤ i ≤ M , 1 ≤ ni ≤ N − 1. Using the same approach,



10

the balance (18) generalizes similarly as

∑Ki

h=1,
h 6=k

∑M
j=1

∑N
ni=1 qk,h

i,j (ni)niπ(ni, k, ni, k)+

∑M
j=1,
j 6=i

∑Ki

h=1

∑N
ni=1 qh,k

i,j (ni)π(ni, h, ni, h)

=
∑M

j=1,
j 6=i

∑Kj

h=1

∑Kj

u=1

∑N
nj=1 qh,u

j,i (nj)
∑N

ni=0 π(ni, k, nj, h)

+
∑Ki

h=1,
h 6=k

∑M
j=1

∑N
ni=1 qh,k

i,j (ni)niπ(ni, h, ni, h),

for all 1 ≤ i ≤ M , 1 ≤ k ≤ Ki. The expression of the other
load-dependent balance equations are obtained similarly to the
two extensions illustrated above.

The replacement rules also show that in the quadratic state
space we do not need to distinguish between busy and idle
condition, since these are now immediately determined by the
state of queuei in π(ni, k, nj , u). That is, the subset of values
ni = 0 refers to the idle condition, the subsetni ≥ 1 refers to
the busy condition of queuei. Therefore, some of the equations
used in the LR bounds to impose consistency between the
busy and idle condition equations are not needed in the load-
dependent analysis, e.g., (14) can be removed.

A further advantage of the quadratic state space reduction
is that the increased detail of the representation allows to
formulate balance equations that cannot be expressed with the
linear state space reduction. These additional equations make
bounds defined on the quadratic marginal state spaces always
slightly more accurate than the LR bounds.

Theorem 6: The quadratic state space reduction satisfies
the following second-order population constraint:

∑M
i,j=1

∑N
ni,nj=1

∑Ki

h=1

∑Kj

k=1 ninjπ(ni, h, nj, k) = N2.

(24)

Proof: Consider the summation

S =
∑

(~n,~k)(n1 + n2 + . . . , +nM )2π(~n,~k).

Since for all statesn1 + n2 + . . . , +nM = N , we have
immediately

S =
∑

(~n,~k) N2π(~n,~k) = N2
∑

(~n,~k) π(~n,~k) = N2.

However, expanding(n1 + n2 + . . . , +nM )2 we have also

S =
∑M

i=1

∑M
j=1

∑

(~n,~k) ninjπ(~n,~k),

which can be decomposed into the left hand side of (24).
The generalized balances developed above allow the defini-

tion of a new class of upper and lower performance bounds
as shown in the next section.

B. Quadratic Reduction (QR) Bounds

Based on the exact characterization of load-dependent MAP
queueing networks discussed above, we define theQuadratic
Reduction (QR) boundswith a linear programming approach
similar to the LR bounds. The linear program used for the
QR bounds is shown in Figure 5; here, e.g., the reference to
(7) refers to the generalization of (7) obtained by applyingthe
replacement rules for the load-dependent case given in the pre-
vious section. The main changes with respect to the LR lower

QR lower bound

fmin = min f(π)
subject to:
/* preliminary definitions*/
eq. (2),(3),(4),(13),(16);
∑N

nj=0

∑Kj

k=1 π(nj , k, nj, k) = 1, for all 1 ≤ j ≤ M ;
π(nj , k, ni, h) = 0, if i = j, ni = nj , h 6= k;
π(nj , k, ni, h) = 0, if i = j, ni 6= nj ;
π(nj , k, ni, h) = 0, if i 6= j, ni + nj > N ;
π(nj , k, ni, h) = π(ni, h, nj, k), for all ni, nj, h, k;
π(nj , k, nj, k) =

∑N−nj

ni=0

∑Ki

h=1 π(nj , k, ni, h), if i 6= j;
/* exact characterization*/
eq. (24), (5), (6), (7), (8), (9), (10), (15), (17), (18);

/* feasibility of results*/
π(nj , k, ni, h) ≥ 0, for all (nj , k, ni, h) ∈ π.

