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Executive summary 

DICE aims at defining a general-purpose methodology and toolset to define data-intensive cloud 

applications. This means that applications defined with DICE span different domains. To validate the 

productivity gains induced by DICE, three industrial use cases on data-intensive applications have been 

carried out through the project (News&Media, e-Government and Maritime operations domains). 

The objective of D6.4 is to review the productivity gains of the DICE tools and to show what is to illustrate 

their performance in laboratory and real-case business scenarios. Validation and verification of these tools 

has been based on predefined KPIs set by the tool owners at the beginning of the project and achieved, or 

even surpassed, by the demonstrators.  

Exploiting DICE tools to analyze, deploy, monitor, test and improve real Data Intensive Applications 

(DIAs), not only improves their overall quality, but also significantly increases the productivity of the 

demonstrators and their development and engineering teams. DICE tools have proven to be both user 

friendly and practical, while providing significant results mainly to early stage validation, process 

automation and monitoring activities. DICE tools can be obtained from: https://github.com/dice-project/.  

  

https://github.com/dice-project/
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Glossary 

ADT Anomaly Detection Tool 

AIS Automatic Identification System 

API Application Programming Interface 

CEP Complex Event Processor 

CPU Central Process Unit 

DDSM DICE Deployment Specific Model 

DIA Data-Intensive Application 

DICE Data-Intensive Cloud Applications with iterative quality enhancements 

DICER DICE Roll Out Tool 

DMON DICE Monitoring 

DPIM DICE Platform Independent Model 

DTSM DICE Technology Specific Model 

FCO Flexiant Cloud Orchestrator 

GMF Graphical Modelling Framework 

IDE Integrated Development Environment 

MVP Minimum Viable Product 

POC Proof of Concept 

QA Quality-Assessment 

TCT Trace Checking Tool 

TOSCA Topology and Orchestration Specification for Cloud Applications 

UC Use Case 

UML Unified Modelling Language 

URL Uniform Resource Locator 

VM Virtual Machine 

VPC Virtual Private Cloud 

VTS Vessel Traffic System 
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1 Introduction 

 Overview 

In this deliverable, we showcase and summarize validation and verification results achieved by the tool 

owners and by the demonstrators (News&Media, e-Government and Maritime operations domains) within 

DICE. As D6.4 is the only public deliverable of WP6, material from previous restricted deliverables (such 

as D6.1, D6.2 and D6.3) servers the primary purpose of exposing the use cases to the wide audience, in 

addition to presenting for the first time results obtained in the final year of the project.  

Emphasis has been given to activities and actions that took place over the last 6 months of the project 

(M30-M36), however significant information from work done during the first 30 months of the project is 

also presented and highlighted when needed.  

Adding to the above, the current deliverable provides detailed information regarding validation activities 

and progress made on DICE tools, that have not been reported before and took place from M30 to M36. A 

number of tools have undergone significant changes and improvements over this period, while additional 

validation activities took place either in a lab environment or within the use cases (demonstrators). For 

example, in some cases, tools already evaluated in previous months, have been evaluated again in more 

depth in the last semester, to test the new functionalities added to the tools in year 3. As other WPs 

dedicated to tool improvements (ie. WP2, 3 and 4) do not have a dedicated deliverable for M36, the current 

document also contains information regarding latest technical development concerning the tools.  

All DICE tools have been validated by at least one demonstrator, while in some cases tools have been 

validated in more than one demonstrators, validating the ability of the DICE framework to act as a general-

purpose development environment. The decision on the optimal number and type of demonstrators to use to 

validate a tool has been driven by the Big data technologies used in the demonstrators, for example tools 

focused on Apache Storm have been tested mainly in the News&Media demonstrator, while those focused 

on Apache Spark have been primarily validated on the tax fraud detection demonstrator.  

Table 1: DICE tools validated in Use Case environment 

 
The following table summarises the KPIs achieved by the demonstrators. 

Table 2: DICE Tools KPIS 
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DICE Tool Validation KPI KPI Target 
Status of validation KPIs at 

M36 (Use Cases) 

KPI achieved 

by at least one 

Demonstrator 

Delivery tool 

(+ DICER) 

Time from deployment 

modelling to deployment of 

the DIA 

Reduction of 

50+% of 

deployment 

times with 

respect to no-

modelling 

approach 

Reduction experienced by ATC > 

70% 

 

Reduction experienced by NETF > 

90% 

 

Reduction experienced by PRO 

>80% 

Yes 

Verification 

Violations of properties on 

timing constraints identified 

by Verification tool 

>=2 ATC: 4 Yes 

Simulation 

Prediction error of response 

time. Prediction error of 

throughput. Prediction error 

of resources utilization 

<=30%  

PRO:  Response time: max. error 

18% 

Throughput: max. error 5% 

Utilization: max. error 13.2% 

 

ATC:  Utilization: max. errors 

below 20% 

Throughput: max.error 16.41% 

Yes 

Optimization Cost prediction error <=30% 
NETF: The average percentage 

error cost estimate overall was 3%. 
Yes 

Monitoring 

Time to configure the 

monitoring across the DIA; 

monitoring overhead 

<=30% 

decrease; <5% 

overhead 

ATC: Time to configure: 40% 

decrease 

 

PRO: Time to configure: 94% 

reduction 

 

For both case overhead is 

negligible, <5%. 

Yes 

Anomaly 

detection 
False positives <10% 

PRO: 6,6% of false positives using 

the Anomaly detection tool 
Yes 

Trace 

checking 

Number of refined 

parameters occurring in the 

model verified with 

Verification tool 

>=1 ATC: 2 Yes 

Enhancement 
Number of anti-patterns 

detected in one demonstrator 
>=1 

ATC: 

Number of anti-patterns: 2 
Yes 

Quality 

testing 

Manual time required in a 

test cycle 

>30% 

reduction 

ATC: Reduction per Test Cycle: 

34,78% 
Yes 

Configuration 

optimization 

Difference in latency or 

throughput compared to 

default config 

>30% 

ATC: Throughput (m/s): ~128% 

incr 

Latency (ms): ~86.6% decr 

Yes 

Fault injection 
Manual time required in a 

test cycle 

>30% 

reduction 

PRO: 66,6% Time saving 

 

ATC: 20% time saving 

Yes 

(on average) 

DICE IDE 
Number of DICE tools used 

in each demonstrator 
4 

ATC: 8 

PRO: 7 

NETF: 8 

Yes 

 Work done on Containers 

During the last semester of the project, considerable effort has been dedicated to support the use of 

containers within the DICE project. This is the main extension achieved for the framework in year 3 of the 

project.  Although not a planned activity at the beginning of the project, given the relevance that this 
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technology is acquiring and its potential benefits, upon suggestions from our reviewers, we considered to 

dedicate resources to support and validate it in one of the uses cases. 

The reasoning for supporting containers was twofold. First, the exercise of adding the container support 

across the DICE tools stack acted as a further validation that showed how extensible the DICE tools are and 

what it takes to add a new technology paradigm. As discussed in D7.7, for example as a result of feedback 

obtained in public presentations of DICE, end users often want to know if a certain technology can be 

added to DICE, and the response is affirmative based on the experience reported in this deliverable. 

Second, the popularity of the containers in the industry has grown so high during the DICE project, that the 

need for their support would naturally occur from the users. 

We therefore extended both the design part of the DICE tools as well as the runtime part. In the design part, 

the DICE profile has been modified to allow specifying containers at the DDSM level. The DICER tool has 

been extended to support the generation of blueprints from contained-based deployment models. The 

optimization tool has been used to identify the minimum cost configuration of the BULMA application 

(developed in collaboration between DICE and the EUBRA-BIGSEA project) which implements a 

predictive machine learning algorithm for Intelligent Transport Systems (bus trajectories identifications) 

and which exploits containers. 

To enable the transfer to runtime, we extended the DICE TOSCA technology library with support of the 

Docker flavour of the containers. This means that the DICE Deployment Service is capable of deploying 

applications that include both components running in classical virtual machines combined with ones 

running within containers. 

The Posidonia Operations use case (maritime operations) has been used to validate the automatic 

deployment of the solution with containers. To make use of good practices in handling containers, some 

components have been repackaged in order to better separate the functionality of the different services and 

have a container for each service.  

Another technology that on the outside appears related to containers is the technology of microkernels. 

This is a considerably slimmed down version of the operating system, which lets specially prepared 

applications to run close to hardware. The technology is gaining traction in the industry and thus has a 

potential to catch up with containers. From the MIKELANGELO project comes OSv as a specific 

microkernel solution. XLAB being in both projects had a unique opportunity to include support for OSv 

into DICE deployment stack and to showcase a Big Data cluster deployment. PMI has extended the 

deployment modelling metamodels accordingly, further extending the possible reach and usage of the 

DICE toolset. 

 Document Contents 

The current document includes the following sections: 

 Section 1 provides an overview of this current deliverable by presenting the overall structure and 

concept of it. 

 Section 2 is dedicated to all DICE tools and provides evidence and material regarding validation 

and verification activities which took place throughout the project’s duration, while emphasis has 

been given to the period from M30 to M36. 

 Section 3 focuses on the three demonstrators (use cases) and provides information regarding their 

validation activities of DICE tools in their business environments while presenting the use cases as 

a whole to wider audience. 

 Section 4 is dedicated to drawing the high-level conclusions of this document. 
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2 DICE Tools 

 Deployment Modelling Tool (DICER) 

DICER is a tool for enabling the model-driven deployment of data-intensive applications (DIAs) 

leveraging the Infrastructure-as-Code (IaC) paradigm. More specifically, DICER adopts the OASIS 

Topology and Orchestration Specification for Cloud Applications (TOSCA) standard as an 

architecture deployment description formalism and is able to automatically generate IaC for DIAs in the 

form of TOSCA blueprints from DICE-stereotyped UML models. To this aim, DICER exploits the DICE-

Profiles applied on UML Deployment Diagrams as well as the DIA-specific TOSCA library, both defined 

and developed in the scope of the DICE project. 

While the technical advancements and the majority of features for the DICER tool were discussed 

previously in the context of deliverables D2.3, D2.4 and D2.5, the improvement work aiming at addressing 

the feedback received by project reviewers and by our advisory board members did not stop and addressed 

3 major technical challenges, namely: (a) containerisation; (b) varied DB support; (c) monitoring-as-a-

service. Following this work, the DICER tool addressed new major additions to encompass the 

modelling of generic nodes including generic containers which can now be modelled as standard DDSM 

constructs and generated as TOSCA blueprint stubs inside DICER-generated TOSCA IaC. Moreover, 

DICER is now capable of building IaC which includes the “monitorable” feature, such that the 

Deployment Service can deploy monitoring facilities specific to a certain node. Finally, the DICER 

exposed a limited support to data-intensive DB technology - in this respect, the newest version includes 

support to MongoDB as further technological package inside DICER modelling and automated deployment 

facilities. 

The validation methodology for DICER employed a case-study research approach. More in particular, the 

DICER team (WP2 and WP5) involved the case-study owners on a series of controlled experiments aimed 

at understanding: 

1. The chronometric gains of using DICER in action, controlling variables such as experience, 

background, and model-savviness of the observer; 

2. The amount of IaC saved by employing DICER in action; 

As described in Section 3, all case studies have evaluated the DICER, with PRO exploiting also the 

containerization approach, NETF the varied DB support and all the monitoring-as-a-service features. 

Evaluation results show a considerable gain of 7x for the times that are saved by using DICER in action 

instead of classical coding-intensive approaches. Moreover, the quantity of code saved with DICER is also 

considerable, reaching about 9x times the amount of code needed in a classical approach. 

Table 3: Overview of the in-lab experiments with DICER 

Blueprint Used Technology 
Max 

dep. 

Num. 

Elems 

Avg 

generation 

time [s] 

Gen. LOC 
Avg deploy. time 

[s] 

Pi Calculus Spark 3 3 1.18 294 442 

WordCount Zookeeper Storm 3 4 1.26 393 445 

Hadoop cluster HDFS YARN 4 5 1.31 646 550 

WikiStats 
Storm Zookeeper 

Cassandra 
4 7 1.69 782 480 

WikiStats (with 

trace-cheking 

service) 

Storm Zookeeper 

Cassandra Spark 

HDFS 

5 10 1.93 1175 675 

For an in-depth assessment of the correctness of the infrastructural code generation as well as effectiveness 

of the tool in terms of possibility to compose different technologies in a simple way and in terms of 

reduction of lines of infrastructural code to be developed, we performed also some in-lab controlled 
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experiments. More specifically, to verify that DICER works correctly without introducing a significant 

overhead, we have experimented with various DIAs that exploit different combinations of the technologies 

we currently support. Table I shows a summary of some of these experiments. In all the cases, we 

developed the deployment model for the corresponding DIA and we generated and deployed the resulting 

blueprint on our internal OpenStack Mitaka infrastructure. In all considered cases, the process led to a 

correct deployment fulfilling our expectations. The first column in Error! Reference source not found. 

ncludes the names we have assigned to the considered DIAs and the second lists the used technologies. 

From this column, the reader can see that we have experimented with an increasing combination of 

technologies to achieve deployments with a different level of complexity. The Num. Elems column reports 

the number of UML modelling elements used to model each DIA. The Max dep. column represents the 

length of the longest path in a blueprint’s dependency graph, not counting virtual resources that are created 

almost instantly. For example, level 1 represents an architecture with services that are all peers and where 

none of the services depends on any other service. Level 2 represents a two-tier architecture, where a 

service (e.g., a database) needs to be deployed before another one (e.g., an application) can be deployed 

and configured. The larger is the value of Max dep. the larger is the complexity of the deployment 

procedure to be executed for the corresponding DIA as it requires a specific deployment order to be kept as 

well as a runtime configuration of the dependencies between the involved components. Gen. LOC reports 

on the number of Lines of Code of infrastructural software generated by DICER in each experiment. This 

number gives an idea on the amount of low level programming effort saved by DICER users. From the 

experiments we have conducted, it appears that this number depends on the number of modelling elements.  

To quantify the time needed to generate and deploy blueprints, we repeated the experiments 10 times and 

com- puted the average duration for generating the blueprint (fifth column in the table) and for 

automatically deploying it through the deployment service (seventh column). As we expected, we can see 

that the blueprint generation time is significantly lower that the time needed to deploy all considered cases.  

