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Abstract—Parameterizing performance models for multi-
threaded enterprise applications requires finding the service rates
offered by worker threads to the incoming requests. Statistical
inference on monitoring data is here helpful to reduce the over-
heads of application profiling and to infer missing information.
While linear regression of utilization data is often used to estimate
service rates, it suffers erratic performance and also ignores a
large part of application monitoring data, e.g., response times. Yet
inference from other metrics, such as response times or queue-
length samples, is complicated by the dependence on scheduling
policies. To address these issues, we propose novel scheduling-
aware estimation approaches for multi-threaded applications
based on linear regression and maximum likelihood estimators.
The proposed methods estimate demands from samples of the
number of requests in execution in the worker threads at the
admission instant of a new request. Validation results are shown
on simulated and real application datasets for systems with multi-
class requests, class switching, and admission control.

I. INTRODUCTION

Predictive models of enterprise applications are important
decision-making tools for managing the quality-of-service
(QoS) offered by data center applications to end-users [1].
They are enjoying a resurgence of interest in cloud computing
since deployment automation involves a significant amount of
decision-making, e.g. for cost minimization [2]. For complex
applications, it is however difficult to parameterize models
appropriately, in particular to specify the service demands
placed by each request on resources of the deployment en-
vironment. By service demand we refer to the total effective
time a request seizes the resource, e.g. a CPU, to fulfill its
requirements. Furthermore, the focus is often on modelling
CPU consumption, for which existing methods mostly leverage
utilization samples. However, these may not be available in
all deployment environments, for example in platform-as-a-
service (PaaS) clouds where the resource layer is hidden
to the application and the system administrator can access
only response time measurements and performance counters
monitored internally to the application.

To cope with these issues, we propose two new estimation
methods, RPS and MLPS, and build on top of them a combined
approach, MINPS, that is able to accurately estimate the
mean service demand placed on resources by a multi-threaded
application. The need for advanced statistical estimation meth-
ods arises from the fact that demands describe time-varying
resource consumption, which is often difficult to characterize
in a deterministic fashion. For example, caching is a common

source of unpredictability for request execution times [3]. More
generally, demands depend on workload properties (e.g., file
size distributions), on the data provided as input to the system,
and on the contention at the physical resources (e.g, cache
hit ratios, number of concurrent requests, memory contention,
etc.). This complexity poses challenging estimation problems
and has thus lead to a significant increase of the number of
papers on demand estimation in the last five years [4]–[14].

The method we propose differs from existing approaches
in that, to the best of our knowledge, it is the first one to
apply probabilistic descriptions in estimation problems for
multi-threaded applications. For example, maximum likelihood
formulations have been attempted only for simpler first-come
first-served queues [9]. We show that current methods are
not always well suited for the multi-threaded application
considered, as these are based on utilization measures, and
on analytic results valid for product-form queueing networks,
which do not describe well our reference application.

In essence, our main contributions are as follows: i) we
introduce RPS, a regression-based scheduling-aware algorithm,
that is able to accurately estimate the mean service demand of
users belonging to multiple classes, in a multi-threaded appli-
cation running on a single processor; ii) to deal with the multi-
processor case we introduce MLPS, a maximum-likelihood
scheduling-aware demand estimation algorithm, that, relying
on a Markovian description, is able to estimate the mean
resource demand of a multi-threaded application deployed on
multiple processors; iii) we combine RPS and MLPS into a
single method, MINPS, which uses both methods to produce
accurate estimates at all loads of the service demands for
multi-threaded applications. The goal of the method is to
parameterize processor sharing (PS) queueing models, which
are useful idealizations of contention at resources such as
CPUs that operate under round robin scheduling or egalitarian
disciplines. Using validation on simulation data and on empir-
ical datasets from a real enterprise application, SAP ERP, we
show that the methods proposed have a performance similar
to the attainable lower bound provided by a method based
on complete information. This performance holds for many
different setups, including a broad load range, heterogeneous
service demands, and non-exponential service times.

The paper is organized as follows. In Section II we
overview related work on demand estimation. In Section III we
present the system model under analysis, illustrate how current
methods fail to analyse this type of system, and introduce the
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estimation methodology. Next, Section IV presents a method
based on complete information, which provides us with a prac-
tical lower bound on the attainable estimation error. Sections
V and VI introduce the RPS and MLPS methods, respectively,
together with some initial results. In Section VII we present the
MINPS method, and provide experimental results that validate
its performance. Section VIII presents a case study that shows
how the MLPS method behaves on a production system. This
is followed by conclusions in Section IX.

II. RELATED WORK

The problem of resource demand estimation has received
significant attention recently, especially due to the rise of
self-adaptive systems, where resource allocation decisions are
based on analytic resource models [11]. These models allow
predicting the impact of allocation decisions, based on an
explicit description of the resources involved and the workload
to be faced. The effectiveness of these models depends heavily
on the accuracy of the estimated parameters. While arrival
rates are usually available or easy to obtain from server logs,
resource demands are difficult to estimate as they cannot
be measured directly. A number of approaches are based
on regressing total CPU utilization and class throughputs to
obtain class estimates of resources demands [5], [12], [13],
[15]. Considering multiple classes is important since requests
belonging to different classes can have very different resource
demands. While these methods have gained wide acceptance,
their drawback are multiple and include, for example, their
suffering of multicollinearity, which can heavily affect the
estimates and their confidence intervals [4], [5]. Other ap-
proaches have been put forward to overcome some of the
problems of regression-based methods, including the use of
Kalman filters [6], [14], [16], clustering [7], [8], and pattern
recognition methods [17]. Utilization-based methods require
direct resource measurements, which may not be available,
such as in PaaS deployments.