Fig. 5. Linear program defining the QR lower bound

TABLE III
INPUT PARAMETERS USED IN THE GENERATION OF RANDOM MODELS

Network Value MAP(2) Value
M 3 mean random in[0, 1]
pi,j random in[0, 1] CV random in[0.5, 10]
N all in [10, 1000] skewness random in[2, 250]

# of MAPs 1 γ2 random in[.00, .99]

bound in Figure 4 are the different preliminary definitions,the
addition of (24), and the removal of the reduction constraints
(12) and (14). All equations numbered from (2) to (18) should
be first generalized to the load-dependent case using the
replacement rules given in Section VI-A. Due to the increased
number of probability terms, the computational cost of the QR
bounds is of the order ofO(lp(M2K2

maxN2, M2K2
maxN2)),

where the dominant cost is enforcing all symmetry constraints
π(ni, k, nj, u) = π(nj , u, ni, k).

VII. A CCURACY VALIDATION

We assess the accuracy of the LR and QR bounds us-
ing the following validation methodology. We consider both
randomly-generated models and representative case studies,
see Table III for a description of random model parameters.
We evaluate the maximal relative error of response time
bounds with respect to the exact global balance solution of
the MAP queueing network. Due to the state space explosion,
the experimentation using exact global balance solutions is
prohibitive for MAP networks with four or more queues and
populationN ≥ 100. Given its mean,CV, skewness, and
autocorrelation decay rateγ2, a MAP(2) is generated using
the exact moment and autocorrelation matching formulas in
[11]. For each random queueing network model, we use the
linear programs in Figures 4-5 to compute upper and lower
LR and QR boundsXmax andXmin on the mean throughput
f(π) = X . Then, using Little’s Law, we get the response
time boundsRmin = N/Xmax andRmax = N/Xmin which
are used to compute absolute relative errors with respect to
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TABLE IV
RESULTS OFRANDOM EXPERIMENTS

Maximal Relative Error∆
M mean std dev median max

Rmax 3 0.013 0.021 0.004 0.141
Rmin 3 0.022 0.020 0.019 0.126

the exact response timeR. We do not report errors on other
measures due to lack of space, but we have observed that
they are in the same range as those of response time. The
validation has used the GNU Linear Programming Kit [20]
to solve the linear programs of LR and QR bounds on an
Intel Xeon 3.73GHz starting from an AMPL specification [18].
AMPL specifications of the proposed bounds are available for
download athttp://www.cs.wm.edu/MAPQN/.

A. Random Models

LR Bounds. In order to evaluate the general quality of
the LR bounds, we have evaluated10, 000 random models.
The models are generated drawing random numbers from a
uniform probability distribution and according to the speci-
fications in Table III. Each random model is solved for all
possible populations valuesN ∈ [10, 1000] and the following
absolute value of the maximal relative error is computed

∆bnd = max
N

∣

∣

∣

∣

Rbnd(N) − Rexact(N)

Rexact(N)

∣

∣

∣

∣

,

whereRexact(N) is the response time of the exact solution
computed for the network considered with populationN and
Rbnd(N) is the LR bound evaluated with the same popula-
tion, eitherRmax(N) or Rmin(N). We stress that the∆bnd

error function is a conservative estimator since it returnsthe
maximumerror of Rbnd over all evaluated populations. Thus,
although we have often observed the convergence of the LR
bounds to the exact response time value for largeN , this is
accurate asymptotic behavior is not accounted by the∆bnd

metric and only the worst case error is measured.
Table IV indicates that the LR bounds perform extremely

well. The table reports absolute maximal relative error (0 ≡
0%, 1 ≡ 100%) over10, 000 random MAP queueing networks
for the response timeR = N/X (Rmin=lower LR bound,
Rmax=upper LR bound). The mean error is1%−2% for both
bounds with a small standard deviation; the median is less
than the mean, indicating that the asymmetry of the error dis-
tribution is more concentrated on small errors. The maximum
error is found to be14.2% for the response time upper bound
and12.6% for the lower bound. We have inspected carefully
these cases and found that models with more than10% error
in at least one of the two bounds account for only1% of the
total number of experiments. Furthermore, in these models,
the LR lower bound seems to deteriorate by high variability
and burstiness, while the worst case error of the LR upper
bound is found for MAPs with low or moderate burstiness.
The difference in sensitivity to MAP parameters is a positive
property of the LR bounds, as inaccuracies in one bound can
be compensated by the accuracy of the other bound.