 
Figure 1: TOSCA blueprint generation avg times per number of modeling elements 

To see if DICER was able to handle also cases more complex that the ones in the table, we carried out a 

scalability anal- ysis starting from a simple model with a single VMsCluster including one technology 

element and by gradually increasing the complexity up to a case that included, 8 VMsClusters, 8 distinct 

technology-specific elements (e.g. StormCluster, CassandraCluster, etc.) and 8 distinct DiaJobs. Such 

models were randomly generated and the amount of generated infrastructural code ranged from 150 lines, 

for the simplest model, to 2092 lines for the more complex one. We ran each single experiment of blueprint 

generation 30 times, averaging the resulting generation time. In all cases DICER behaved correctly and 

generated the corresponding executable bluprint. Figure 1 plots the time needed for such generation that 

remains always within acceptable boundaries.  
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 Delivery tool 

Transitioning from design environment to the runtime involves having to follow the deployment diagram of 

the DIA by taking repetitive steps in an order prescribed by both the deployment diagram and the specifics 

of the DIA’s components. An important DevOps tool makes these steps automatically, continuously and 

reliably. The DICE Deployment Service with the help of DICE TOSCA technology library and DICE 

Configuration Optimisation assumes the role of such a tool in the DICE Methodology. 

At the end of M30, the delivery tools reached a phase that was feature complete: it supported all of the core 

DICE technologies, and the same blueprint could be deployed without change to any of the supported 

infrastructures: FCO, OpenStack or Amazon EC2. After that, we proceeded to validate the tool when used 

on Amazon EC2 in order to assess the maturity of the tool for the purposes of the Posidonia Operations 

(described later in the report). We also validated the tool ability to adopt new platforms by extending the 

technology support to include container and microkernel technologies. 

2.2.1 Validation in Amazon EC2 

A good application orchestration needs to handle various levels of abstractions in a sensible way. The goal 

of modelling the deployments is to capture all the necessary details of an application, while at the same 

time it doesn’t have to go too much into detail. It has to specify all the components of the DIA, their 

relationships and any configuration that deviates from the defaults. But when it comes to representing the 

hosting environment, i.e., the cloud provider’s IaaS details, it is safe to assume that they all share common 

elements. For example, they all offer compute and networking capabilities. Therefore, the deployment 

representation can hide these details or move it away from the DIA’s representation. 

From the perspective of providing such an abstraction, an orchestrator (or, more specifically, the plug-in 

that implements specific technology and platform support) has to work out differences and peculiarities that 

do exist between providers. It is therefore up to the tool owner to perform the validation that the behavior 

of the deployment is comparable to the one observed previously in FCO and OpenStack. 

Our approach in this validation was to assess the scenario involving first bootstrapping the delivery tool 

and then using it to make the first DIA deploy. The assumption therefore is that the user has a compiled 

Storm application1 (i.e., a .jar file) and a blueprint for the DIA as a .yaml file describing the whole Spark 

cluster, and an Amazon Web Services (AWS) account with permissions to manage resources through the 

AWS’s web API. The goal of the validation was to show that the DIA can be successfully deployed in the 

Amazon EC2 environment. The time needed for this to occur also needs to be reasonably short: within 3 

hours for the first deployment, and less than 30 minutes for each redeployment. 

Table 4: Timings for Amazon EC2 deployment of a Spark application 

Task Time required [minutes] 
AWS account setup (manual) 30 min 

Collecting AWS parameters (manual) 60 min 

Running bootstrap steps (manual) 25 min 

Cloudify Manager bootstrap (automated) 15 min 

DICE Deployment Service bootstrap (automated) 10 min 

DIA deployment (automated) 15 min 

Total first deployment time 2 h 35 min 
DIA undeployment (automated) 2 min 

DIA deployment (automated) 15 min 

Total time subsequent redeployment (per redeployment) 17 min 

                                                      
1 Storm WikiStats: https://github.com/dice-project/DICE-WikiStats/tree/master/storm-wikistats  

https://github.com/dice-project/DICE-WikiStats/tree/master/storm-wikistats
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In our experiment, we followed the DICE Deployment Service Administration Guide2 to set up the DICE 

Deployment Service. Then we first ran the deployment of the Spark application by submitting the blueprint 

to the DICE Deployment Service instance set up in the previous steps. The same step was for redeploying 

the same blueprint, but this includes first the process of clearing the previous deploy. 

Table 4 shows the timings that we recorded during this process. The timings apply to an engineer with 

basic understanding of operating with command line interfaces, configuration files editing and AWS 

handling. 

From the results we can see that we can obtain a working DIA runtime within approximately 2:30 h. At the 

same time this gives us a platform which lets us have new deploys of the application, complete with the 

entire Spark stack, in less than 20 minutes. 

2.2.2 Container and microkernel support 

The main purpose of the DICE Deployment Service has been to automate deployment and configuration of 

the DIAs by installing each of the needed component in a virtual machine3. In this approach, all the 

installation and composition happens on the fly according to appropriate Chef Cookbook recipes that are a 

part of DICE TOSCA technology library. 

In the final 6 months of the project, we have also examined alternative approaches, which bundle parts of 

components ahead of time into an image. This image is then executed as a container in a micro-virtualised 

environment. The approach has become popular in the industry, because it enables simpler handling of 

individual units of processing and computation, which in themselves might be quite complex to set up. 

They are also easier to deploy in multi-cloud setting. DICE use case partner Prodevelop has recognised the 

usability of the Docker, a representative that is prominent in the container technologies community, for 

their internal development and testing processes. This was a valid motivation for us to consider extending 

support in the DICE TOSCA technology library to include Docker. 

With our support for container technologies we also wanted to make a few more steps ahead. Thanks to 

collaboration with the MIKELANGELO4 project, we also provide support for a microkernel technology 

called OSv 5. Microkernels are related to containers, as they provide a slimmed-down operating system that 

runs a component in a lightweight fashion. The added benefit of this technology is that it speeds up 

deployment of individual instances of the component, and it also lowers the overhead on memory and CPU 

that traditional operating systems apply to any component. 

To both validate and demonstrate the support for new technologies, we revisited our city traffic use case 

[D5.3]. The use case is a part of collaboration with TIMON6, and it collects and processes public data 

emitted from sensors placed at streets in Ljubljana and published by the public transport company. 

Focussing on the batch processing part of the use case, we introduced the following extensions and 

updates: 

● We added a web user interface, packaged in a Docker image. 

● We replaced the Spark worker nodes set up on virtual machines with Spark workers packaged as 

OSv images. 

Figure 2 shows the blueprint representation from Cloudify7. We should point out that in this case, the 

Docker images used in the blueprint need to be prepared ahead of time and uploaded to a Docker 

repository. Also, for the OSv components, their images need to either be bundled with the blueprint upon 

                                                      
2 Administration Guide: https://github.com/dice-project/DICE-Deployment-Service/blob/master/doc/AdminGuide.md  
3 Theoretically, bare metal deployments are also possible, but the use cases had no requirement for it so far. 
4 MIKELANGELO project: https://www.mikelangelo-project.eu/  
5 OSv: http://osv.io/  
6 https://www.timon-project.eu/  
7 Cloudify: http://cloudify.co/  

https://github.com/dice-project/DICE-Deployment-Service/blob/master/doc/AdminGuide.md
https://www.mikelangelo-project.eu/
http://osv.io/
https://www.timon-project.eu/
http://cloudify.co/


Deliverable 6.4 - Final assessment report and impact analysis 

Copyright © 2018, DICE consortium – All rights reserved 15 

submission for deployment, or they need to be available in the target interface as an operating system 

image (e.g., an AMI on the Amazon EC2). 

 
Figure 2: Screenshot of DICE Traffic Application blueprint as shown by Cloudify Web UI 

The outcome of deploying this blueprint to the DICE Deployment Service is as expected: in the target 

environment (OpenStack or Amazon EC2) we obtain a working runtime of our use case DIA. This 

demonstrates that it is possible to freely mix various complementing technologies into the application, 

making composition of DIAs even more flexible. 

We should point out that in the case of the OSv components, preparing the microkernel editions requires 

special customizations of the source component in order for it to comply with the rules and capabilities of 

the OSv operating system. This requires a certain effort of a specialized person, so it cannot be trivially 

applied to any application or component. But to see the benefit of doing this from the perspective of the 

DevOps, we compared the time of deployment of a blueprint using microkernels with the deployment time 

of a regular (i.e., virtual machines only) blueprint. Figure 3 and Figure 4 show the deployment sequences 

first of the blueprint where all Spark components are deployed as VMs, and second as the result of the 

deployment of the blueprint shown in the Figure 2. Each horizontal line shows the time that the 

orchestrator was active configuring an instance of a specific node template. 
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Deploying traffic application using prepackaged OSv components (we only replaced Apache Spark 

workers) reduced the deployment time from 750 to 500 seconds on average, a reduction by a third from the 

VM-only deployment time. 

 
Figure 3: Timings for regular (VM-only) traffic application 

deployments 

 
Figure 4: Timings of OSv traffic application deployments 

2.2.3 Summary 

The validation activities that we continued to perform by the project’s M36 demonstrate the value and 

benefits of using the DICE Delivery tool. The originally supported core technologies already enabled 

composition and automated deployment of versatile and complex DIAs, with the possibility to supply 

custom components using a Script Runner node type. With the added support of Docker and OSv, the 

spectrum of possible DIAs is now even wider. 

Our own internal validation process was also complemented with the feedback we obtained from some of 

the external users. This includes users from the use case partner groups in the consortium (who report their 

findings from their own perspective later in this document) and a small number of external users. From 

their experience and support queries we find that a certain step in the learning curve remains: the 

knowledge of handling system administration tasks. An unavoidable prerequisite for the DICE Delivery 

tool to work properly is that the target datacenter or cloud is properly configured in terms of the network, 

operating system images, etc. In a public platform such as the Amazon’s EC2, it is possible to prescribe in 

the instructions the majority of the parameters, so in that case the overall user experience is higher. But in 

custom, private environment such as an OpenStack testbed, there are more possibilities of unforeseen 

misconfiguration that may block the deployment process. 

Assuming that a customer employs a reasonably trained system administrator, then they can set up and 

configure the DICE Delivery tool from zero to a running environment in a few hours. The resulting 

services then enable quick deployments of the DIA blueprints. But the users and customers who are new to 

Cloud environment may need additional help before they can take full advantage of the tool. As a part of 

the work to improve and strengthen the DICE offering we therefore consider expanding on the 

documentation. However, this measure might get an opposite effect by potentially making the instructions 

alone too intimidating to the users. So as a countermeasure we plan to include additional checks of the 

user’s input against the target environment. 

 Verification Tool 

The DICE Verification Tool (D-VerT) is the tool enabling the formal analysis of safety properties on Data 

Intensive Applications (DIAs) from the DICE Platform. 
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D-VerT allows application designers to evaluate their design against safety properties, such as reachability 

of undesired configurations of the system, meeting of deadlines, and so on. 

The analysis, which is mainly focused on the timing behaviour of the applications, follows a model-driven 

approach: applications are defined by DIA designers as DICE-profiled UML models through the Papyrus 

editor of the DICE Platform.  

Once the model is complete and the needed configuration parameters are provided, D-VerT automatically 

generates the instance of the formal model corresponding to the UML model, and performs the formal 

analysis on it. The outcome of the analysis is then reported in the DICE IDE and is employed by the 

designer of an application for refining its model at design time, in case anomalies are detected. 

The formal models are based on a Metric Temporal Logic formalism, and the analyses exploit Bounded 

Satisfiability Checking techniques. 

Currently the tool supports the analysis of both streaming applications designed in Storm (buffer saturation 

analysis) and batch applications using the Spark technology (deadline feasibility analysis). 

Since M30, various validation activities and refinement have been carried out. The main improvements 

regarded both the integration with the DICE Platform and the internals of the tool. In particular, some 

optimizations have been studied for the formal models in order to improve verification performances.  

The target KPI for DICE Verification Tool indicates that the number of violations of properties on timing 

constraints identified by the tool must be >= 2, and this has been achieved on the considered case studies. 

The following sections summarize the validation activities that have been performed for the Storm and 

Spark technologies on a number of use cases. The validation on the ATC case study is described in detail in 

Section 3. 

2.3.1 Apache Storm 

The Storm technology has been validated on various scenarios. The first validation activity, carried out on a 

simple topology having 2 spouts and 3 bolts, was presented in Deliverable D3.5 [9]. Next, the 

FocusedCrawler topology, with different configurations, was used as validation in [10]. In order to 

evaluate the performance and the scalability of the tool, we carried out many experiments on the presented 

topologies, by varying the topology parameters and the number of bolts considered. The following table 

shows time and memory consumptions statistics we collected. 

Table 5: FocusedCrawler time and memory consumption statistics 

Topology Configuration N. of Bolts Duration Max Memory 
focused-crawler-complete 8 2664s 448MB 

focused-crawler-reduced-cfg-1 4 95s 142MB 

focused-crawler-reduced-cfg-2 4 253s 195MB 

focused-crawler-reduced-cfg-3 4 327s 215MB 

focused-crawler-reduced-cfg-4 4 333s 206MB 

focused-crawler-reduced-cfg-5 4 3184s 317MB 

focused-crawler-reduced-cfg-6 4 1060s 229MB 

focused-crawler-reduced-cfg-7 2 14s 79MB 

While the previously mentioned validations were mostly focused on the evaluation of the formal model and 

the server component of the tool, [11] and [12] show the complete usage of D-VerT (from UML modeling 

to verification) for the iterative improvement of a web crawler topology. The tool identified 2 major 

violations in the topology, and helped the refactoring of the model. 

Since M30, the tool was validated both on the ATC use case and on the Wikistats application. 
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As described with more details in Section 3, the formal analysis identified the presence of 4 violations in 

the crawler topology of the ATC use case, and allowed, by means of the iterative refinement of the model, 

for their resolution. 

The Wikistats topology is an application performing analytics on web content from the Wikipedia website 

in a streaming fashion and stores the resulting statistics to a NoSQL database. We focused on the Storm 

topology and modeled it as a DICE-profiled UML Class Diagram using the Papyrus UML editor of the 

DICE Platform (Figure 5). 

 
Figure 5: UML Class Diagram describing the Wikistats topology 

Several verification tasks have been performed, focusing on the different nodes in the topology. 

D-VerT identified a first violation in the count_links bolt, providing an execution trace in which the 

number of messages in its input buffer grows in an unbounded way. After a refinement of the component, 

consisting in the improvement of its execution time (alpha parameter) the issue was solved as the tool did 

not detect any further problem on the bolt. However, another violation was found in the store_links bolt. 

This outcome motivated a further modification in the topology model: by increasing the level of parallelism 

of the store_links bolt the verification task did not find any more issues in the component. 
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Figure 6: D-VerT dashboard showing verification outcomes for the Wikistats use case 

Figure 6 shows the graphical interface through which it is possible to consult the status of the launched 

verification tasks. The execution times of the verification tool we collected during the validation on the 

Wikistats use case range from tens of seconds to tens of minutes, depending on the configuration. 