Other estimation methods rely on a different set of mea-
surements, such as class response times. In [11], for instance,
the problem of estimating a set of unknown resource demands
is posed as an optimization problem where the objective
function is the difference between the measured response time
and the same metric obtained from an analytic model when
using the estimated resource demand. Similar approaches have
been taken in [10], [18], where the resources are modeled as
a product-form open queueing network, from which explicit
expressions for the mean response times can be obtained. The
methods proposed in this paper also make use of the measured
response times to estimate the class resource demands. In our

case, however, we face a non-product form model, including
a fixed capacity region, an admission control mechanism, and
the possibility of requests switching class. While these features
make the model more realistic, they also pose additional diffi-
culties to the estimation problem. In this direction, a previous
work [9] considers a similar setup as ours, but assuming a
single FCFS server, while we focus on a PS server, which is
a much closer abstraction of the actual behavior of the CPUs.
Furthermore, we also consider a multi-core architecture that
has been scarcely considered in previous models, as it increases
the model complexity [3].

III. BACKGROUND

The reference system may be modelled as a layered
queueing network, such as the one represented in Figure 1.
The reference application, shown in Figure 1(a), runs on a
multi-threaded server, for example an application server or a
servlet container, configured with a set of W worker threads.
A worker thread is an independent software processing unit
capable of serving requests. Requests arrives from the outside
world, either in an open or closed-loop fashion, and sit in an
admission buffer until they are dispatched to a worker thread.
The admission control policy is first-come first-served and
work-conserving, i.e., no worker can remain idle if there is
a request sitting in the admission buffer.

The resource layer that processes the requests is shown in
Figure 1(b) and may represent a physical host or a virtual ma-
chine. Worker threads are assumed indistinguishable from each
other and run on a single CPU out of V available. We take the
simplifying assumption that the operating system dispatches
active workers to CPUs to maximize the available capacity.
Thus, the first V ≤ W workers are placed on independent
CPUs in order to exploit all available CPU capacity. Further,
we do not keep track of the specific CPU on which a worker
executes and ignore possible CPU affinities.

The main goal of the analysis is to characterize the service
rates µr by which an application processes class-r requests
after admission. We refer to the service demand posed by class-
r requests as Dr, and to its expected value as E[Dr] = µ−1r .
Notice that, as the application works in a multi-threaded
fashion, at any time t, if a class-r request is being processed
at a CPU together with other n(t) − 1 requests, it will be
processed at an effective rate of µr/n(t). In the next section
we illustrate how existing methods have difficulties in dealing
with this situation.

A. Motivating Example

In this section we consider the use of the utilization-based
approach introduced in [18] to estimate the resource demand
for the reference system detailed in the previous section.
One of the advantages of [18] is that it explicitly models
the resources through a product-form queueing network. In
our case, however, the network model lacks a product-form
solution as it features a hard bound in the number of jobs in
processing at any moment by means of an admission control
system. We consider a system with V = 1 processor and
W = 2 working threads, and a total number of users N that
varies between 20 and 180, which allow for a broad range
of load values. The users may belong to one of two classes,
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Fig. 2. Utilization-based method - Two classes - V = 1 - W = 2

each one with a different mean resource demand. With these
parameters, we set up a simulation (the details of which are
described later) and take samples, after a warm-up period,
using sampling windows of fixed size. For each window we
sample the overall server utilization, as well as the average
response time and the throughput for each job class. Figure 2
illustrates the mean relative absolute estimation error (see
Eq. (2)) obtained with the utilization-based method of [18].
Although the method produces reasonable estimation errors
under low loads, its performance degrades significantly under
medium and high loads. While this method has been shown to
be very effective under different circumstances, it relies on a
network representation that does not match the behavior of our
reference application. In addition, the utilization measurements
required by this method may not be available, as when the
application in deployed on a PaaS.

B. Estimation methodology and complete information

The demand estimation methodology we propose requires
the ability to collect a training dataset of I system state
samples n(ti) = (n0(ti), n1(ti), n2(ti), . . . , nR(ti)) at a finite
sequence of instants t1 < t2 < . . . < tI , where

• nr(ti), 1 ≤ r ≤ R, represents the number of active workers
serving requests of class r at time ti
• n(ti) =

∑R
r=1 nr(ti) is the number of active workers.

• n0(ti) = W − n(ti) is the number of idle worker threads
at time ti

Throughout the paper, we assume that the instant ti corre-
sponds to the time an event happens in the system, i.e., a
request enters or leaves a worker. We will consider two main
alternatives for the collection of this information. First, we
consider the complete information case, where the system is
observed during a monitoring period of length T , along which
all samples {n(ti)}0≤ti≤T are collected, i.e, every time a
request enters or leaves a worker. While this is unrealistic
for most production systems, due to the overhead necessary
to collect this information, it serves us to set a lower bound
on the estimation error attainable with a given sample size.
The second, more realistic, alternative is the one of incom-
plete information, which considers collecting a set of samples
{(n(ti), ri)}Ii=1, where the instants ti correspond to arrival
times, and, together with the system state at time ti, we also
collect the response time of the i-th sampled request. Contrary
to the first sample type, in this case the samples need not be
consecutive and are treated as completely unrelated. Note that

samples of the system state at these instants can be obtained
in several ways, e.g., logs of the application server, internal
logs of the application, etc.