In a preliminary version of this paper [9], we have reported
a complete sensitivity analysis of LR bounds with respect to
the parameters considered in Table III. The results in [8], [9]
indicate that the LR bounding methodology is very robust
with respect to perturbations of the MAP distribution and
burstiness characteristics. Changes in the routing probabilities
have limited impact on the maximum error too and the worst
case is found to be in models with balanced routing. [9]
reports sensitivity experiments on queueing network models
with larger number of MAPs or larger number of queues.

QR Bounds. In order to validate the relative accuracy of the
QR bounds with respect to the LR bounds, we have solved the
same random models considered above by interpreting them
as load-dependent models. This can be done easily by setting
the scaling factorαi(n) = 1 for all queuesi and queue-
length values1 ≤ n ≤ N . The numerical results of these
random experiments are essentially identical to those shown
in Table IV: the maximum errors of the upper and lower QR
bounds remain14.1% and12.6%, respectively. Also the other
statistical indicators in Table IV change by less than0.01%.
These results suggest that using the QR bounds does not imply
increased accuracy with respect to the LR bounds, although the
computational costs of the former are much higher than those
of the latter. Nevertheless, the QR transformation remainsthe
only feasible technique for load-dependent queueing networks
where the LR bounds cannot be applied. This justifies the use
of QR bounds.

B. Balbo’s Model

Following the last observation in the previous subsection,
we now focus on the validation of QR bound accuracy on a
case study of load-dependent MAP queueing networks. Here,
we do not consider random load-dependent models because
random scaling factorsαi(ni) are hardly representative of
a real system behavior, i.e., load-dependency tends to have
regular analytical shapes (e.g., “inverted U-shapes” in models
of memory thrashing phenomena [33]).

We use the QR bounds to evaluate the example network
given in Figure 1 when this is augmented with a delay server
that is placed on the feedback loop of queue 1. Because of
the presence of a delay server, the model is load-dependent
with α4(n4) = n4, where the index associated to the delay
server is4. Similarly to Balbo’s example model, the routing
probability from queue 1 to queue 2 isp1,2 = 0.7, from queue
1 to queue 3 isp1,3 = 0.2 while the probability of entering
into the feedback loop of the delay server isp1,4 = 0.1. Since
the feedback loop now includes the delay server, it is always
p1,1 = 0 and a job completed at the delay server re-enters the
system by first joining queue 1. We use this configuration to
evaluate the accuracy of the QR bounds as a function of the
number of jobsN and of the mean think timeZ at the delay
server. Because of the prohibitive cost of the exact evaluation
of a queueing network with four stations and tens of jobs, we
use the relative gap between the upper and lower bounds as a
descriptor of the QR bounds accuracy.

The accuracy results of QR bounds on Balbo’s model
augmented with the delay server are given in Table V. The
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TABLE V
BALBO ’ S MODEL: QR BOUND ACCURACY ON RESPONSET IMES

Z/µ−1

3
N bnd gap Z/µ−1

3
N bnd gap

0.5 10 5.1% 3 10 7.5%
0.5 25 2.3% 3 25 3.1%
0.5 50 1.4% 3 50 1.8%
1 10 6.2% 4 10 8.8%
1 25 2.7% 4 25 3.6%
1 50 1.6% 4 50 2.1%
2 10 6.8% 5 10 12.2%
2 25 2.8% 5 25 4.5%
2 50 1.7% 5 50 2.5%

metric “bnd gap” indicates the relative errorRmax/Rmin −1,
between upper and lower response time bounds. The table
reports a sensitivity analysis with respect toN and Z: N
ranges between10 and 50, and Z is instead defined by its
ratio to the mean service timeµ−1

3 of the bottleneck resource,
i.e., queue3, and ranges between0.5µ−1

3 and 5µ−1
3 . In this

model, low values ofZ indicate networks where jobs tend
to queue at the bottleneck resource, queue3, and where the
system behaves not too differently from a model with constant-
rate servers only. Conversely, whenZ is large, jobs tend to
spend most of their cycle time at the delay server waiting to
join the queues; this makes the model much more complex
than constant-rate MAP queueing networks.