2.3.2 Apache Spark 

Validation activities for the Spark technology were first shown in deliverables D3.6 [13] and D3.7 [14], 

both considering a simple application performing a series of transformations on a text file. 

Since M30, extensive experimental validations have been made on three different well-known applications: 

the simple SortByKey operation, the graph processing algorithm PageRank, and the clustering procedure 

K-Means. 

The execution DAGs underlying the three applications have different sizes and different levels of 

parallelism, and have been executed and analyzed several times with different settings. This allowed us to 

evaluate both the accuracy of the formal model against realistic use cases and the scalability of the 

approach. 

We performed the deadline feasibility check on all the settings of the different applications, varying the 

deadlines and recording the execution times. 

On average, the tool was able to provide an outcome for feasible deadlines in less than a minute for the 

small-sized SortByKey examples, in a few minutes for the medium-sized Pagerank examples, and in tens of 

minutes (even hours) for K-Means, the example with the largest size. On the other hand, we registered 

extremely higher execution times for the feasibility analysis of deadlines that turned out to be unfeasible, 

but close to the minimum feasible deadline. In some of these cases, the tool took days you terminate the 

analysis. Since the difference between the analysis of feasible and unfeasible deadlines were so important, 

we decided to introduce a timeout to stop the analysis after an amount of time that (according to our 

experience and supported by experimental evidence) was reasonably high to conclude that the deadline is 

unfeasible. 

Experiments have shown promising results in terms of the accuracy of the model. The percentage 

difference between the minimum feasible deadline found by the formal analysis and the actual (average) 

execution time of the application running on a cluster, was below the 10% on all the settings we 

considered. The complete experimental evaluation is available at [15]. 

After this activity, we implemented some refinements to the Spark formal models aiming at the reduction 

of the model size and the mitigation of the state space explosion problem. The final goal of these 
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refinements is to reduce memory consumption and the execution time needed to perform verification. The 

first experiments show that, on average, the memory consumption halved with the new version of the 

model and the execution time decreases up to the 80% in some settings. 

 Simulation Tool 

The DICE Simulation tool is a simulation-based tool for reliability and efficiency assessment of Data 

Intensive Applications (DIA). Simulations carried out by the Simulation tool are model-based simulations. 

For performing its model-based simulation task, the tool takes as input UML models annotated with the 

DICE profile. It uses Model-to-model (M2M) transformations, that transform the DIA execution scenarios 

represented in these profiled UML models into Petri net models. Then, the tool evaluates these Petri nets, 

and finally uses the results of the Petri net evaluation to obtain the expected performance and reliability 

values in the domain of DIA software models. 

At the end of M30, the Simulation tool reached a phase that was feature complete. Currently, the 

Simulation tool computes the following metrics: 

 Performance assessment: Utilization of hardware devices and execution threads, response time and 

throughput of the application. 

 Reliability assessment: MTTF, availability and probability of continuous correct operation. 

The target Key Performance Indicator (KPI) for the Simulation tool specifies that the tool must predict the 

performance metrics with less than 30% of error on average. The DICE Simulation tool satisfies this KPI. 

The Simulation tool has been validated at DPIM and DTSM level for reliability and efficiency assessment 

of DIA. In particular, performance evaluation has been validated for Posidonia Operations and BluAge case 

studies at DPIM level, and News Orchestrator at DTSM level for Apache Storm (see Section 3). Besides, 

the Simulation tool has been also validated with synthetic data at DTSM level for Apache Hadoop [3,2], 

Apache Storm [5,2] and Apache Spark [6]. In the following paragraphs we detail the validation of every 

technology step by step. The Simulation tool is currently being validated for BluAge case study at Apache 

Spark level. 

2.4.1 Apache Hadoop 

The validation results for Hadoop MapReduce has been already presented in Section 6 of the DICE 

Deliverable 3.8 [1] and Section 3 of DICE Deliverable 3.1 [2]. The results have been published in [3] and 

are here summarized. 

The experiments were executed on Amazon EC2 and CINECA, the Italian supercomputing center. The 

target version was Hadoop 2.6.0. We studied the performance for various configurations of the Hadoop 

MapReduce framework. That is, we analyzed the simulation errors for different number of mappers 

(nMaps), reducers (nRed), cores and users. We chose a set of SQL queries that were translated into 

MapReduce jobs using Apache Hive [4]. They were executed over a dataset of several files ranging from 

250 GBytes to 1 TByte that were used as external tables. The metric that we measured was the system 

response time. The SQL queries are identified by the name R1-R5 in the first column of the table. A 

description of the SQL sentences can be consulted in [1]. The last column of the table represents the 

percentage of relative error between the estimated and real response times. The response times obtained by 

simulation (column T swn [ms]) are close to the response times obtained by real executions (column T 

[ms]) in the Hadoop MapReduce cluster for most situations. The simulation tool offers good estimations of 

the real execution of Hadoop MapReduce systems. For all cases, the relative error is lower than 17.81%; 

and reaches a relative error of 0.03% in the best cases. The validation results are summarized in the 

following table. 
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Table 6: Validation of the DICE Simulation Tool for Apache Hadoop MapReduce 

Query Users Cores 
Scale 

(GB) 
nMaps nRed T (ms) 

T SWN 

(ms) 
% Error 

R3 1 80 1000 1560 1009 1019973 
1020294,

84 
0.03 

R2 3 40 250 4 4 86023 119712.3 -17.81 

2.4.2 Apache Storm 

The validation results for Storm has been already presented in Section 3 of DICE Deliverable 3.1 [2]. The 

results have been published in [5]. 

The experiments were executed in a cluster with two workstations. All the workstations were characterized 

by Intel(R) Core(TM) i7-6700 CPUs (3.40GHz) with 8 cores, 32GBytes of RAM, a Gigabit Ethernet and 

Ubuntu Linux OS (version 14.04). The target version was Storm 1.0.  We studied the performance for 

various configurations of the Storm framework. That is, we analyzed the simulation errors for different 

number of cores, number of threads per bolt and thread execution time. 

The Storm example consists of two spouts (data generators/file readers) and three bolts (data processing). 

The Storm application executes a word count. We considered the utilization of each bolt as performance 

metric, i.e., the percentage of time that the threads associated to a bolt are active and processing tuples (see 

columns %BX Cap). The simulation tool offers good estimations of the real execution of Storm systems. 

For all cases, the relative error is lower than 15.7%; and reaches a relative error of 0.068% in the best cases 

(see columns %BX Error). We have varied the execution time of the bolts and the arrival rate of messages 

to the spouts. The validation results are summarized in the following table. 

Table 7: Validation of the DICE Simulation Tool for Apache Storm 

Experiment Cores 
% B1 

Cap 

% B2 

Cap 

% B3 

Cap 

% B1 

Error 

% B2 

Error 

% B3 

Error 
R5 11 39.4 38.7 17 0.068 3.275 4.18 

R10 11 9.5 11.9 7.3 15.738 0.958 12.618 

2.4.3 Apache Spark 

The validation results for Spark has been already presented in Appendix D of DICE Deliverable 3.4 [6]. 

In order to validate the Simulation tool, we have worked with several publicly available libraries and 

benchmarks for Spark. Concretely, we presented results from the SparkPrimes example, a toy example 

presented in DICE Deliverable 3.4 that computes a set of prime numbers; and the spark-perf suite 

developed by Databricks [7], a performance testing framework for Apache Spark 1.0+ that covers the more 

important parts of the ecosystem (Spark Core RDD, SQL + DataFrames and machine learning with MLlib). 

In particular for the spark-perf suite, we have evaluated the performance of several Spark Core operations. 

We have focused on analysing different combinations of count and aggregation operations (e.g., mapping 

and count, filtering and count, mapping and grouping by integer keys, mapping and grouping by string 

keys, mapping and reducing, etc.). The aforementioned examples were run with different job 

configurations. Mainly, we have parameterized: a) the number of assigned cores to each job; and b) the 

number of tasks per operation. The execution environment where the Spark applications were launched 

consists of a Spark Master (coordinator) and a set of six workstations for running the computations. The 

workstations are virtual machines deployed on the flexiOPS FCO cloud [8]. All the workstations were 

characterised by virtual AMD CPUs (4x2.60GHz) with 4GBytes of RAM, a Gigabit ethernet and Ubuntu 

Linux (version 14.04) OS. 

The validation results are summarized in the following table. It shows the error rate in the response times 

predicted by our tool for the SparkPrimes and the spark-perf suite with respect to the real executions. 
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Particular cases of SparkPrimes have high errors, for instance, 32.2%. Some cases in the spark-perf suite 

reached up to 26.094% of error. We suspected that these errors could be caused by the exponential 

distribution that simulates the mean execution time of the tasks. Therefore, we used an alternative 

probability distribution (Erlang distribution) in order to provide a better accuracy. 

We repeated the experiments using the Erlang distribution instead of the exponential one. On average, the 

errors with the Erlang distribution were 2.27% smaller for the SparkPrimes example; and we got a 

reduction of up to 12.87% for the spark-perf suite. More in detail, we observed that the Erlang distribution 

fits better than the exponential one when there are a few number of parallel tasks per operation with respect 

to the total number of cores in the cluster (numTasks < 200). Conversely, the exponential distribution fits 

better than the Erlang distribution when there are a high number of parallel tasks per operation with respect 

to the total number of cores in the cluster (numTasks >= 400). The internal behaviour of the Spark 

application master is faded out when managing large number of tasks. 

Table 8: Validation of the DICE Simulation Tool for Apache Spark 

Experiment Cores numTasks 
% SparkPrimes 

Error 

% spark-perf 

Error 
R7 18 200 32.2 26.094 

R9 18 800 2.94 0.013 

 Optimization Tool 

D-SPACE4Cloud is the the optimization tool developed within the DICE framework to support the 

capacity planning process of shared Hadoop Cloud clusters for MapReduce, Spark and Storm applications 

with quality of service guarantees. In a nutshell, the tool implements a search space exploration able to 

determine the optimal virtual machine (VM) type, possibly from different providers, and the optimal 

number of instance replicas.                                   

The underlying optimization problem is demonstrated to be NP-hard and it is solved heuristically, whereas 

job execution times are estimated via queueing network (QN) or Stochastic Well Formed Net (SWN) 

models by relying on the DICE Simulation tool model to model transformations. D-SPACE4Cloud 

implements an optimization mechanism that efficiently explores the space of possible configurations.  

During the third year, D-SPACE4Cloud was extended to support Spark applications, which are the core of 

the NETF case study.  In the last six months, we improved the tool GUI (an Eclipse plugin) and developed 

a new component, which relies on a very fast ad-hoc simulator PMI developed within the EUBRA-

BIGSEA project8 and which is able to derive optimization models directly from Spark logs. In this 

deliverable we summarise our validation results for the capacity planning of Spark applications in public 

clouds.  The validation of the tool for MapReduce applications has been reported in9.  The results of the 

validation for private clouds are reported in the DICE Deliverable D3.9.  

To validate D-SPACE4Cloud, we aimed at assessing the quality of the optimal solution obtained using D-

SPACE4Cloud. Assuming to optimize a given DIA and a deadline to meet, we focus on the response time 

measured in a real cluster provisioned according to the number of VMs determined by the optimization 

procedure, quantifying the relative gap as a metric of the optimizer accuracy. Formally:  

Error-deadline % =  (D- Treal)/Treal   (1) 

where D is the deadline and Treal the execution time measured on the real cluster, so that possible misses 

would yield a negative result.  

                                                      
8 http://www.eubra-bigsea.eu 
9 M. Ciavotta, E. Gianniti, D. Ardagna: D-SPACE4Cloud: A Design Tool for Big Data Applications. ICA3PP 2016: 614-629 

http://dblp.uni-trier.de/pers/hd/c/Ciavotta:Michele
http://dblp.uni-trier.de/pers/hd/g/Gianniti:Eugenio
http://dblp.uni-trier.de/db/conf/ica3pp/ica3pp2016.html#CiavottaGA16
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The second error metric we considered is the cost prediction error evaluated as percentage difference of the 

minimum cost cluster configuration identified by inspection able to fulfill a deadline set a priori and the 

cost of the cluster identified by  D-SPACE4Cloud.  Formally: 

Error-cost % =(Ccluster - CD-SPACE4Cloud) / CD-SPACE4Cloud (2) 

Note that, this latter is the target KPI for the D-SPACE4Cloud tool validation, whose median value should 

be below 30%. 

D-SPACE4Cloud has been validated by considering the NETF case study, the TPC-DS industry benchmark 

by deploying the DIAs on Microsoft Azure platform.  Moreover, thanks to the collaboration with the 

EUBRA-BIGSEA project, PMI validated its tool by considering the BULMA application developed within 

EUBRA-BIGSEA deployed on Docker containers.    

2.5.1 TPC-DS Case Study 

The TPC Benchmark DS (TPC-DS) is a decision support benchmark that models several generally 

applicable aspects of a decision support system, including queries and data maintenance. Although the 

underlying business model of TPC-DS is a retail product supplier, the database schema, data population, 

queries, data maintenance model and implementation rules have been designed to be broadly representative 

of modern decision support systems. TPC-DS run on RDBMS but also on many Big Data environments 

like Hadoop and Spark.  

The supporting schema contains vital business information, such as customer, order, and product data.  

TPC-DS is based on snowflakes schema. It consists of multiple dimensions and fact tables. Each dimension 

has a single surrogate key. The fact tables join with dimensions using each dimension table surrogate key. 

The experimental settings were the same as in the NEFT case study. For the validation we considered two 

queries Q26 and Q52 at 500 GB scale and, we considered six cases ran on D12v2 VMs, varying the 

deadlines. The table below summarizes results.  

Table 9: TPC-DS D-Space4Cloud error metrics 

Query 
VM 

type 

Time 

real (ms) 

Simulator 

prediction 

time (ms) 

Error- 

deadline 

% 

Cluster 

real 

(nCores) 

Cluster 

DS4C 

(nCores) 

Error- 

cost % 

Q26 D12v2 186,659  158, 287 15%  48 52 -8% 

Q52 D12v2 188,860 150, 488  20%  48 52 -8% 

Q26 D12v2 304,048 186, 066  39% 32 36 -11% 

Q52 D12v2 263,034  175, 394  33% 32 36 -11% 

Q26 D12v2 454,054 332,364 27% 20 24 -17% 

Q52 D12v2 410,588 353,852 14% 20 24 -17% 

First of all, none of the considered runs led to a deadline miss. Moreover the relative error is always below 

20%, with a worst case result of 17% and the average settling at 12%. The tool is conservative and always 

allocates one additional VM.  Overall we can conclude that the optimization tool is effective in identifying 

the minimum cost solution at design time, guaranteeing that deadlines are met as well.  