Recall that the samples are assumed to come from an
application with server layer as depicted in Figure 1(a). In
addition, we consider a closed-loop topology, where users
that leave a worker thread go through a think-time phase
before generating a new request. The think time for class-r
is exponentially distributed with rate λr. Further, after leaving
the worker thread, and before going through the think time, a
request can change its class randomly according to a discrete
probability distribution. This class-switching behavior accounts
for systems where users may change the type of requests they
generate. We assume there are a total of N users, switching
among R classes.

IV. CI: COMPLETE INFORMATION ALGORITHM

We consider here the complete information case, thus
the dataset includes all samples n(ti) for the instants ti at
which requests arrive and depart from the system between
any two instants t1 and tI where the system is empty, i.e.,
n0(t1) = n0(tI) = 0. Since we assume complete information,
the estimation algorithm in this section, named CI, will serve to
test the performance of other methods with the same number
of samples, but that rely on incomplete information. In the
next section, we introduce these methods and evaluate their
performance by comparing them against CI.

A. CI Algorithm Description

In a single processor system (V = 1), complete information
allows reconstructing exactly the sample path of the system
and the individual history of each processed job. In this case,
it is straightforward to determine the empirical values of the
demand of each processed job. That is, consider a class-r
request j, 1 ≤ j ≤ J , arrived at time tj,1 and departed at
time tj,I , such that tj,i, 1 < i < I , corresponds to an arrival
or departure event from the system. Then the demand placed
by job j is

dj,r =

I−1∑
i=1

(tj,i+1 − tj,i)
n(t+j,i)

, (1)

where n(t+j,i) refers to the state of the system just after
time tj,i. We therefore approximate the distribution FDr

of
the demand Dr by the empirical distribution FD̃r

of the
values {dj,r | 1 ≤ j ≤ J}. As the number of samples grows
asymptotically, FD̃r

converges in distribution to FDr
.

Since we do not assume that the state of each individual
processor is tracked separately, in the multi-processor case
(V > 1) we estimate the value dj,r by considering two cases.
The first case occurs when the number of active workers n(t+j,i)
is less than or equal to the number of processors V . In this
case we assume that each of the active workers is assigned
to a different processor, and therefore dj,r is equal to the
numerator in Eq. (1), as the workers do not need to share the
processors’ capacity. In the second case, where n(t+j,i) > V ,
we assume that all processors are busy and the system can be
approximated by a single super processor with V times the
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Fig. 3. CI - Two classes - V = 2 - W = 8

speed of the actual processors. The demand of job j is thus
computed as

dj,r =

I−1∑
i=1

(tj,i+1 − tj,i) min(n(t+j,i), V )

n(t+j,i)
.

B. Results

As mentioned before, the CI method allows us to set a
lower bound on the estimation error attainable for a given
number of samples. This is illustrated in Figure 3, where the
mean estimation errors, as defined in Eq. (2), are depicted for
a system with V = 2 processors, and W = 8 worker threads.
We see that the error is about 8% for a sample size of 100,
irrespectively of the number of users (load) in the system. The
error diminishes to about 2% for 1000 samples and to less
than 1% for 10000 samples.

This experiment suggests the following considerations.
First, since the samples here are not affected by noise and
are drawn from a model that behaves according to our as-
sumptions, the values found are empirical lower bounds on
the achievable performance of estimation methods which rely
on incomplete information. Our results indicate that even with
100 samples the estimates are reasonably accurate, but better
results are obtained with at least 1000 samples. It is quite
interesting to note, that the CI estimation approach proposed
here avoids to explicitly represent the state of each server
in the multi-core case. Thus, it should be interpreted as an
empirical lower bound on the achievable performance with this
kind of representation. Techniques that describe the state of
each station are possible, but they may require a much deeper
instrumentation of the application to collect the complete
information.

V. RPS: A REGRESSION-BASED APPROACH

In this section, we describe RPS, a regression-based esti-
mation method that makes use of response times and queue
lengths observed at arrival times. The method is based on
the mean-value analysis [19] theory for product-form closed
queueing networks. Let K = (K1, . . . ,KR) be the population
vector of a closed queueing network, that is, its entries contain
the number Kr of jobs in each class, for r = 1, . . . , R. Now,
for a specific processor-sharing (PS) station, let E[Rr] be the
expected response time for a class-r job, E[Dr] its expected
service demand, and E[Q] the expected queue length at the
station. We add K as an argument to the previous expressions
to make explicit that these are for a network with population

K. For the single PS server case, the main result from mean-
value analysis states that

E[Rr](K) = E[Dr] (1 + E[Q](K − er)) ,

that is, the expected response time for a class-r job in this
station, in a network with population vector K, can be
expressed as a function of its expected service time, and
the expected queue length in this station in a network with
one class-r customer less. From the arrival theorem [19]
we also know that E[Q](K − er) is equal to the expected
number of jobs seen upon arrival (excluding itself) by a class-
r customer in a network with population K, referred to as
E[QA] ≡ E[QA](K). We therefore can write

E[Rr] = E[Dr]
(
1 + E[QA]

)
,

and letting E[Q̄A] = 1 +E[QA] be the expected number seen
upon arrival, including the arriving job, we have

E[Rr] = E[Dr]E[Q̄A].