The results in Table V for increasing values ofZ and N
indicate that the good accuracy of the QR bounds is consistent
with the results of the random model validation, showing a
maximum gap between upper and lower QR bounds of about
12%. The results also indicate that QR bound accuracy is
affected differently by changes inZ or N : for increasing
values of the think timeZ, the QR bound accuracy decreases,
which is attributed to the difficulty of estimating the number
of active jobs circulating outside the delay server. Conversely,
for increasing values of the total populationN , the QR bound
accuracy increases, dropping to an error of just1.5 − 2% for
medium congestion levels (N = 50).

Summarizing, this case study based on the analytical model
in [6] indicates that QR bounds provide good accuracy levels
for different choices of the think timeZ and of the number of
jobsN . The most important observation is that the QR bounds
accuracy grows quickly as the number of jobsN increases.
This is a nice property of the proposed bounds, because
evaluating system performance under burstiness conditions is
meaningful only if there are enough requests to create large
fluctuations in the system utilization and queue-lengths: this
often requires large populations.

VIII. A NALYSIS OF TPC-W E-COMMERCE SYSTEM

In this section, we present an application of MAP queueing
networks to the performance analysis of an enterprise appli-
cation running on a multi-tier architecture. We consider the
e-commerce system studied in [10], [27] subject to a TPC-W
benchmark [19], which simulates the operations of an online
bookstore. The e-commerce system is composed by a Web
server (Apache), an application server (Tomcat), and a back-
end database (MySQL 5.0); all machines run Linux Redhat

Fig. 6. MAP queueing network model of TPC-W e-commerce system

µ2

MAP(2)

DB Server

µ1

Exponential

Front Server

Clients

Z

9.0. We have used the following experimental setup: the Web
server and the application server are installed on the same front
server, a 1-way 3.2 GHz Pentium D; the database resides on a
2-way 3.2 GHz Pentium D, and the incoming TPC-W requests
depart from two 2-way 3.2 GHz Pentium D machines. Further
details on the multi-tier architecture can be found in [10],[27].

In the TPC-W benchmark, the requests are directed to a set
of HTML pages which include both static images served lo-
cally from the front server and dynamic content retrieved from
the database server. The HTTP requests are generated by a set
of N clients, called Emulated Browsers (EBs), which generate
a new request inZ seconds after completing the download
of the previously requested page (HTML and images). The
distribution of the think times is negative exponential with
rate Z−1. Because of the closed-loop structure of the TPC-
W workload, where EBs wait HTTP replies before delivering
the next request, the number of simultaneous active sessions
is upper bounded byN and the system can be modeled as
a closed network. We model this closed system as a MAP
queueing network composed by two servers representing the
front and database servers, respectively, followed by a delay
server that models the think timesZ of the EBs. An illustration
of this MAP queueing network is given in Figure 6. We point
to [10] for a discussion on why this queueing network provides
a realistic model of the TPC-W system.

The service processes of the two queues in Figure 6 are
parameterized consistently with the processes obtained in[10]
from measurements of the browsing mix workload of the
TPC-W benchmark. The service process at the front server
is modeled as an exponential process with mean service time
µ−1

1 = 5.58 ms; the think times have mean equal toZ = 500
ms. The service process at the database, instead, is found to
be significantly affected by burstiness and therefore it is fitted
with a two-phase MAP with meanµ−1

2 = 3.26 ms,CV equal
to 4, skewness equal to8.58, and autocorrelation decay rate
γ2 = 0.86. For increasing values ofN , the measuredmean
service demand of both servers changes as reported in Table
VI; thus, also in the model we scale the mean service time
at the two servers according to the values in the table for all
classes of models considered in this section.

Since measurements on the real system are obtained in terms
of server utilizations, in Table VII we focus on the perfor-
mance analysis of the utilizationU1(N) of the front server3.

3Note that since the utilization is inversely proportional to the end-to-end
response times, the considerations in the previous sections for the lower (resp.
upper) QR response time bounds apply here to the upper (resp.lower) QR
utilization bounds.
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TABLE VI
MEAN SERVICE DEMANDS OF FRONT AND DATABASE SERVERS

Mean service time [ms]
N/EBs front server DB server

25 5.58 3.26
50 5.00 2.75
75 5.00 3.38
100 5.32 3.38
150 5.32 4.52

Here, we report the results for the MAP queueing network
analysis (exact global balance, upper and lower QR bounds),
for product-form queueing networks (PF QN) analyzed by
the MVA algorithm, and for GI queueing networks (GI QN)
solved exactly by global balance. The last column reports the
mean measured utilization values at the front server on a two
hours experiments with the browsing mix of TPC-W, where
utilization samples are collected every five seconds. We remark
that this model can be analyzedonly by the QR bounds, since
the presence of think times between consecutive requests to
the system has imposed the inclusion of a delay server in the
queueing network.