2.5.2 BULMA Case Study 

Thanks to the involvement of PMI in the EUBRA-BIGSEA project, DICE tools have been validated also 

on Docker container based deployments by considering the project BULMA application. The goal of 

BULMA is to provide high-quality integrated geospatial-temporal training data to support predictive 

machine learning algorithms of Intelligent Transport Systems applications and services.The problem faced 

by BULMA is the following. The task of identifying bus trajectories from the sequences of noisy 
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geospatial-temporal data sources is known as a map-matching problem. It consists of performing the 

linkage between the bus GPS trajectories and their corresponding road segments (i.e., predefined trajectory 

or shapes) on a digital map. BULMA is a novel unsupervised technique capable of matching a bus 

trajectory with the correct shape, considering the cases in which there are multiple shapes for the same 

route (common cases in many Brazil cities, e.g., Curitiba and São Paulo). Furthermore, BULMA is able to 

detect bus trajectory deviations and mark them in its output. BULMA application has been run on Spark 

1.6, where each executor was allocated to a Docker container with 2 cores and 4GB of memory.  The data 

set considered includes the data of five days of bus GPS data gathered in Curitiba. Overall 4 different 

configurations up to 48 cores were considered and results are summarized in Table 10.  Even if in this case 

one scenario (the one at 48 cores) led to a deadline miss, the accuracy of the simulation tools is in line with 

the previous analysed scenarios based on virtualized systems.  The average absolute percentage cost error is 

16% below the 30% median error envisioned for the target KPI.  

Table 10: BULMA D-Space4Cloud error metrics 

Simulator 

prediction time 

(ms) 

Time real (ms) 
Error- 

deadline % 

Cluster real 

(nCores) 

Cluster DS4C 

(nCores) 

Error- 

cost % 

723,876,859 724,858,500 15%  36 40 -10% 

644,487,201 693,636,333 -20%  48 46 4% 

1,039,256,814 1,126,044,750 39% 12 16 -25% 

781,989,438 797,890,000 33% 24 32 -25% 

 Monitoring Tool 

The DICE monitoring platform (DMon) is designed to be a scalable system with minimal collection 

overhead that is able to collect performance monitoring data from big data services underlying most data 

intensive applications. It currently supports: YARN, Spark, Storm, MongoDB, Cassandra, System metrics 

etc. 

DMon has several core features meant to ease the workload of the end user. For example, DMon is able to 

automatically detect Storm topologies as well as some basic Spark and YARN services which aids in the 

setup process. It is also capable of automatically generating basic visualizations for all big data 

frameworks. 

At M30 the monitoring tool is feature complete: monitoring metrics for all DICE supported technologies 

are collected, metric processing overhead is of loaded to DMon significantly reducing collection overhead, 

deployment is done automatically via blueprints by the DICE deployment service. Since M30 most of the 

work done was for performance improvements and minor bug fixes. As part of T.4.2 during the 

development of the Anomaly detection tool we have added an artefact repository to DMon. This repository 

is designed to hold all predictive models trained by the anomaly detection tool. This feature has been 

optimized in this period. 

On of the main optimizations done in this period was applied to the WSGI (Web Server Gateway Interface) 

used by DMon. This was done to ensure the best possible availability of monitoring data. As we can see in 

Figure 7 we have benchmarked a number of solutions such as; Tornado, Bjoern and Gunicorn using the 

Locust load testing tool. As a baseline we have also included the standard WSGI called Werkzeug.  
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Figure 7: Benchmark with various WSGI setups for DMon 

Another important modification was made to DMon which allows the monitoring of different versions of 

some of the Big Data frameworks supported by the DICE methodology. Of particular interest is Spark 

which has different ways of exporting performance metrics in versions 1.x than 2.x. 

The monitoring tool fulfils all KPIs by virtue of; its automatic deployment by the Deployment service thus 

considerably reducing the time it takes to configure and the processing of monitoring data inside DMon all 

collection components (such as the dmon-agent) are tasked only with forwarding the metrics to the DMon 

controller.   

 Anomaly Detection Tool 

The anomaly detection tool (ADT) is designed to detect contextual anomalies in performance metrics 

collected during DIA execution. It allows developers and designers to see how their application performs 

and notifies them in the case an anomaly occurs. In contrast to other solutions based on rules which mainly 

deal with a limited number of metrics (features) ADT can use the entire spectrum of features available 

during DIA execution. 

It is designed to form a lambda type architecture together with the monitoring platform. DMon is the 

serving layer where all monitoring data is stored and queried as well as the location where trained models 

are stored. ADT has two modes of operation. First it has a training mode where models are trained and 

validated. The second mode is the prediction mode where trained models are instantiated and are used for 

detecting. These two modes represent the batch and speed layer respectively from a lambda architecture. 

ADT was also used on a new use case dealing with fraud detection in credit card transactions. In this use 

case the data available is very imbalanced having an extremely low anomaly occurrence (well under 

0.0005%). It is important to mention that the available data was synthetically generated based on real 

transaction features. 
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Figure 8: Dataset features and missing values 

In the case of machine learning libraries such as XGBoost missing values are dealt with automatically by 

the underlying algorithm, it is able to learn which is the best imputation values. However, other methods 

are susceptible to these missing values in the data. This fact has lead us to include features in ADT which 

signal if missing values are detected. We can see from Figure 8 some of the selected features for anomaly 

detection. Some of the features had missing values which is easily seen from figure Figure 8. From Figure 

9 we can see the ADT calculated Pearson correlations generated during the initial analysis of the available 

dataset. 

 
Figure 9: Pearson correlation for floating point and integer features 
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All supervised and unsupervised methods have been tested on this dataset their average performance is 

around 6% to 8% false positives. Figure 10 shows a partial decision tree trained using ADT while Figure 

11 shows the training vs cross validation graph. 

 
Figure 10: ADT created Decision Tree example 

 

 
Figure 11: Training vs validation score for ADT Random Forest 

This dataset has proven to be of significant challenge as most methods implemented in ADT where until 

this point tested on datasets which had a maximum of 50000 to 1 ratio with regard to anomalies while in 

this scenario the ratio is much closer to 1 million to 1. Because of this usage of pre-processing methods for 

unbalanced dataset such as SMOTE and ADASYN is of great interest. Preliminary integration of these 

methods have yielded very promising results ADT being able to detect anomalies detecting 7.8% false 

positives. 

 Trace checking Tool        

DICE-TraCT is the DICE tool which enables the trace checking analysis of DIA logs. Trace checking is an 

approach for the analysis of system executions that are recorded as sequences of timestamped events to 

establish whether the system logs satisfy a property, usually specified in a logical language. Adding to the 

above, trace checking is a way to check the correctness of the ordering of the events occurring in the 

system and of the time delays between pairs of events. Moreover, it is useful when the aggregated data that 

are available from the monitoring system are not enough to conclude the correctness of the system 

executions with respect to some specific criteria. Additionally, trace checking is a possible technique to 
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achieve this goal and can be used on purpose to extract information from the executions of a running 

application. 

According to the DICE methodology, trace checking is performed after verification to allow for continuous 

model refinement. 

Since M30, DICE-TraCT underwent various validation and refinement activities that were carried out by 

using realistic applications such as the well-known Wikistats and also NewsAsset, the use case scenario 

owned by ATC. The complete DICE-TraCT framework based on a client-server structure was tested under 

the Wikistats application through the analysis of the logs extracted by the monitoring platform. The 

implementation of the IDE concluded the activity of the DICE-TraCT tool. The next figure shows the result 

of the analysis of the Wikistats topology that is sent to DICE-TraCT IDE by the DICE-TraCT engine. 

DICE-TraCT allows the users to implement specific monitoring solutions for the collection of information 

through the analysis of the application logs. In particular, DICE-TraCT enables the analysis of the logs to 

elicit the parameter values, related to certain specific features of the running application, that are necessary 

for the verification carried out by D-VerT. In our scenario, those parameters cannot be directly extracted 

from the monitoring platform of the framework used to implement the DIA, e.g., Storm. For instance, the 

parameter sigma, that characterizes the abstraction of the bolt functionality, can be calculated by means of 

the analysis of the logs with the trace-checking technique implemented by DICE-TraCT, whereas an 

estimation via the Storm monitoring service turns out to be unfeasible. 

DICE-TraCT easily fulfils the requirements on the KPIs as it can extract all the parameter values necessary 

for the verification with D-VerT, for every component of the topology. DICE-TraCT, in fact, can provide 

the average emit rate of the all the spouts and both sigma and the average time required by the bolts for 

elaborating their inputs, for all the bolts in the topology. 

 Enhancement Tool 

The DICE Enhancement tool is designed for iteratively enhancing the DIAs quality. Enhancement tool 

aims at providing a performance and reliability analysis of big data applications, updating UML models 

with analysis results, and proposing a refactoring of the design, if performance anti-patterns are detected. 

At the end of M30, the Enhancement tool reached a phase that was feature complete: 

 DICE-FG: Integrated a novel estimation algorithm for hostDemand, called est-le, that outperforms 

several state-of-the-art algorithms 

 DICE-APR: Developed and improved two submodules, Tulsa and Anti-Pattern Detection and 

Refactoring (APDR).  

o Tulsa, a M2M transformation tool, transforms the design time model (i.e, UML model), 

which is annotated with runtime performance quality characteristics by DICE FG tool, into 

performance model, Layered Queueing Network (LQN) model. Tulsa has a standalone 

version which executes a series of transformation tasks specified in an Ant build file. A 

specific launch configuration can be invoked from the IDE run-configuration panel. The 

run-configuration in question invokes model-to-model transformation that parses the UML 

diagrams and returns a LQN model for performance anti-pattern detection. 

o APDR also has a standalone version. It detects the pre-defined performance anti-patterns 

(i.e., Infinite Wait and Excessive Calculation), formally defined by using Matlab scripts, of 

DIAs and provides refactoring suggestions to the designer. It supports Big Data 

technologies (e.g. Storm). 
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 Enhancement Tool Plug-in:  DICE Enhancement tool (i.e., DICE-FG and DICE-APR) has been 

integrated in the DICE IDE as a plug-in by M30. It can be invoked through the Pop-up menu.  

2.9.1 Lab validation 

The Enhancement tools have been validated on the ATC and NETF studies and details can be found in the 

corresponding use case sections later in this deliverable. Additionally, we here report additionaly lab 

validation activities carried out in YR3. 

We modified a Storm application, WikiStats, to test our approach. The application processes and analyses 

web pages from the popular Wikimedia website in order to extract some statistics that are then stored into a 

database. The test environment is based on DICE IDE 1.0.0 and MATLAB Compiler Runtime (MCR) 

R2015a.  The WikiStats application is composed of 8 components. We assume that the threshold on the 

number of components, which can be deployed on a server, is 2. The upper bound of the CPU utilization is 

0.4. The maximum number of calls is 1 and the upper bound of response time is 4.0 sec. 

The problem faced by WikiStats is the following. The task of providing a refactoring of the design if the 

performance anti-patterns (i.e, Infinite Wait and Excessive Calculation) are found in the WikiStats 

application. It consists of modelling, analysis, extraction, detection and refactoring. 1) Modelling. Two 

models (i.e., architecture model and performance model) need to be generated for the later processing. The 

user of DICE IDE builds the design time model in the form of UML by using Papyrus editor in the DICE 

IDE. The UML model of WikiStats is annotated with core tags (e.g., hostdemand) of stereotypes of 

MARTE and DICE profiles. Enhancement tool plugin helps to generate performance model (i.e., LQN) 

according to the corresponding UML model. 2) Analysis. Both the solved LQN model and the performance 

analysis results can be obtained with the help of LINE solver. The analysis results of CPU utilization of the 

cluster is 0.4989. 3) Extraction. Extracting the constraints (i.e., performance upper bound) to be used in the 

deployment refactoring.  4) Detection and refactoring. As results of the Excessive Calculation detection and 

refactoring, the threshold on the number of components is 2, the current deployment violates the bound. 

Furthermore, the utilization 0.4989 is greater than the threshold on CPU utilization (0.4). Thus the 

Excessive Calculation anti-pattern is found. As results of the Infinite Wait detection and refactoring, there 

are 2 components that have more than one function call but only one of them has the response time that is 

greater than the threshold (4.0 sec). Thus, the refactoring suggestions for those two anti-patterns are shown 

in Figure 12 and Figure 13, validating the ability of the tool to identify anti-patterns and provide 

suggestions. 

 
Figure 12: Infinite Wait detection and refactoring suggestion 
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Figure 13: Excessive Calculation detection and refactoring suggestions 

 Quality testing Tool 

The quality testing tool (QT) offers a Java library (QT-LIB) and a workload generation tool (QT-GEN) for 

stress testing data-intensive applications. The tool supports Apache Storm and Apache Kafka, and through 

the latter it can deliver data pipelines to several other platforms including Apache Spark. QT-GEN allows 

to generate a workload to be injected in the application, either by random number generation or through the 

fitting and sampling of a class of hidden Markov models on existing workload traces for the system. The 

latter is particularly useful to create new tests in systems that process commercial data, which would be 

expensive to buy, such as Twitter datasets. QT-LIB enacts the test by reading the workload produced by 

QT-GEN and sending JSON tuples on output streams at the frequency requested by the end user. 

QT has been presented in deliverables D5.4 (Storm) and D5.5 (Kafka and Spark). On top of the 

experiments reported there, we have performed additional validations of the QT-LIB tool to establish its 

ability to harness the physical resources of the load testing machines. It was decided to focus on further 

validation of QT-LIB since QT-GEN has been the subject of a journal publication, see D5.4, therefore its 

maturity was deemed largely sufficient for practical use by third parties. 

Typically, in stress testing exercises the machine that hosts the workload generator soon becomes a 

bottleneck, as the volume of data and outgoing requests grows. This is expected as the larger the host 

utilization, the largest the parallelism of the testing tool. It is however a problem when the testing tool is 

not able to saturate the host or the target, as this typically points to a software bottleneck due to incorrect 

programming of the tool or misconfiguration of the underpinning platforms. To ensure that QT was not 

affected by this issue, we carried out new experiments to verify the scalability of the library. 

 
Figure 14: Further validation of QT-LIB load injector: saturation of target 

Figure 14 illustrates one of the experiments we have carried out to establish the ability of QT-LIB to scale. 

We have run a basic Storm setup on a two-core machine, and injected load from QT-LIB. We increased the 

volume of messages emitted by QT-LIB and we verified that this was able to correctly generate the load on 

the target machine up to its saturation. In the figure, we see that the number of emitted messages per 

worker on Storm remains constant around 24,000 as the number of workers exceeds 2 (note that the values 

reported in the figure are per worker), suggesting that the Storm platform has indeed saturated.  
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We have then carried out extra experiments to establish the scalability of the QT-LIB framework on the 

host, which extend the ones presented in D5.4. Figure 15 reports the results of these experiments. As we 

see, by increasing the parallelism of the QT-LIB injector in terms of number of spouts and emitted 

messages during the observation period, the system continues to produce correct results even with a 

parallelism of 512 spouts, which represents a rather large scenario for a small testbed like the one 

considered in our lab tests. This further confirms the absence of software bottlenecks in the QT tool. 