Therefore, to estimate the expected service demand for each
class we can perform a linear regression on observations
of Rr against Q̄A. These observations are taken from the
sample {(n(ti), ri)}Ii=1 discussed in Section III-B, as ri is
the response time and

∑R
r=1 nr(ti) the number of jobs seen

upon arrival for the i-th sample.

The previous result, however, holds for a single processor
only. For V > 1 processors we split the expected queue length
equally among the processors, thus using

E[Rr] = E[Dr]E[Q̄A]/V,

as the regression equation to estimate E[Dr] for each r.

A. Results

In this section we present some results for the RPS method,
which allow us to illustrate its behavior under different system
setups. We generate the data by means of a discrete-event
simulation, implemented in Java Modelling Tools (JMT) [20],
with the closed-loop topology described in Section III-B. For
each experiment we run each of the estimation methods (here
CI and RPS) with the same number of samples (100 unless
otherwise stated) and obtain an estimated mean service time
for each class. Letting E[Dr] and D̄r be the actual and the
estimated mean service time for class-r jobs, we compute the
mean estimation error as

error =
1

R

R∑
r=1

|E[Dr]− D̄r|
E[Dr]

, (2)

that is, the mean relative error among all user classes. For each
system setup, we run 30 experiments and present the mean
estimation error.

Figure 4(a) shows the error rate for the CI and the RPS
methods for the case with one processor and 4 threads. The CI
method provides us with a lower bound on the error attainable
in this setup using 100 samples. The RPS method shows a
very good behavior, comparable with that of CI, for the whole
range considered for the number of users. In Figure 4(b) we
consider a larger number of processors V = 2, while keeping
the thread-to-processor ratio equal to 4, that is with 8 worker
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Fig. 4. CI - RPS - Two classes

threads. While the CI still shows very small errors, as expected,
the error for the RPS method increases significantly for low
loads. This error increases for a larger number of processors, as
shown in Figure 4(c), the reason being that the RPS method
assumes that the queue length is split equally among the V
servers, but under a small load, less than V servers are actually
active, and the service rate is less than the total capacity. As a
result, we have a method that can estimate the resource demand
accurately for the single-processor case, as well as for a larger
number processors, but only under medium to high loads. In
the next section we introduce MLPS, a method able to handle
the multi-processor case under low loads.

VI. MLPS: A MAXIMUM-LIKELIHOOD APPROACH

In this section we introduce MLPS, a maximum likelihood
estimation method to determine the mean service demand in
multi-threaded enterprise applications.

A. Maximum likelihood estimation

A maximum-likelihood estimation procedure is an opti-
mization method that aims at finding the value of the pa-
rameters of a probabilistic model, such that the probability
of obtaining a given set of samples is maximal. In the case of
the MLPS method, we assume the sample set {(n(ti), ri)}Ii=1,
introduced in Section III-B, is available. From this set of sam-
ples, we aim at estimating the values of the mean service time
1/µr for each class r = 1, . . . , R. These values should be such
that the likelihood of obtaining the sample {(n(ti), ri)}Ii=1 is
maximized. Therefore, the MLPS method is an optimization
problem with objective function

maxµ1,...,µR
L ((n(t1), r1), . . . , (n(tI), rI)|µ1, . . . , µR) ,

and constraints µr ≥ 0, for r = 1, . . . , R, that ensure the non-
negativity of the service demands. The expression L(·) refers
to the aforementioned likelihood, which can take the form
of a probability mass function for discrete random variables,
or a density function for continuous ones. By assuming that
samples are independent and applying logarithms, the objective
function can be written as

maxµ1,...,µR

I∑
i=1

log (L ((n(ti), ri)|µ1, . . . , µR)) .

Therefore, to solve this problem we need to define a probability
model that allows us to compute L ((n(ti), ri)|µ1, . . . , µR),
which is the topic of the next sections.

B. The approximate model

While the system model introduced in Section III is able
to capture the limited threading level commonly found in
enterprise applications, it is not amenable for performance
evaluation. This is because, due to the fixed capacity region,
the queueing network model lacks a product-form solution.
Further, the number of users is typically large, making the
use of direct numerical methods, based on a Markov-chain
representation, computationally prohibitive. To cope with this
limitation, we introduce an approximate model, that focus
on the behavior inside the fixed-capacity region. The model
represents the fixed-capacity region as a closed queueing
network, with a total of W users, i.e., the number of users
in this model equals the number of worker threads in the
original model. Further, these users can be either at a PS
processing node, where class-r users are served with rate µr,
or at a delay node, where class-r users spend an exponentially
distributed think time with mean 1/λ̄r, for r = 1, . . . , R.
Notice that, while the service time in the approximate model
is the same as in the original model, the mean think time is
different. This change attempts to capture the dynamics of the
arrivals at the processing node, without explicitly modeling
the class-switching mechanism, the original delay node, nor
the admission control queue.