We first make the obvious observation that modeling meth-
ods do not provide results that are identical to the measured
values, e.g., even if we solve MAP queueing networks using
an exact evaluation of the underlying Markov chain, the pre-
dicted utilization is always slightly different from the real one
because of the unavoidable parameterization errors deriving
from estimating service characteristics from measured traces.
The results in Table VII can be interpreted by first noting
that the quality of the different modeling techniques changes
radically in the jump fromN ≤ 75 to N ≥ 100. As observed
before, medium or large populations are needed to make the
effects of burstiness significant for system performance. Table
VII indicates that forN ≤ 75 all methods are essentially
accurate with an approximation error no more than10.8% of
the measured utilization for the MVA method whenN = 75;
in these cases, GI models are the most accurate, suggesting
that the distribution, and not the burstiness, of the service times
is the main determinant of system performance. ForN ≥ 100,
instead, the performance effects of burstiness are strong and
the much increased accuracy of MAP queueing networks
solutions is immediately visible compared to product-formand
GI models, which suffer large errors up to35.48% (0.9997)
and 26.98% (0.9370) of the measured utilization (0.7379),
respectively. MAP queueing networks, instead, have a small
approximation error also on these problematic cases.

Summarizing, the results of this section on the performance
analysis of a real system indicate that MAP queueing networks
are a much more robust performance analysis methodology
than product-form and GI models. The proposed QR bounds
introduce approximation errors on the global balance solution
that are much lower than the inaccuracies of product-form and
GI estimates. This performance analysis example on a real
system provides a strong argument for the adoption of MAP
queueing networks for capacity planning.

TABLE VII
PERFORMANCEANALYSIS OF TPC-WE-COMMERCESYSTEM. Bold

entries are errors greater than10% with respect to the measured utilization.

Front Server UtilizationU1(N)

MAP QN PF QN GI QN Real System
N Lower

QR
Exact Upper

QR
MVA Exact Measured

25 0.2591 0.2631 0.2730 0.2727 0.2659 0.2733
50 0.4457 0.4550 0.4883 0.4875 0.4578 0.4602
75 0.6262 0.6405 0.7091 0.7194 0.6466 0.6495
100 0.7572 0.7800 0.8066 0.9479 0.8410 0.7445
150 0.7269 0.7687 0.7829 0.9997 0.9370 0.7379

IX. CONCLUSIONS

Recent workload characterizations have shown that nonre-
newal service processes are good abstractions of real systems’
workloads, especially of those found in storage systems and
Web servers [26], [28], [36]. We have observed that existing
queueing network models, which always consider renewal ser-
vice processes and do not account for nonrenewal features such
as autocorrelation in service times, can grossly overestimate
or underestimate actual system performance.

We have presented a solution to this problem by studying a
new class of MAP closed networks that supports nonrenewal
service. We have introduced a class of exact state space
reductions that are computationally tractable and allow the
efficient computation of upper and lower linear reduction
(LR) and quadratic reduction (QR) bounds on arbitrary MAP
network performance indexes, such as utilizations, through-
puts, response times, and queue-lengths. QR bounds are more
expensive to evaluate than LR bounds, but their fundamental
advantage is that they generalize also to the evaluation of
models with delay servers and load-dependent service times.
To the best of our knowledge, this is the first time that bounds
for queueing networks with nonrenewal service are obtained.
The LR and QR bounds AMPL specification together with ad-
ditional resources on MAP queueing networks are available at
http://www.cs.wm.edu/MAPQN/. Experiments indicate
that the LR and QR bounds are extremely accurate, showing
very low relative error on the response time estimates.

Finally, we have shown the applicability of the proposed
bounds to the capacity planning of a real TPC-W e-Commerce
system. Numerical results indicate that MAP queueing net-
works evaluated either exactly or with bounds are always
very close to the measured server utilization values, whereas
traditional MVA and GI models show considerable errors up to
35% and27% of the measured values, respectively, arguing for
the adoption of MAP queueing networks for capacity planning
of system with bursty workloads.
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