 
Figure 15: Further validation of QT-LIB load injector: saturation of host 

 Configuration optimization Tool 

CO focuses on optimizing data-intensive application configurations based on a technique known as 

Bayesian Optimization, which is a machine learning methodology for black-box global optimization. In 

this methodology, the unknown response of a system to a new configuration is modelled using a Gaussian 

process (GP), an important class of machine learning models. GPs are used to predict the response of the 

platform to changes in configuration. GPs can take into account mean and confidence intervals associated 

with measurements, predict system behavior in unexplored configurations, and can be re-trained quickly to 

accommodate for new data. Experimental results indicate that Bayesian optimization method can be much 

faster on real systems than existing auto-tuning techniques. CO was first developed in deliverables D5.1 

and later refined with transfer learning methods in deliverable D5.2, which bootstrap the method from an 

existing set of GPs based on an earlier release of the application. Later, in D5.3 we have integrated CO in 

the DICE IDE, allowing the user to specify configuration parameters within given ranges directly from the 

GUI. 

CO has been extensively validated on various types of Big Data workloads and platforms, in particular 

Storm and Cassandra. In addition to the material included in D5.1 and D5.2, experiments have also been 

carried out to validate the performance of the method in relation to other blackbox methods and across 

multiple dimensions.  

For example, Figure 16 shows a comparison of the CO algorithm based on transfer learning, named 

TL4CO, with tree-based regression and polynomial fitting methods. Lower error values indicate solutions 

closer to the global optimum. The figure, overall, indicates that the CO methods are able to optimally 

configure a data-intensive application, in this case a Storm-based system, than existing methods in the state 

of the art.  
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Figure 16: Further validation of configuration optimization tool 

 Fault injection Tool 

The FIT allows users to generate faults on their Virtual Machines, giving them a means to test the 

resiliency of their installation. Using this approach the designers can use robust testing, highlighting 

vulnerable areas to inspect before it reaches a commercial environment. Users or application owners can 

test and understand their application design or deployment in the event of a cloud failure or outage, thus 

allowing for the mitigation of risk in advance of a cloud based deployment. 

To validate the impact of FIT usage the common task manager program ‘top’ found in many Unix-like 

operating systems was used. Using the Linux ‘top’ command on the target VM the current state of its 

resources can then be seen.  

Regarding CPU saturation, before running the CPU overload fault, the %Cpu usage is measured.  While 

running the CPU overload the %Cpu quickly rises to near 100%. The stress command issued by the FIT 

would typically account for around 99.2% of the available CPU capacity.  

Regarding memory saturation, the FIT ‘stressmem’ feature is called with designated parameters. The tool 

first connects via SSH to the VM and determined the OS version by checking the /etc/*-release for the 

version of the OS (Ubuntu in our case). It then looks for the memory stress tool suitable for Ubuntu, for 

example Memtester. If the tool is not found first the DICE FIT installs the tool along with dependencies. 

Finally, the FIT calls Memtester to saturate memory in the target node. Again, a standard monitoring tool 

such as ‘top’ (in the %MEM column) will show the 2GB (or whatever was specified in the memory size 

parameter of  stressmem) RAM available to the VM being saturated. 

The use of standard measurement tools already bundled with the OS means it is then easy for use cases to 

ensure the injected fault is having the desired effect. 

 DICE IDE 

The pivotal tool of the project is the DICE IDE. It integrates the execution of the different DICE tools and 

it gives support to a new MDE methodology. The IDE is an integrated development environment tool for 

MDE where a designer can create models to describe data-intensive applications and their underpinning 

technology stack.  

The IDE offers the ability to specify DIAs through UML models. From these models, the toolchain guides 

the developer through the different phases of quality analysis, formal verification being one of them. 
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The IDE is based on Eclipse Neon 4.6, which is the de-facto standard for the creation of software 

engineering models based on the MDE approach. The Eclipse IDE has been customized with suitable plug-

ins that integrate the execution of the different tools, in order to minimize learning curves and simplify 

adoption. Not all tools are integrated in the same way. Several integration patterns, focusing on the Eclipse 

plugin architecture, have been defined. They allow the implementation and incorporation of application 

features very quickly. Moreover, creating custom versions of DIA applications are easier and without 

source code modifications need.  DICE Tools are accessible through the DICE Tools menu. 

2.13.1 IDE Global Architecture 

The overall goal of the IDE is to become the main access gateway for all designers and developers willing 

to adopt and follow the proposed methodology for building DIA applications. 

The IDE guides the developer through the methodology, based on tools’ Cheat Sheets. It initially offers the 

ability to specify the data-intensive application through UML models stereotyped with performance 

profiles. From these models, the tool-chain guides the developer through the different phases of quality 

analysis (e.g., simulation and/or formal verification), deployment, testing, and acquisition of feedback data 

through monitoring data collection and successive data warehousing. Based on runtime data, an iterative 

quality enhancements tool-chain detects quality incidents and design anti-patterns. Feedbacks are then used 

to guide the developer through cycles of iterative quality enhancements. 

2.13.2 Conclusions  

Improvements provided by the use of the IDE in order to develop data-intensive applications are: (1) User-

friendly IDE, (2) Support for most of the phases of software development cycle, (3) Plug-In Updates, (4) 

Integration with other quality tools, (5) IDE customizations, (6) Access to remote repositories, and (7) 

Advanced UML modelling. 

The last version (v1.0.1) was published on January 11, 2018 and it is a minor revision of the first release 

version (v1.0.0) of the DICE IDE and includes the last version of the DICE tools. DICE IDE allows to 

update the different DICE tools through the option “check for updates” of the help menu. 

The IDE has been used for the validation of all the DICE tools, since the access and interaction with the 

other tools are done through the IDE, moreover the IDE has been used in the development of the three 

industrial DIA use cases explained in this deliverable. 

Internally, for each new version of the IDE a set of validations has been made to ensure that the integration 

with the other tools works properly. These validations consist in review the cheat sheets, configuration 

properties, menu entries and update site for each integrated tool. 



Deliverable 6.4 - Final assessment report and impact analysis 

Copyright © 2018, DICE consortium – All rights reserved 34 

3 Deployment and Impact of Tools in Use Cases Environment 

All three demonstrators have been using and validating DICE tools in their development and business 

environment, throughout the whole project lifetime. All tools have been validated by at least one use case, 

while a large number of tools have been validated in more than one use case. Part of the material presented 

in this section is a summary of material already presented extensively in previous confidential deliverables 

D6.1 to D6.3, and we find necessary to comment on them in order to provide a complete overview to the 

reader.  

 
Figure 17: DICE tools deployment methodology 

 ATC Use Case 

We are currently experiencing a social web explosion, which is giving the power of speech back to the 

citizens who had been practically deprived of this since the gradual explosion of the population that made it 

impossible for news to travel via the old channel of the ‘word-of-mouth’. We now live through the new 

phenomenon of the ‘e-word-of-mouth’, which is travelling in rapid paces and huge volumes through 

tweets, posts and blogs. This could be an opportunity for direct access to information coming from first 

hand sources, as it was happening centuries ago in small societies. The problem is that the scales are now 

very much different and all the sides have their say in this big bang of gossiping: truth and lies, positive and 

negative, genuine and fake. Verifying content in an easy, transparent and fast way is becoming more and 

more relevant, especially when taking into consideration (a) the sheer quantity of content found in Social 

Networks, and (b) the fact that a lot of content consists of hoaxes, rumours or deliberately misleading 

information (e.g. propaganda, fake news, spin). ATC has used DICE tools to develop the Trend Topic 

Detector Module of TruthNest, a unique web platform which can be used for assisting the end user to 

verify the validity of a post coming from the social media. 

3.1.1 Use Case Scenarios 

TruthNest is an online comprehensive tool that can promptly and accurately discover, analyse, and verify 

the credibility and truthfulness of reported events, news and multimedia content that emerge in social 

media in near real time (see Figure 18). The end user has the ability to verify the credibility of a single post 

within seconds by activating, with a single click, a series of analysis events for achieving the desired result. 
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More specific, TruthNest users will be able to bring in streams from social networks which will then be 

able to analyse and gain insights as to several dimensions of the verification process. In addition, they will 

also be able to create and monitor new “smart” streams from within TruthNest. 

 

Figure 18: TruthNest Screenshot 

An important module for TruthNest - which has been developed from scratch is the “Trend Topic 

Detector”. The “Trend Topic Detector” provides to the end user a visualisation environment showing 

prominent trends that derive from social media, and, more specifically, from Twitter. What is critical to 

mention at this stage, is that only the “Trend Topic Detector” module has been developed by using DICE 

tools while the rest of TruthNest’s components have been developed by using conventional tools and 

methodologies as these have been used by ATC’s engineering and development team. 

 
Figure 19: Trend Topic detector 

3.1.1.1 Trend Topic Detector 

3.1.1.1.1 Description 

The Trend Topic Detector is the heart of our News Orchestrator application and is centered around a 

clustering module. This creates clusters of tweets that relate to the search criteria submitted. The clusters 

are formulated by grouping the tweets found based on their common terms. The module tracks a percentage 

of the tweets posted onwards on Twitter, as the Twitter streaming API limitations impose. While it is 
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restricted currently on Twitter stream API, it can take input from multiple social media (YouTube, Flickr 

and others) however it has not been implemented yet. 

3.1.1.1.2 Architecture & Topology 

The main pipeline of the clustering module is implemented as a Storm topology, where sequential bolts 

perform specific operations on the crawling procedure. These bolts include entity extraction (by using 

Stanford NER classifier) and minHash computation to estimate how similar the formulated sets are. The 

tweets terms are extracted and indexed in a running Solr instance. The most frequent terms are computed in 

a rolling window of 5 minutes and 20 clusters are formulated by default. A label (typically the text of a 

tweet) is assigned to each cluster. The results are stored in a Mongo database. The module is highly 

configurable and offers nearly real time computation of clusters. 

 
Figure 20: News Orchestrator Architecture 

The main purpose of topic-detector part of focused crawler is the extraction of trending topics contained in 

items shared through social networks. By trending topics, we refer to frequent features (n-grams, named 

entities, hashtags) that exhibit an abnormal increase on the current timeslot compared to the previous ones. 

The main pipeline of topic-detector is implemented as an Apache Storm topology, where the sequential 

bolts perform a specific operation on the detection procedure. The overall topology is depicted in the 

following figure.  

 
Figure 21:  Trend Topic Detector Topology 
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The input stream consists of items: these refer to tweets published in Twitter. There are two spouts that are 

possible to inject items in the topology: a) one that listens to a Redis message broker following the 

Publish/Subscribe pattern, and b) one waiting for incoming items from Twitter's Streaming API. The items 

fed to the detector through Redis may be produced by any independent process. One possibility is to use 

the Stream Manager project. 

The first bolt in the topology extracts named entities from the text of the messages injected in the topology 

by the spouts. For this procedure, Stanford NER 2extractor is used. The next bolt extracts a signature from 

the text based on the MinHash algorithm. Intuitively, items with similar text will have identical signatures. 

The next bolt extracts terms from the items i.e. n-grams and hashtags. These three bolts add the extracted 

data in the corresponding fields of the Item class. Solr indexer bolt used to index the items in a running 

instance of Solr. This index can be used afterwards to get the items relevant to an extracted topic. 

At that point the topology is split into two parallel pipelines: the first one is used to extract trending topics 

based on trending terms, while the second used to cluster items based on minhash signature. Both of these 

pipelines use the same sequence of bolts, operate on a different field of the items (terms and minhash 

signature respectively). 

The first bolt in these pipelines is the TermsRollingCountBolt. This bolt performs rolling counts of 

incoming objects (terms or minhash). Rolling means that by using a sliding window the bolt keeps track of 

statistics of an object to the current time window compared to the previous ones. At the end of each time 

window, the bolt emits a rolling count tuple per object, consisting of the object itself, its latest rolling 

count, a metric that indicates how trending is the object and the actual duration of the sliding window (just 

for testing as the length of the windows is constant). 

As each object can emitted from multiple nodes in a distributed topology, the next two bolts used to 

aggregate and rank the objects, in a map-reduce fashion. The final ranking bolt emits a ranking of top 

objects (terms or minhash) for the current time window. Finally, each of the objects in the rank is stored in 

a MongoDB instance. The time stamp of the current window is also stored in order to keep track of the 

evolution of these objects over time. Finally, for each of the emitted top objects a label is extracted by 

using the text of the indexed items. Then by using either the terms or the minhash value a Solr query is 

performed. From this query, we get the most relevant and most popular item and we use its text as a label 

of the object. 

3.1.2 Validation & Impact analysis 

In the architecture described it is worth mentioning that although the Trend Topic Detector application 

deals with big streams of social networks data the use of Big Data technologies in the processing layer is 

quite limited. The idea is to re-engineer the architecture and introduce Big Data technologies where this is 

possible. By identifying and addressing quality-driven metrics we expect to isolate bottlenecks in the 

architecture and revise/redesign those parts by introducing Big Data technologies. More specifically, the 

revised architecture should satisfy the following requirements: 

 High Availability 

o The system should be stable on a 24/7 basis 

 Fault tolerance 

o The system should recover automatically in case of failure without losing significant data 

 Performance 

o The system should be able to scale up in terms of throughput 
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The time behaviour of the Trend Topic Detector application is quite critical since the analysed information 

regarding the trending topics extracted should be indexed and exposed by the User Interface in almost real 

time, enhancing in this way the importance of the identified news topics. In order to achieve the above, we 

have applied a number of DICE tools in our environment, in order to validate and assess their results in a 

“real business” environment.  

3.1.2.1 DICE IDE 

DICE IDE has been used as the main access point of most DICE tools throughout the whole process of 

testing and validating DICE Tools. Using the IDE allowed us to minimize the learning curve we needed to 

cover for using the tools, as the IDE is based on Eclipse which was being already used by ATC engineers. 

Minimising the learning curve, allowed us to shift resources from training to production activities, which 

allowed us more time for application development, testing and productisation.  

3.1.2.2 DICER and Deployment Service 

The DICER tool allowed us to express the infrastructure needs and constraints for the Trend Topic Detector 

application and also to automatically generate deployment blueprints to be used on a cloud environment. 