C. The absorbing Markov chain representation

Recall that the purpose of the approximate model is to
enable us to estimate the mean processing times µ = {µr}Rr=1
for each class, by means of a maximum-likelihood procedure.
For this we need to compute the likelihood of obtaining a
given sample, that is L ((n(ti), ri)|µ1, . . . , µR). To this end,
we define an absorbing Markov chain (MC) such that the time
until absorption reflects the total processing time received by
an arriving job. In general, a continuous-time absorbing MC is
defined by a sub-generator matrix T , and an initial probability
vector α, such that the time until absorption has probability
density function

f(x) = α exp(Tx)t,



where the exit vector t is given by t = −T1, and 1 is a
column vector of ones [21].

a) Sub-generator T definition: In our model, given a
sample (n(ti), ri) for a tagged job i, the parameters α and T
of the absorbing MC are a function of the observed number
of jobs in service n(ti) and the service rates µ, while the
absorption time is equal to the total processing time. In order
to keep track of the tagged job, we extend the set of classes
with a tagged class, and allow only one job, the tagged job, to
belong to it. We can therefore define the state variables Xk

r (t)
as the number of jobs of class r in node k, for r = 1, . . . , R+1,
and k ∈ {D,S}, at time t ≥ 0. Here k = D stands for the
delay (think time) node, while k = S for the service node.
The variables {Xk

r (t), r = 1, . . . , R + 1, k ∈ {D,R}, t ≥ 0}
thus take values in the set(l

k
1 , . . . , l

k
R+1) |k ∈ {D,R},

∑
k∈{D,R}

R+1∑
r=1

l
k
r ≤ W, l

k
r ≥ 0, l

k
R+1 ≤ 1

 ,

since, due to the class switching behavior, and assuming
W ≤ N , the number of jobs of each class is only limited
by the threading level W . It is easy to see that the cardinality
of this set is large even for small values of W and R. In
fact, this representation suffers from the well-known curse
of dimensionality. To cope with this problem we make one
observation and a further approximation. The observation is
related to the fact that we are only interested in the states where
XS
R+1 = 1, i.e., where the tagged job service is still ongoing.

All other states can be removed from the MC. In spite of this
observation, the set of possible states is still very large, so we
consider the following approximation. Let the i-th sampled
(tagged) job find nr(ti) class-r jobs in service (including the
arriving job itself) at the processing node. We assume that
the population of class-r jobs inside the fixed capacity region
(i.e. the total population in the approximate model) is equal to
nr(ti). As the total number of requests of each class is now
limited, it is enough to keep track of the number of jobs of
each class in the service node. Letting k(ti) be the class of the
i-th arriving job, we can describe the system with the variables
{Xr(t), r = 1, . . . , R t ≥ 0}, taking values in the set

{(l1, . . . , lR)| 0 ≤ lr ≤ nr(ti)− 1{r = k(ti)}} , (3)

where 1 is the indicator function that equals one when the
condition in brackets holds, and is equal zero otherwise. Here
Xr(t) is simply the number of class-r jobs in service, without
considering the tagged job, and the state space is significantly
smaller than the one considered before.

After defining the state space of the MC {Xr(t), r =
1, . . . , R, t ≥ 0} we now define its transition rates. Figure 5
shows the non-absorbing rates at which the MC makes a transi-
tion from a given state (l1, . . . , lR). These transitions consider
both service completions and new arrivals to the processing
node. Additionally, absorption occurs in state (l1, . . . , lR) with
rate µk(ti)/l, where l =

∑R
i=1 li+1, which corresponds to the

tagged job service completion. As the service and think times
are exponentially distributed, the resulting process is in fact an
absorbing MC with state space given by Eq. (3).

b) Initial vector α definition: From the previous de-
scription, it is clear that we define a different absorbing MC
for each sample (n(ti), ri), as the state variables of the MC,
its state space, and its transitions rates depend explicitly on
n(ti). As the service rates µ are also explicitly used in the

State (l1, . . . , lR)
Total number in service l =

∑R
r=1 lr + 1

for r = 1, . . . , R do
if lr ≥ 1 then

Destination state: (l1, . . . , li−1, li − 1, li+1, . . . , lR)
Rate: µi/l

end if
if lr < nr(ti) then

Destination state: (l1, . . . , li−1, li + 1, li+1, . . . , lR)
Rate: (nr(ti)− lr)λ̄i

end if
end for

Fig. 5. MC non-absorbing transition rates

definition of the MC transition rates, we can define the sub-
generator matrix of the MC as a function of n(ti) and µ,
that is T (n(ti),µ). Now, to define the initial probability we
observe that the i-th sampled job finds the processor with
n(ti) jobs, thus the MC for this sample always starts in the
state corresponding to n(ti). Therefore, the initial probability
vector α(n(ti)) has a one in the entry corresponding to the
state n(ti), and zero everywhere else. In this manner we have
that the likelihood of obtaining a sample (n(ti), ri) when the
service rates are µ can be expressed as

f(ri|µ) = α(n(ti)) exp(T (n(ti),µ)x)t(n(ti),µ).

This is precisely the expression we will use as the likelihood
of observing a sample (n(ti), ri), given that the service rates
are µ.

D. Load dependent modification for multiple processors

We now consider the extension of the method to multiple
processors. We notice that the previous description is valid for
a single processor only, and an extension to multiple processors
while keeping track of the number of busy worker threads in
each processor would suffer from the curse of dimensionality.
We tackle this issue by modifying the transition rates in the
absorbing MC in the following manner. In a state (l1, . . . , lR)
such that ∃i|li ≥ 1, and l =

∑R
i=1 li + 1 ≤ V , i.e., when the

number of jobs in process is less than or equal to the number
of processors, we assume that each job is being processed
by a different processor, and therefore a transition occurs to
state (l1, . . . , ni−1, li − 1, li+1, . . . , lR) with rate µi. Instead,
when l > V , the service completion rate of a class-i job is
V µi/l, i.e., as if the processor was a single super-processor
with capacity V times that of a single processor. A similar
modification is performed for transitions related to a service
completion of the tagged job.

E. Estimating the think rates

With respect to the estimation of the think rates λ̄i for each
class i, we assume that, during a given monitoring period, the
arrival rate to the fixed capacity region (FCR), called βr for
class-r jobs, can be estimated. As this reduces to knowing the
number of arrivals in a monitoring interval, this information
can be extracted from server log files. Now, from the sample
{(n(ti), ri)}Ii=1 we compute the average number of busy
threads seen upon arrival, that is W̄ = 1

I

∑I
i=1 n(ti). Since
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Fig. 6. CI - MLPS - Two classes - V = 1 - W = 4
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Fig. 7. CI - MLPS - Two classes - V = 2 - W = 8

W − W̄ can be thought of an estimate of the mean number
of threads undergoing a think time, we approximate the think
rate as

λ̄r =
βr

(W − W̄ )/R
.

Here we divide the number of idle threads evenly among the
different request classes. Notice that if the server is lowly
loaded, the think rate λr is small both because βr is small
and W̄ is close to 0. The opposite occurs under heavy loads.

F. Results

In this section we present some results for the MLPS
method with the aim of illustrating its performance. As before,
we use the mean relative absolute estimation error, as defined
in Eq. (2), and consider a system with 2 job classes, V = 1
processor and W = 4 worker threads. Figure 6 shows the
error rate for the CI and the MLPS methods, where a trend,
that repeats among a very broad set of scenarios, arises: the
MLPS provides estimates similar in accuracy to those of the
CI method for low and high loads, but its accuracy diminishes
for medium loads. This behavior is maintained for multiple
processors, as illustrated in Figure 7, where we consider
2 processors and 8 worker threads. We have performed an
exhaustive set of experiments, and found that this trend holds
for a broad range of parameter values. We therefore have a
method that performs well under low loads for the multi-
processor case, and thus complements well the RPS introduced
in the previous section. In the next section we introduce a
simple method built on top of RPS and MLPS, and evaluate
its behavior under a broad range of system setups.

VII. THE MINPS METHOD AND VALIDATION

As we have shown, both RPS and MLPS are able to provide
accurate estimates of the mean service demand, although only

for specific regions of the load. In this section we present the
MINPS method, which, although a simple extension built on
top of RPS and MLPS, is able to perform similarly to CI for
the whole load range considered.

After considering the results presented in the previous
section, and relying on a set of training data, one could propose
the following method: run both methods on the training data
set and select a cut-off point for the load such that below
this point the MLPS method is used, while above it the RPS
method is selected instead. This presents two main problems:
first, the term load, usually defined as a function of the arrival
rate to service rate ratio, is not easy to define as the service rate
is in fact unknown, and the arrival rate may also be unknown;
second, the use of a training data set easily creates problems
such as over-fitting, where the cut-off point is selected very
well for the training data set, but fails for a different data set.

The MINPS method relies on two observations. First, as
discussed in the previous section, the RPS method has a
difficulty under low loads because it is incapable of treating
correctly the situation where n < V jobs are being pro-
cessed. In these cases, not all processors are busy, and the
approximation of them as a single super processor working
at rate V µ becomes too rough. As a result, the RPS method
will overestimate the mean service time, since the measured
response times will appear too long for a system with service
rate V µ, while the actual service rate will be at most nµ.
Second, one of the main drawbacks of the MLPS method is
its inability to capture arrivals that occupy the worker threads
beyond the state observed upon arrival. As a result, under
medium loads, there will be samples where the observed
number of jobs in process is (significantly) lower than the
maximum number reached before the tagged job service is
completed. This will make the MLPS method over-estimate
the service demand, since the response times observed have to
be matched by a system where the service rate is shared among
fewer jobs than in the actual system. Both observations tell us
that, for the cases where the RPS and MLPS estimates have a
large error, both methods are likely to fail by over-estimating
the service demand. We therefore propose to run both methods
and choose the one that offers the smaller estimated mean
service demand. In the next section we show how this choice
provides accurate estimates in practice.