We evaluated the usefulness of the DICER tool in terms of time saving, with regard to the time needed to 

setup the infrastructure manually from scratch, and the degree of automation that DICER offers. Note that 

in the total time that we computed for the DICER execution time we included the time needed by the DICE 

Deployment service to deploy the generated blueprint. 

Table 11: DICER and Deployment Service KPI for the ATC use case 

 
The whole process was really fast and we achieved a time saving almost 80% compared to the time we 

needed previously when we were installing manually the Storm cluster and all of its dependencies 

(Zookeeper etc) as well as the Storm application and all the dependencies for the persistence layer. The fact 

that the TOSCA blueprints allow the refinement of the Storm-specific configuration parameters in advance 

is really convenient since we can experiment with different Storm cluster setups by applying another 

reconfiguration, resulting in a new testbed, until we reach the most efficient in terms of performance and 

throughput for our topologies. More detailed information can be found in D6.2-Initial implementation 

and evaluation. 

3.1.2.3 Monitoring Tool 

The ability to monitor Trend Topic Detector’s deployed topologies is necessary in order to identify any 

possible bottleneck or even to optimize the performance and throughput by adding more parallelization for 

example. We have installed the Monitoring platform core modules, and we then used one of the features of 

latest Deployment Service release to automatically register the Storm cluster nodes on the core services of 

Monitoring platform during the infrastructure/application deployment phase. The monitoring was 

performed not only on a per (Stormcluster) node but also on a per application level which allowed us to 

distinguish between issues related to hardware specifications of the nodes and issues related to the 

application’s internal mechanics like the size of internal message buffer of Storm. More detailed 

information can be found in D6.2-Initial implementation and evaluation. 

Table 12: Monitoring Platform KPI for the ATC use case 
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3.1.2.4 Quality Testing Tool 

The Trend Topic Detector uses the Twitter’s Streaming API which allows low latency real time access to 

Twitter’s global stream of tweet data by making a long lived HTTP request and parsing the response 

incrementally. In that way, it avoids using the Twitter REST API where the API rate limit window duration 

is 15 minutes and the maximum number of allowed requests/call is up to 180 per time window. But the 

Streaming API also imposes some limitations regarding the size of the sampled tweets which is 

approximately ~1% of the total number of tweets published. The goal is to request a paid API from Twitter 

which would allow the Trend Topic Detector to crawl and analyse a bigger quota of the stream of published 

tweets. The logic was to run the Quality Testing tool for helping us in evaluating the maximum input rate 

that the trending topic detector topology can handle without drastically affecting the performance, mostly 

in terms of response time. 

So, the goal of the experiment with quality testing was to stress test the capacity of the Trend Topic 

Detector topology. More specifically, we wanted to check how the topology is behaving in case of burst 

events (either political or social or economic) taking place in Twitter. Whenever such case happens, the 

social media users generate a significant high volume of messages and the DICE Quality Testing tool can 

help in simulating such heavy load conditions. 

In order to validate the performance of the tool, a chrono assessment has been performed comparing the 

manual time that ATC engineers would need to perform manually the stress testing of the topology to the 

time that is required by the Quality Testing tool to perform a similar. As a result, we discovered that the 

reduction in time per test cycle is proportional to the number of experiments/iterations. More specific for: 

 Reduction of: 27.027% for 4 experiments/iterations 

 Reduction of: 34.782% for 5 experiments/iterations 

More detailed information can be found in D6.3-Consolidated Implementation and evaluation. 

3.1.2.5 Configuration Optimisation Tool 

In general, a typical Storm deployment comprises of a variety of configuration properties that affect the 

behaviour of nimbus, supervisors as well as the topologies. It is a non-trivial task for a developer to select 

optimal values for the configuration properties in order to fine tune the Storm topology execution. This is 

usually a complicated task accomplished by experts in this area. We have applied the Configuration 

Optimization tool on the Trend Topic Detector topology, starting by making the topology reliable, that is to 

properly acknowledge the successfully processed tuples in order to have valid and consistent results 

regarding the performance metrics (throughput and response time) on each iteration of the tool. Also, we 

have created an offline feed Twitter replay script, to emit an already crawled corpus of Twitter items with a 

fixed rate for having a better control over the experiments. This has been done to avoid the sudden peaks in 

the input rate coming from the Twitter Streaming API (a common case when for example a burst event, 

political economical or other, happens), that could otherwise affect randomly the consistency of the 

measurements results on each iteration.  
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In order to evaluate the improvement by applying the Configuration Optimization tool on the Storm 

configuration that the Trend Topic Detector relies on, the ATC engineers have monitored the topology 

throughput as well as the latency. As it is shown in Figure 22, the impact on performance is more than 

twice compared to the default configuration which is a significant improvement. This achievement has 

been achieved after only 100 iterations which resulted in a total of 16 hours (100 * 10 minutes) of 

execution. The corresponding validation KPI has been fully addressed, resulting in a more than 30% 

improvement in both the throughput and the latency metrics. Adding to the above, by using this tool we 

have managed to do this without the need of a senior expert, but only with the support of a junior engineer, 

which allowed us to reduce resources thus shift them to other activities. More detailed information can be 

found in D6.3-Consolidated Implementation and evaluation. 
Table 13: Configuration Optimsation Results in ATC Use Case 

 

3.1.2.6 Fault Injection Tool 

Since the Trend Topic Detector topologies deal with a cloud deployment it is quite critical to be able to test 

the consequences of faults early in the development phase in a controlled environment rather than once the 

application is in production. It is important for the Trend Topic Detector DIA to be comprised of reliable 

topologies due to the nature of the processing it performs: if for example there is a burst event at some time 

then losing some of the social networks messages due to network failures/repartitions could affect the 

quality of the trending topics identified at that period. 

For the reasons above, we deployed the Fault Injection tool in order to test how the application behaves in 

terms of reliability and fault-tolerance and eliminate any single point of failure as possible. To this end, we 

used the Fault Injection tool to randomly stop/kill not only the various types of Storm processes (nimbus, 

supervisor and worker processes) but also a whole node of the Storm cluster, and we checked how those 

actions affect the proper execution of the topologies 

Figure 22: Configuration Optimisation Tool results 
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Figure 23: Fault injection tool indicative scenario 

Finally, we used the Fault Injection tool to generate high memory and CPU usage for the Storm cluster 

VMs to simulate high memory/CPU load. The various processing bolts of the topology were not affected 

too much since none of them is high CPU-bound or memory greedy. Using the Fault Injection Tool 

allowed us to deploy a larger number of “faults” when compared to the manual procedure (20%), therefore 

be able to collect a larger number of results. However, we didn’t manage to reach the desired KPI, set by 

the tool owner. Additional validation activities are currently on going and will continue after M36.  

Table 14:Fault Injection Results 

 
More detailed information can be found in D6.2-Initial implementation and evaluation. 

3.1.2.7 Verification Tool 

The DICE Verification Tool (D-VerT) has been used in the Trend 

Topic Detector case study to perform formal analysis on the 

Crawler topology, and check for the presence of timing violations 

possibly leading to the saturation of the input buffer in some bolts. 

The topology has been designed at the DTSM level as a DICE – 

profiled UML Class Diagram, as shown in Figure 24. 

D-VerT identified two violations on the UrlExpansionBolt 

component. After the first violation was found, a first refinement 

consisted in diminishing the value of alpha from 2 to 1. Even after 

this change the tool found an issue in the component, providing an 

execution trace showing an unbounded increase in the number of 

elements in the input buffer. By diminishing again the value of 

alpha to be 0.5, the issue was solved and the tool did not find any 

violating execution for that bolt. However, this improvement in the 

processing time of UrlExpansionBolt impacted on the bolt 

downstream, i.e., UrlCrawlDeciderBolt. In fact, a new violation 

was found for on the input buffer of UrlCrawlDeciderBolt, which 

turned out not being able to process the incoming flow of data in a 

timely manner. In this case the refinement consisted in increasing 

the level of parallelism of the bolt. A first increase, from 1 to 4, 

Figure 24: Class Diagram of the Crawler 

topology 
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was not enough, as resulted in another violation, while, with a parallelism level of 6, no violation was 

found by the tool. 

Table 15 shows the D-VerT dashboard for some of the configuration that underwent verification. 

Table 15: D-VerT Tasks Dashboard 

 
Adding to the above, in the following table we report the details of the most relevant verification tasks 

performed and described above. The highlighted alpha and parallelism refer to the current bolt under 

verification, and have to be considered as the only variations with respect to the initial configuration of the 

topology. 

Table 16: Verification Tasks 

Bolt under verification alpha parallelism Outcome Verification Time 
UrlExpansionBolt 2.0 4 SAT (violation found) 118s 

UrlExpansionBolt 1.0 4 SAT (violation found) 1435 

UrlExpansionBolt 0.5 4 
UNSAT (NO violation 

found) 
7275s 

UrlCrawlDeciderBolt 1.0 1 SAT (violation found) 770s 

UrlCrawlDeciderBolt 1.0 4 SAT (violation found) 1483s 

UrlCrawlDeciderBolt 1.0 6 
UNSAT (NO violation 

found) 
1461s 

As a conclusion, we can report that by deploying the verification tool, we managed to easily spot four (4) 

violations of properties on timing constraints, which allowed us to apply all possible configurations, 

without the need of spending countless resources for spotting these violations.   

3.1.2.8 Trace Checking Tool 

The Trace Checking Tool has been employed for the 

validation and the refinement of the DICE-TraCT. By 

deploying the DICE-TraCT allowed us to implement 

specific monitoring solutions for the collection of 

information through the analysis of the application logs. 

More specific, the tool enabled us to analyse the logs to 

elicit the parameter values, related to certain specific 

features of the running application, that are necessary for 

the verification carried out by the Verification tool. In 

particular, the value of two parameters sigma for the Storm 

bolts and emit rate for the Storm spouts have been evaluated 

through the trace-checking analysis. The obtained values 

have been used in the Verification tool to refine the DTSM 

model of the application. The application logs have been analyzed in order to calculate the value of sigma 

for two bolts EntityExtraction and ClusterLabeler.  

3.1.2.9 Simulation Tool 

Scalability, bottleneck detection and simulation/predictive analysis are some of the core requirements for 

the News Orchestrator DIA. We have deployed the DICE Simulation tool in order to perform a 

Figure 25: Trace Checking Tool 
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performance assessment of our Storm based DIA that would allow us to predict the behavior of the system 

prior to the deployment of it on a production cloud environment. The results from deploying the tool, 

showed that for some of the bolts (approximately more than half) the prediction error is indeed very small, 

less than 10%, predicting quite accurately the capacity of the bolts.  For ATC engineers, having a tool like 

the DICE Simulation tool in the stack of the tools is a significant advantage. Every new feature that is 

added in the News Orchestrator DIA may result in an undesired imbalance with regards to the performance 

of the system. Being able to validate the performance impact on the DIA prior to the actual deployment on 

a cloud infrastructure gives the flexibility to fine tune the topology configuration in advance and take 

corrective actions (i.e. scaling by increasing bolts parallelism) without wasting resources (costs and efforts) 

that would be otherwise required by an actual deployment on the cloud. More detailed information can be 

found in D6.3-Consolidated Implementation and evaluation. 

3.1.2.10 Enhancement Tool 

The main pipeline of topic-detector of ATC case is also tested on APR. The detector is implemented as a 

storm topology, where the sequential bolts perform a specific operation on the detection procedure. The test 

environment is based on DICE IDE 1.0.0 and MATLAB Compiler Runtime (MCR) R2015a.  The ATC 

application is composed of 18 components. We assume that the threshold on the number of components, 

which can be deployed on a server, is 8. The upper bound of the CPU utilization is 0.8. The maximum 

number of call is 1 and the upper bound of response time is 7.0 sec. 

The problem faced by ATC is the following. The task of providing a refactoring of the design if the 

performance anti-patterns (i.e, Infinite Wait and Excessive Calculation) are found in the ATC application. 

It consists of modelling, analysis, extraction, detection and refactoring. 1) Modelling. Two models (i.e., 

architecture model and performance model) need to be generated for the later processing. DICE IDE builds 

the design time model in the form of UML by using Papyrus editor. The UML model of ATC is annotated 

with core tags (e.g., hostdemand) of stereotypes of MARTE and DICE profiles. APR helps to generate 

performance model (i.e., LQN) according to the corresponding UML model. 2) Analysis. Both the solved 

LQN model and the performance analysis results can be obtained with the help of the LINE solver. The 

analysis results of CPU utilization of the cluster is 0.9968. 3) Extraction. Extracting the constraints (i.e., 

performance upper bound) to be used in the deployment refactoring.  4) Detection and refactoring. As 

results of the Excessive Calculation detection and refactoring, the threshold on the number of component is 

8, the current deployment violates the bound. Furthermore, the utilization 0.9968 is greater than the 

threshold on CPU utilization (0.8). Thus the Excessive Calculation anti-pattern is found. As results of the 

Infinite Wait detection and refactoring, there are two component that have more than one function call but 

only one of them response time is great than the threshold (7.0 sec). Thus, the refactoring suggestions for 

those two anti-patterns are shown in Figure 26 and Figure 27. 

 
Figure 26: Infinite Wait detection and refactoring suggestion 
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Figure 27: Excessive Calculation detection and refactoring suggestions 

DICE APR can detect 2 performance anti-patterns in the Storm topology. DICE APR takes some 

performance indexes, e.g., response time and CPU utilization, as input parameters, and detects the 

application performance anti-patterns by mean of analyzing the solved performance model with 

performance bounds, and provides architecture refactoring suggestions. Tests executed on the Storm-based 

applications (e.g., Wikistats and ATC case) have shown that DICE APR tool is able to effectively detect 

performance anti-patterns. The tool enables the end user to quickly identify the performance issues of 

running Storm applications and apply the corresponding refactoring action (e.g., component redesign).  

3.1.3 Discussion 

Throughout the deployment of DICE tools during the last 36 months, we have managed to validate most of 

the tools in our development environment. Moreover, a number of DICE tools have provided a significant 

advantage by reducing our development time thus reducing our operational and development costs by a 

significant percentage or even allowing us to assign less experienced developers to complicated projects 

instead of wasting “expensive” senior developers time. DICE tools have also enabled us to develop and 

fine tune a critical module for us (Trend Topic Detector) which has evolved into a powerful tool, sitting in 

the heart of one of our newest and most innovative products ready to be deployed into the market.  

 PRO Use Case 

Posidonia Operations is an Integrated Port Operation Management System highly customizable that allows 

a port to optimize its maritime operational activities related to the flow of vessels in the port service area, 

integrating all the relevant stakeholders and computer systems. 

In technical terms, Posidonia Operations is a real-time and data intensive platform able to connect to AIS 

(Automatic Identification System), VTS (Vessel Traffic System) or radar, and automatically detect vessel 

operational events like port arrival, berthing, unberthing, bunkering operations, tugging, etc. 

Posidonia Operations is a commercial software solution that is currently tracking maritime traffic in Spain, 

Italy, Portugal, Morocco and Tunisia, thus providing service to different port authorities and terminals. 

The goals of creating this case study are adopting a more structured development policy (DevOps), 

reducing development/deployment costs and improve the quality of our software development process. 

In the use case, the following scenarios are considered: deployment of Posidonia Operations on the cloud 

considering different parameters, support of different vessel traffic intensities, add new business rules (high 

CPU demand), run simulation scenario to evaluate performance and quality metrics. 

3.2.1 Business goals 

Three main business goals have been identified for the Posidonia Operations use case. 

 Lower deployment and operational costs. 
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Posidonia Operations is offered in two deployment and operational modes: on-premises and on a virtual 

private cloud. When on-premises, having a methodology and tools to ease the deployment process will 

result in a shortened time to production, thus saving costs and resources. In the case of a virtual private 

cloud deployment, it is expected that the monitoring, analysis and iterative enhancement of our current 

solution will result in better hardware requirements specifications, which in the end are translated into 

lower operational costs. 

 Lower development costs. 

Posidonia Operations is defined as a “glocal” solution for maritime operations. By “glocal” we mean that it 

offers a global solution for maritime traffic processing and analysis that can be configured, customized and 

integrated according to local requirements. In addition, the solution operates in real-time making tasks like 

testing, integration, releasing, etc. more critical. By the application of the methodology explained in the 

book, these tasks are expected to be improved in the development process, thus resulting in shortened 

development lifecycles and lower development costs. 

 Improve the quality of service. 

Several quality and performance metrics have been considered of interest for the Posidonia Operations use 

case. Monitoring, predictive analysis or ensure reliability between successive versions will end in an 

iterative enhancement of the quality of service to our current customers. 

3.2.2 System Architecture 

Posidonia Operations is an integrated port operations management system. Its mission consists on 

“glocally” monitor vessels’ positions in real time to improve and automatize port authorities operations. 

The below image shows the general architecture of Posidonia Operations. The architecture is based on 

independent Java processes that communicate with each other by means of a middleware layer that gives 

support to a Message Queue, a Publication and Subscription API and a set of Topics to exchange data 

among components. 

 
Figure 28: Posidonia Operations general architecture 

An overview of the main components for Posidonia Operations would be: 

 Vessels in the service area of a port send AIS messages that include their location and other 

metadata to a central station. (This is out of the scope of the architecture diagram) 

 An AIS Receiver (a spout) receives those messages and emits them through a streaming channel 

(usually a TCP connection) 
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 The AIS Parser (a bolt) is connected to the streaming channel, parses the AIS messages into a 

middleware topic and publishes it to a Message Queue. 

 Other components (bolts) subscribe to the Message Queue to receive messages for further 

processing. As an example, the Complex Event Processing engine receives AIS messages in order 

to detect patterns and emit events to a different Message Queue. 

 The Posidonia Operations client "Web" allows to the employees of the port to have a visual tool 

that allows them to control the location of the vessels in real time. This website shows on a map the 

different vessels that are within the area of influence of a port, with a list of operations that are 

happening. 

 
Figure 29: Posidonia Operations Client 

3.2.3 Use Case Scenarios 

There exists different usual scenarios where Posidonia Operations development lifecycle can benefit from 

the DICE Framework and DICE Methodology. These scenarios are a small subset of the possible ones but 

are representative of interesting situations and are based on our current experience delivering a data 

intensive application to port authorities and terminals. 

3.2.3.1 Deployment Scenario 

Currently Posidonia Operations can be deployed in two fashions: 

 On-premises: The port authority provides its own infrastructure and the platform is deployed on 

Linux virtual machines 

 In the cloud: Posidonia Operations is also offered as a SaaS for port terminals. In this case, we use 

the Amazon Virtual Private Cloud (VPC) to deploy an instance of Posidonia Operations that gives 

support to different port terminals. 

Apart from this, Posidonia Operations configuration varies depending on the deployment environment: 

 Hardware requirements (number of nodes, CPU, RAM, DISK) to deploy of Posidonia Operations 

on each port is based on the team experience. For each deployment, the hardware requirements are 

calculated manually by engineers, considering the estimation of the number of vessels and the 
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complexity of the rules applies for each message to be analysed. DICE tools can help to tune 

automatically the appropriate hardware requirements for each deployment. 

 Posidonia Operations deployment and configuration is done by a system administrator and a 

developer and it varies depending on the port authority. Although deployment and configuration is 

documented, the DICE tools can help to adopt a DevOps approach, where deployment and 

configuration can be modelled in order not only to better understand the system by different 

stakeholders, but also to automate some tasks. 

 A DevOps approach can help to provide also test and simulation environments that will improve 

our development lifecycle. 

3.2.3.2 Support vessels traffic increase for a given port 

Posidonia Operations core functionality is based on analysing a real-time stream of messages that represent 

vessels positions to detect and emit events that occur on the real world (a berth, an anchorage, a bunkering, 

etc.). 

Different factors can make the marine traffic of a port increase (or decrease), namely: 

 Weather conditions 

 Time of the day 

 Season of the year 

 Current port occupancy 

 etc. 

This means that the number of messages per second to be analysed is variable and can affect performance 

and reliability of the events detected if the system is not able to process the streaming data as it arrives. 

When this is not possible, messages are queued and this situation has to be avoided. 

We currently have tools to increase the speed of the streaming data to validate the behaviour of the system 

in a test environment. However, the process of validating and tuning the system for a traffic increase is a 

tedious and time consuming process where DICE tools can help to improve our current solution. 

3.2.3.3 Add new business rules (CEP rules) for different ports 

Analysis of the streaming data is done by a Complex Event Processing engine. This engine can be 

considered as a “pattern matcher”. For each vessel position that arrives, it computes different conditions, 

that when satisfied produce an event. 

The number of rules (computation) to be applied to each message can affect the overall performance of the 

system. Actually, the number and implementation of rules vary from one deployment to other. 

DICE tools can help on different quality and performance metrics, simulation and predictive analysis, 

optimization, etc. in order to tune our current solution. 

3.2.3.4 Give support to another port in the cloud instance of Posidonia Operations 

Give support to another port (or terminal) in the cloud instance of Posidonia Operations usually means: 

 Increase the streaming speed (more messages per second) 

 Increase on computation needs (more CEP rules executed per second) 

 Deployment and configuration of new artefacts and/or nodes 
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In this case, DICE tools can help improve Posidonia Operations also on estimating the monetary cost of 

introducing a new port on the cloud instance. 

3.2.3.5 Run a simulation to validate performance and quality metrics among versions 

CEP rules (business rules) evolve from one version of Posidonia Operations to another. That means that 

performance and quality of the overall solution could be affected by this situation among different versions. 

Some examples of validations we currently do (manually): 

 Performance: New version of CEP rules don’t introduce a performance penalty on the system 

 Performance: New version of CEP rules don’t produce queues 

 Reliability: New version of CEP rules provide the same output as prior version (they both detect 

the same events) 

One of the main issues of the current situation is that measuring the performance (system performance and 

quality of the data provided by the application) is done manually and it’s very costly to obtain an objective 

quantification. By using DICE simulation tools, performance and reliability metrics can be predicted for 

different environment configurations, thus ensuring high quality versions and non-regression. 

3.2.4 Validation & Impact analysis  

The requirements of the Posidonia Operations use case can be classified in three types: 

1. Assessment of the impact in performance after changes in software or conditions. 

2. Automatic extraction of relevant performance metrics and KPIs 

3. Automation of deployment 

After analysing the DICE Tools, we have detected which tools would be interesting to use to achieve the 

requirements.  This section explains how we used the tools for the use case. 

3.2.4.1 DICE IDE 

The DICE IDE integrates all the tools of the proposed platform and gives support to the DICE 

methodology. The IDE is an integrated development environment tool, based on Eclipse, for MDE where a 

designer can create models to describe data-intensive applications and their underpinning technology stack. 

The DICE IDE integrates the execution of the different tools, in order to minimize learning curves and 

simplify adoption. More detailed information can be found in D6.2-Initial implementation and 

evaluation. 

3.2.4.2 DICER 

The DICER tool allows us to generate the equivalent TOSCA Blueprint (deployment recipe) from the 

Posidonia use case DDSM created using the DICE IDE. This Blueprint is used by the deployment service 

to automatically deploy the Posidonia use case. With this tool you can obtain different blueprints for 

different configurations of the use case. The generated TOSCA blueprint file contains all the information 

specified in the DDSM Model and can be used to deploy the full use case. No manual changes were made 

to the generated TOSCA Blueprint for the deployment. More detailed information can be found in D6.2-

Initial implementation and evaluation. 
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Figure 30: Posidonia use case DDSM 

To deploy the solution on  flexiOPS FCO, we used the new Delivery Tool plugin available in the DICE 

IDE “0.1.14” (see Figure 31).  

 
Figure 31: Delivery Tool plugin - Run Configuration Dialog 

3.2.4.3 Deployment Service 

Deploy the Posidonia Operations manually is quite time and cost consuming. Deployment Service is able to 

deploy on the cloud a configuration of the Posidonia Operations use case in few minutes. The last version 

of the deployment service works over FCO and Amazon AWS. To deploy a solution using the deployment 

service it is needed to provide as an input the TOSCA Blueprint of it. This blueprint is obtained using the 

DICER tool. 

Using Deployment service, the deployment is faster (only few minutes), you can deploy different 

configurations of your solution, and it does not require system administrator experts because the 

deployment is automatized. 
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Figure 32 shows the four machines created by the Delivery Tool as it was specified in the DDSM model 

and the corresponding TOSCA blueprint. If we access to the Posidonia web client (id: 109.231.122.180), 

we can see a map of the Valencia’s Port with the current vessels in its area of action (see Figure xx). The 

vessels are shown because all other Components are running properly and are providing the information 

that is shown into the web client. 

 
Figure 32: Posidonia use case - Deployed machines 

In the last year of the DICE project, the DICER and deployment tool included support for deployments on 

the Amazon Web Services (AWS). We have used the last versions of these tools to deploy Posidonia 

Operations on AWS with the support of the XLAB. 

To be able to carry out automatic deployments on amazon, it is necessary to install a set of software tools. 

Specifically, you should install Cloudify Manager and  Deployment service in your instance of AWS EC2. 

The same DDSM used to deploy the use case on FCO was used to deploy the uses case on Amazon. The 

only change made was to modify the name of the “Image” used to display "posidonia web client", which 

due to its complexity, we opted to use an image of the machine instead of installing it from scratch using 

the deployment service. In the Amazon deployment, we used exactly the same strategy and configuration 

that we had used for the FCO deployment.  

The image of the “Operation web client” was created manually in a local environment using virtual box 

software, after that we used an import facility provided by AWS to import the ISO image. 

Some problems arose when trying to use the new image during the deployment due to permission issues, 

because the deployment service was not able to access to the machine created from the image. Moreover, 

we had to modify the scripts used to configure the machine to correct issues related with the remote 

configuration of the “Posidonia web Client” 

Once the AWS is configured and tested, the time required to deploy the full use case on AWS is between 

12-15 minutes. 

Table 17: DICER and Deployment Service KPI for the Prodevelop use case 

 
without DICE 

(min) 
With DICE (min) Time saving(%) 

Automation with 

DICE (%) 

First Deployment 600-1200 300 50%-75% 100% 

Next deployments 600-1200 20 97,3%- 98,6% 100% 
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3.2.4.4 Monitoring Tool 

This tool allows us to obtain metrics in real time for a running instance of the Posidonia Operations: 

Generic hardware performance metrics (CPU and memory consumption, disk usage, etc.) and Specific use 

case metrics, such as, number of events detected, location of the events, execution time per rule, messages 

per second, etc. 

The reported results, provided by the monitoring platform, allow the architect and developers to eventually 

update the DDSM and/or DPIM models to achieve a better performance. Another interesting point is that 

the Monitoring Tools facilitates the integration with the Anomaly Detection Tool and the Trace Checking 

Tool, because both tools use the information stored in the monitoring as a data input. 

Figure 33 shows one of the dashboards created for the Posidonia use case. This dashboard contains 3 

visualizations related with the “rules/events” detected by the CEP component: 

 “avg micros of rules” shows a linear graph with the average execution cost of the different rules in 

the last minutes group by minutes. 

 “Pie Chart Rules (occurrences)” shows a chart distribution with the number of rules executed in a 

period group by type of rule. 

 “Pie Chart Rules (sum of microseconds)” shows a chart distribution with the cost of the rules 

executed in a period group by type of rule. 

 
Figure 33: Posidonia use case - Dashboard 2 

Figure 34 shows the “dashboard 3” created for the Posidonia use case. This dashboard contains 3 

visualizations related with the location of “rules/events” detected by the CEP component: 

 “map” shows a map with the exact location of the rules detected in a period of time. Each point of 

the map represents the exact location where they occurred. The bigger the point is, more events 

occurred in that location. 

 “amount of events in time” shows the number of event that occurs each minute group by type of 

event. 

 “total events” counts the number of events analysed by the Posidonia use case system. 
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Figure 34: Posidonia use case - D-MON Dashboard 3 

This tool allows us to obtain metrics for a running instance of Posidonia Operations: 

 Generic hardware performance metrics (CPU and memory consumption, disk usage, etc.) 

 Specific use case metrics, such as, number of events detected, location of the events, execution 

time per rule, messages per second, etc. 

The reported results allow the architect and developers to eventually update the DDSM and/or DPIM 

models to achieve a better performance. 

Another interesting point is that the Monitoring Tools facilitates the integration with the Anomaly 

Detection Tool and the Trace Checking Tool, because both tools use the information stored in the 

monitoring as a data input. More detailed information can be found in D6.2-Initial implementation and 

evaluation. 

3.2.4.5 Fault Injection Tool 

DICE Fault Injection Tool (FIT) is used to generate faults within virtual machines. In Posidonia use case, 

this tool is useful to check how the CEP component behaves against a high CPU load. To observe the 

behaviour of the system, we use the Monitoring Tool that contains a specific visualization for the system 

load. 

Although the Fault Injection Tools can launch other types of faults, for Posidonia use case, only the High 

CPU fault is relevant to evaluate the response of the system to this situation. It’s important validate that the 

System continues working and no event is lost when a high load happens. 

Posidonia use case behaves well against high CPU demands, and only a little increment in the required time 

to process events is observed. Moreover, no event is lost due to the high CPU demand and we can affirm 

that Posidonia use case is reliable against high CPU loads. More detailed information can be found in D6.3-

Consolidated Implementation and evaluation. 