A. Validation

In this section we evaluate the MINPS method, built on top
of MLPS and RPS, by exploring its behavior under different
system setups. As summarized in Table I, we considered
different values for the number of processors, the threading
ratio W/V , and the number of classes. We also evaluate
heterogeneous service demands, with significantly different
values for the ratio µ1/µ2. Further, we consider different class
switching behaviors, by means of the parameter α, which is the
probability that a job switches class after leaving the worker
thread. Finally, we evaluated scenarios with a number of users
N ranging between 20 and 260. These values account for a
broad range of load values, from light to heavy loads. As
before, we make use of the mean absolute relative estimation
error, as defined in Eq. (2), to evaluate the goodness of the
estimates obtained with the proposed method.
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(b) V = 2 - W = 16
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(c) V = 4 - W = 8

Fig. 8. MINPS - Two classes

TABLE I. EXPERIMENTAL SETUP

Symbol Parameter Value
V Number of processors {1, 2, 4}

W/V Threading ratio {2, 4, 8}
R Number of classes {1, 2, 3}

µ1/µ2 Service rate ratio {2, 10, 1000}
α Class Switching Probability {0.1, 0.001}
N Number of users {20, 60, . . . , 220, 260}

We start by looking at the case considered in the previous
sections, that is, with two job classes, 2 processors and 8
worker threads. As illustrated in Figure 8(a), the estimation
error is similar to the one provided by the CI method, over
the whole load range considered. Further, the MINPS method
provides estimates that are statistically equivalent to those of
the CI method for low and high loads, with a slight increase in
the error under medium loads. A similar behavior holds under
many different conditions, such as the others setups shown
in Figure 8. Here we also observe that the method is more
accurate when the threading level is small, as can be seen in
Figure 8(c).

In the cases previously illustrated, the requests are allowed
to switch class after leaving the service station. The switching
probability α has been set to 0.1, which turns the switching
probability matrix into a fast mixing one. We have also
considered slow mixing cases, by letting α = 0.001, but the
estimation errors, although slightly higher than for the slow
mixing case, are not significantly different from those already
presented.

1) Heterogeneous service times: In the previous experi-
ments with two user classes, the service rates were set at
20 and 40, respectively, such that the two user classes have
service requirements of the same order of magnitude (ratio
µ2/µ1 = 2). We have tested an increased differentiation in
the magnitudes of the service rates, considering a ratio µ2/µ1

equal to 10 and 1000. Figure 9(a) shows the estimation errors
for the MINPS and the CI methods where the first user class
has an expected service time 1000 times as large as that of
the second user class, that is µ2/µ1 = 1000. We observe that,
despite the significant differentiation, the estimation error of
the RPS method remains very similar to that of the CI method.
We point out that the think times are modified such that the
ratio λi/µi is fixed, and such that, in steady state, the server
is loaded with many small jobs and few large jobs, with each
class accounting for half the total server load.

2) Non-exponential service times: As both the RPS and
MLPS methods rely on the exponential assumption to estimate
the mean service demands, we now consider non-exponential
service times and evaluate their impact on the MINPS esti-
mation procedure. In Figure 9(b) we present the estimation
errors for the case where the service times follow an Erlang
distribution with the same mean as before but with coefficient
of variation equal to 0.2, instead of 1 of an exponential.
Under this setup, both RPS and MLPS perform better, showing
estimation errors close to those of the CI method.

On the other hand, Figure 9(c) illustrates the effect of
hyper-exponential service times with coefficient of variation
equal to 1.44. In this case we assume a distribution with two
exponential phases, one of them with rate equal to half and
the other to double the rate of the exponential distribution
in the base case. While the results for both methods worsen,
the estimation error of the MINPS method is similar to that
of the CI method, verifying its good performance. Additional
experiments have shown that further increasing the variability
of the service time distribution affects the estimation errors
provided by MLPS, and therefore the MINPS method. For
those cases, alternative estimation methods are necessary, and
can be the topic of future work.

VIII. CASE STUDY APPLICATION: SAP ERP

The software we have considered is the ERP application
of SAP Business Suite [22]. The ERP application runs on
top of a middleware, SAP NetWeaver [23], which defines the
underlying architecture. In each experiment, we determine a
fixed number of N users that issue requests for approximately
1 hour via a closed-loop workload generator with exponential
think time with mean Zr = 10s, for r = 1, 2, as the workload
has two classes. Class 1 includes the following transactions:
creation of a sales order document; automatic filling of sales
order related fields; creation of outbound delivery with order
reference; listing the sales order; changing outbound delivery
related fields; saving the sales order. Class 2 includes: listing
of sales orders with additional steps with the objective to fill
up the cache before the loop; creation of outbound delivery;
listing all sales orders for a given customer and date; creation
and saving of billing document (invoice). SAP NetWeaver pro-
cesses concurrently these requests, also known as dialog steps,
which often require information retrieved from a database as
depicted in Figure 10.

a) SAP NetWeaver: At the admission control level, SAP
NetWeaver has a queue that receives the incoming requests
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Fig. 9. MINPS - 2 classes - V = 2 - W = 8
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Fig. 10. SAP NetWeaver architecture.

which a dispatcher then forwards to software threads for
processing, referred to as work processes (WPs). Admission
occurs at the instant a WP becomes idle, based on a FCFS
scheme. Dialog steps, i.e., requests, are served within a WP
in a non-preemptive manner. As a result, the waiting time
in the admission control queue tends to become the dom-
inating component of the end-to-end response time as the
number of active users becomes large with respect to the
software threading level. In contrast, initialization activities
for requests admitted to a WP imply a delay that remains
constant, suggesting they are mainly due to memory-bound
operations. These activities refer to the load, generation, and
roll-in latencies, and the sum of them is denoted by Zlgr. We
have verified from measurements Zlgr to be well approximated
by an exponential distribution. The time in work process (Dwp)
represents the total time required for computations in a WP,
including blocking time waiting for database responses (Ddb).
Finally, the sum of the CPU consumption of each request,
denoted by Dcpu and Ddb, might provide an indication of the
resource consumption of a request. We observe the coefficient
of variation of both Dwp and Dcpu+db = Dcpu + Ddb to be
close to unity as in an exponential distribution.

b) SAP ERP Performance Model: A performance
model of the SAP ERP application is defined using the finite
capacity region queueing network model shown in Figure 11.
The model features an FCR that imposes a limit of W requests
circulating in the stations inside the region. Thus, each job
inside the FCR represents a request admitted into a WP in the
real system. Arrivals to the FCR waiting buffer are regulated by
the workload generator modeled as a delay station (−/M/∞)
with Zr = 10s for both r = 1, 2. Within the FCR, Zlgr is
modeled as a passage through a delay station, with the mean
service time determined from measurements. The processing
station is a multiserver −/M/V/PS queue representing the
WP usage of the V CPUs in a PS fashion, including the
database activity.

V  CPUs

      Load+

Gen+Roll In

Z=10s

Think Time

Waiting

  bu!er

FCR - W jobs max

Fig. 11. SAP ERP simulation model

TABLE II. SAP ERP PS model validation results. Response times are
expressed in seconds.

V W N1 N2 D1 D2 Rmodel Rmeas Umodel Umeas
2 3 6 4 0.101 0.163 0.139 0.144 0.062 0.034
2 3 30 20 0.082 0.166 0.138 0.152 0.284 0.191
2 3 45 30 0.075 0.166 0.146 0.158 0.411 0.297
2 3 60 40 0.074 0.153 0.158 0.188 0.521 0.394
2 3 90 60 0.069 0.136 0.201 0.258 0.702 0.620
2 6 6 4 0.101 0.165 0.140 0.145 0.062 0.045
2 6 30 20 0.079 0.167 0.142 0.151 0.292 0.204
2 6 45 30 0.071 0.171 0.145 0.154 0.409 0.323
2 6 60 40 0.065 0.168 0.155 0.162 0.520 0.526
2 6 90 60 0.055 0.161 0.203 0.197 0.710 0.897

A. Results

We installed SAP ERP on a two-tier configuration com-
posed of an application server and a database server residing
on the same virtual machine, with no other virtual machines
running on the same physical computer. The virtualization
software installed is the VMware ESX server configured with
32 GB of memory, 230 GB of storage space, and V = 2
virtual CPUs each running with 2.2GHZ frequency. Each of
the V servers is mapped to a separate physical CPU core.
Experiments have been run with a number of work processes
W ∈ {3, 6} and with an increasing number of users in
the range N ∈ [10, 150], corresponding to an interval of
CPU utilization Umeas ∈ [0.03, 0.90]. All measurements are
obtained at 1ms resolution.

We present the end-to-end response time predictions, and
compare them to the same measurements of 10 experiments
on the real ERP application. For the most computational de-
manding estimations, we have taken the first 1000 data points
for each of the datasets used; MLPS was computationally
feasible in all cases up to the largest data set with 43705
points. The estimation time of MLPS grows from an average
of about 1 minute for N = 10 to an average of 40 minutes



for N = 150 and W = 3 and 87 minutes for W = 6.
In light of this, the technique can be run periodically, but
might not be practical to use to parameterize models in short
periods of time, even though we have not explored the accuracy
of estimates obtained by early stopping the ML optimization
program. Note also that the code can be easily parallelized,
thus it can leverage on multicore chipsets. Once the demand
estimates are obtained, the models are solved by simulation
using Java Modeling Tools.

We evaluate the estimation accuracy by the mean relative
error of the estimated response times E[Rmodel] with respect
to the logged values E[Rmeas]. Table II shows results for the
simulation model, which delivers response time estimates that
are in good agreement with experimental data. For W = 3, the
best response time estimates suffer < 9% error for Umeas <
30%. However, the last two user cases are harder to estimate,
delivering errors of 16% and 22%, respectively. In contrast, for
W = 6 all response time predictions suffer only < 7% error.
Notice that the estimated decrease of service demand as the
load increases is confirmed by direct measurement, but we do
not have a verifiable explanation. We conjecture this to be due
to fixed queue-independent delays in the demand value that
get shared, and thus relatively smaller, as the number of jobs
increases, e.g., overheads of software controller threads.

The utilization obtained with MLPS deviates significantly
from measurement only at the highest load. We consider the
latter as a minor issue since peak loads with 90% average
utilization are not representative of real system behavior being
applications unstable (e.g., timeouts, trashing).

IX. CONCLUSION

We have introduced two methods for demand estimation
in multi-threaded applications: RPS and MLPS. While each
of them is able to accurately provide estimates of the mean
service demand for certain system setups, we combine them
into MINPS, which provides accurate estimates for a broad
range of parameter values. We have successfully tested the
proposed methods using simulation data, as well as tested the
performance of MLPS on the ERP application of SAP Busi-
ness suite. The methods are well-suited for exponential and
hypo-exponential demand distributions, as well as for hyper-
exponential distributions with not excessively large variability.
Estimating demands under high-variability is a challenge not
addressed by any of the existing methods and therefore an
opportunity for future work.
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