3.2.4.6 Anomaly Detection Tool 

Anomaly Detection Tool allows us to validate that the system works as is expected with the current rules 

and with the addition of new ones. That is, no events are lost, no false positives are given, the execution 

time is kept within a reasonable range or the order of events detected is adequate. 



Deliverable 6.4 - Final assessment report and impact analysis 

Copyright © 2018, DICE consortium – All rights reserved 53 

Anomaly Detection Tool is mostly used in the use case to detect anomalies related with the processing time 

required of the different events that the system analyses. 

First of all, we studied the log file generated by the CEP component (see Table 18Table 1). The 

“component” column represents the type of rule, the “key” column represents the timestamp, the “method” 

column represents the function called, the “ms” represents the time need to evaluate the rule and the “Ship” 

column represent the identification of the vessels.   We observed that each type or rule analysed has a 

similar execution cost (column “ms”). 

Table 18: Example of the Rules execution cost 

Component key method ms ship 

AIS_SENTENCE_LISTENER 
2017-06-

22T11:53:04.278Z 
HANDLE_MESSAGE 209 211636100 

SIMPLE_ANCHOR_OUT 
2017-06-

22T11:53:04.272Z 
UPDATE_ACTIVE 710 305965000 

STOP_OVER_OUT 
2017-06-

22T11:53:04.271Z 
UPDATE_ACTIVE 652 305965000 

SIMPLE_DOCK_STOP 
2017-06-

22T11:53:04.270Z 
UPDATE_ACTIVE 293 305965000 

STOP_OVER_IN 
2017-06-

22T11:53:04.270Z 
UPDATE_ACTIVE 680 305965000 

SIMPLE_DOCK_STOP 
2017-06-

22T11:53:04.269Z 
UPDATE_ACTIVE 295 305965000 

AIS_SENTENCE_LISTENER 
2017-06-

22T11:53:04.263Z 
HANDLE_MESSAGE 9483 305965000 

SIMPLE_ANCHOR_OUT 
2017-06-

22T11:53:04.262Z 
UPDATE_ACTIVE 755 305965000 

STOP_OVER_OUT 
2017-06-

22T11:53:04.261Z 
UPDATE_ACTIVE 618 305965000 

STOP_OVER_IN 
2017-06-

22T11:53:04.260Z 
UPDATE_ACTIVE 686 305965000 

SIMPLE_DOCK_STOP 
2017-06-

22T11:53:04.259Z 
UPDATE_ACTIVE 303 305965000 

AIS_SENTENCE_LISTENER 
2017-06-

22T11:53:04.246Z 
HANDLE_MESSAGE 199 225366000 

AIS_SENTENCE_LISTENER 
2017-06-

22T11:53:04.245Z 
HANDLE_MESSAGE 766 224161160 

To validate the use case, some anomaly detection methods have been used: AdaBoost, Decision Tree and 

Random Forest. For supervised learning methods labelled anomalies from application data instances are a 

prerequisite. The data sets must be labelled to create a viable training and validating data set. Once this is 

done the resulting predictive models can be easily applied at runtime. We manually label a dataset 

comprising over 4800 data points taking into account the considerations of the Table 19.  

For validation purposes, we ran all supervised and unsupervised methods on this data set. We can see in the 

following table the results of the first validations. First, we ran a baseline where all methods had their 

parameters set to default values and saved both the score and the time it took to train a model (BScore, 

BTime). After that, we ran parameter optimization on all methods and executed a 10-fold cross validation 

with 30% of the dataset used for validation. We can see that the parameter optimization not only allow us 

to optimize the predictive performance but also the required training time (BScore and BTime for the 

baseline and FScore and FTime for the best performing). 
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Table 19: Anomaly Detection Experiments 

Method BScore BTime 
Param 

Search 

CV 

Mean 

CV 

STD 
CV Time Fscore FTime 

RF 0,68 
0,06114888

2 

185,445639

8 
99,98% 

0,05

% 

27,5004401

2 
1 

4,57320094

1 

DT 0,53 
0,00485110

3 

5,03477907

2 
99,97% 

0,09

% 

0,04783701

9 

0,99891371

8 

0,00360298

2 

AD 0,51 
0,23577499

4 

62,6346280

6 

100,00

% 

0,00

% 

0,41509294

5 
1 0,05479002 

NN 0,34 
0,56407904

6 
1771.0435 

100.00

% 

0.00

% 
0.2695 1.0 0.03283 

An interesting observation which can be made using ADT is the so called feature importance. It is in fact 

showing what the impact of each feature from the data set has on the classification model. Table XX shows 

the feature importance for the tree based classification methods. The Features column represent the name of 

the feature analysed and the columns AdaBoot, Decision Tree and Random Forest contain the impact of 

each feature in each method. The higher the number, the more important the feature. 

One surprising fact evident in the Table 20 is that although “ms” feature has quite an impact on the 

predictive model it is not the most representative. 

Table 20: Feature Importance 

Features AdaBoost Decision Tree Random Forest 

AIS_SENTENCE_LISTENER 0,1 0,193142068 0,153848567 

RETRACT_OLD_AISGEOMDATA 0,1 0,000700426 0,005668693 

SESSION 0,1 0,00990615 0,032303538 

SIMPLE_ANCHOR_IN 0,1 0,052707564 0,196569172 

SIMPLE_DOCK_START_OUT 0,1 0,003373742 0,035556067 

SIMPLE_DOCK_STOP 0,1 0,091526082 0,208327863 

STOP_OVER_IN 0,1 0,526665234 0,194793414 

ms 0,3 0,121978734 0,172932687 

The last validation experiment was done for Isolation Forest (ISF) unsupervised method. Because we have 

already labelled data we can run the unsupervised method and see if it identifies the correct anomalies. Of 

course, Isolation Forest is not able to distinguish between distinct types of anomalies. It can mark events as 

normal or anomalous however, this is enough to test the ratio of false positives to true positives. 

Table 21 shows the performance of Isolation Forest. It shows the total manually labelled anomaly and 

detected anomalies count, the number of false positives and good anomalies detected. Percentage labelled 

denotes the percentage of anomalies from the original data set, percentage detected denotes the percentage 

of ISF detected anomalies. This shows that although ISF didn’t detect all the anomalies (15.5 % from the 

original 22.4 %) it had a relatively small false positive count (58 anomalies yielding an accuracy of 93.4%). 

During the testing phase, it was evident that the more data you feed to ISF the more accurate it becomes. 

We tested the method with only 6500 events. It is possible to reduce the error significantly by adding more 

events. 
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Table 21: Feature Performance 

Metric CEP 

Labelled anomalies 1447 

Detected anomalies 999 

False positives 58 

Good Anomalies 941 

Percentage labelled 22,4 

Percentage detected 15,5 

Accuracy 93,4 

During this period, the Anomaly Detection Tool has been validated to detect anomalies related with the 

cost execution time of the different events that the CEP component analyses, this cost impact directly in the 

performance of the system 

The ISF method did not detect all the anomalies (15.5 % from the original 22.4 %) but it had a relatively 

small false positive count (accuracy of 93.4%). It is possible in increase the accuracy of the method by 

considering a bigger set of data. 

We achieved quality KPI “False positives”, by having a 6,6% of false positives using the Anomaly 

Detection Tool. More detailed information can be found in D6.3-Consolidated Implementation and 

evaluation. 

3.2.4.7 Simulation Tool 

The vessels traffic increase for a given port directly affects the Posidonia Operations performance if the 

system is not properly sized. We have worked with the Simulation Tool and the Monitoring tool to define 

the dimension of the system and to monitor it in real time. 

Analysis of the streaming data is done by a Complex Event Processing engine. This engine can be 

considered as a “pattern matcher”, for each vessel position that arrives it computes different conditions, that 

when satisfied produce an event. The number of rules (computation) to be applied to each message can 

affect the overall performance of the system. Actually, the number and implementation of rules vary from 

one deployment to other. In recent months, a significant effort has been made to improve the quality and 

the validation of the use case 

The input to the Simulation Tool is a DPIM model, which provides the relevant magnitudes of the 

application. In our use case, the relevant magnitudes are the number of CEPs, the number of rules used by 

each CEP and the computational cost associated to each rule, and the expected input message rate 

(messages per second). 

The Simulation Tool will compute the estimated maximum throughput which can be handled by the 

application with the parameters specified. If the expected input message rate is higher than the maximum 

throughput, then the prediction is that the application will not be able to run properly in the expected 

circumstances. 

This tools therefore provides: 

 Prediction of the consequences of scaling the application at design time 

 Iterative enhancement 

 Comparison among multiple configurations 
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After executing the simulation tool, we get the maximum throughput of the system. In this case the 

maximum throughputs obtained are equal to the message rate specified as input parameter, so we can 

conclude that the AIS parser can support the configurations of 5, 6 and 7 messages per second provided: 

 
Figure 35: Simulation system running 

Several configurations of the simulation tool can be configured and launched at one time. With the 

simulation tool is possible to obtain a plot of the predicted throughput for the given configurations (see 

Figure 36). 

 
Figure 36: Throughput for different configurations 

More detailed information can be found in D6.2-Initial implementation and evaluation. 

3.2.4.8 Validation Activities on Containers 

Posidonia use case has been used to validate the automatic deployment of the solution with containers. 

While containers can be used simply to encapsulate and isolate applications in a similar manner to virtual 

machines, they’re most effective when used as a fundamentally new way of packaging and architecting 

applications. Instead of large monolithic applications, application design will increasingly use architectures 

composed of small, single-function “Microservices”, independent services that communicate through 

network interfaces. This suits agile and DevOps approaches, and reduces the unintended effects associated 

with making changes in one part of a large monolithic program 

To make use of good practices in handling containers, some components have been repackaged in order to 

better separate the functionality of the different services and have a container for each service 

"microservices". 

Figure 37 contains the description of the Posidonia DDSM model using containers. We have used a mix-

approach. The rabbit and the cep components are deployed using virtual machines and the parser 

component is deploy using containers. 

We have selected this approach, because Message Broker and CEP components requires a lot of resources. 

For these components, it is better to have a full machine instead of using components. In addition to that, 

the parser component does not need so many resources, which motivates the use of containers for the 
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deployment. This component is internally composed of two services “simulation” and “AIS-parser 

processor”:  

 Simulation: The component used to simulate the AIS messages sent by vessels. In the production 

version, the messages are obtained from a real antenna placed in the port. 

 Parser: The component that processes all the messages sent by the simulator and publishes the 

information into the broker. 

 
Figure 37: Posidonia DDSM Model using containers 

In addition to modifying the model, Prodevelop had to redo the scripts to adapt them to the use of 

containers. Once the "blueprint" file of the model has been generated by the DICER tool, the deployment 

has been successfully completed in minutes with the new scripts. 

The time required to deploy the solution using containers is between 20-30% less than the time required to 

deploy the initial solution without containers. 

3.2.5 Discussion 

After finalizing the use case we have used and validated most of the DICE tools. we can classify the results 

obtained in four categories: 

a)  Assessment of the impact in performance after changes in software or conditions 

 Predict at design time the impact of changes in the software (number of rules, number of CEPs) 

and/or conditions (input message rate “Simulation Tool”, CPU overloads “Fault Injection Tool”) 

 Detect some bottleneck and anomalies with the use of the Anomaly Detection Tool.  In the 

following months, we will conclude the validation of the Trace Checking Tool and we will able to 

have more control over the Posidonia use case and detect more bottlenecks and performance issues. 

b)  Increase the Quality of the system 

 Detect punctual performance problems with the use of the Anomaly Detection Tool. 

 Detect errors in the CEP component. Detection of loss rules and false rules detection and delays in 

the detection of the rules compared to the real time in which the event happened. 

c)   Automatic extraction of relevant KPI 

 Easy computation of application execution metrics (generic hardware metrics such as CPU, 

memory consumption, disk access, etc). 
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 Easy computation of application-specific metrics which have to do with computational cost of 

rules, number of messages processed per second, location of events on a map etc. 

 Quantification of application performance in terms of percentage of port events correctly detected 

by the CEP(s). 

d)  Automation of deployment 

 Much faster deployment. 

 Possibility of deployment in different cloud providers and configurations. 

 Possibility of using containers for the deployment in some components. 

 Added new components to the use case that are automatically deployed. 

 Automatic configuration of the monitoring tool after deployment. 

 Increased number of test deployments for quality testing. 

 Easily understandable system configuration due to use of diagrams 

In order to validate the use case, some metrics were defined at the beginning of the project. The impact 

analysis of applying DICE to the use case can be summarized with the following metrics: 

Table 22: Prodevelop KPIs Summary 

KPI Result 

At most 30% ERROR in the computational cost 

estimation provided by the Simulation Tool for a 

given application configuration 

This could be computed in a reverse way. For example: The 

Simulation Tool predicts that the current CEP configuration 

will be able to handle, at most, 2000 messages per minute. The 

true maximum input rate should be between 1400 and 2600. 

At least 50% REDUCTION in deployment time. 
Current time: 10 hours. Time with DICE: 20 minutes 

Reduction: 97.6% 

At least 30% REDUCTION when configuring 

Monitoring compared to our current solution 

Current time: 3 hours. Time with DICE: 10 minutes (almost 

transparently configured through Delivery Tool) Reduction: 

94.5% 

At least ONE application-specific quality metric 

The metric is the correctness rate (percentage of events 

correctly detected by the CEP). It is provided by the Trace 

Checking Tool. 

At least FOUR DICE tools used in a profitable 

way in our use case (apart from DICE profile and 

DICE IDE) 

A set of DICE Tools has been validated in the use case:  

Monitoring Tool, Trace Checking Tool, Simulation Tool, 

Delivery Tool,  DICER Tool, Anomaly Detection Tool and 

Fault Injection Tool 

<10 % False positives 
we achieved quality KPI “False positives”, by having a 6,6% 

of false positives using the Anomaly Detection Tool. 

 NETF Use Case 

Within DICE, NETF built a new product (Big Blu) to demonstrate the capabilities of Big Data in e-

government applications especially for Tax fraud detection. Therefore, compared to the other 

demonstrators, this use case shows the ability of DICE to support the development of a new application 

from scratch. 

Fraud is a huge industry. It is impossible to quote an accurate cost of fraud, not least because much of it is 

still undetected, but The European Union has estimated the fiscal loss lost due to tax evasion to be of the 

order of 1 trillion euros per year. It’s no surprise, therefore, that the governments/organizations most hit by 

the crime have been stepping up their game in recent years with huge investment in fraud management 

technology. Many initiatives have been launched both at national and European levels aiming to combat 
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frauds and build various solutions (see https://www.iota-tax.org/  and 

https://ec.europa.eu/taxation_customs/fight-against-tax-fraud-tax-evasion/missing-part_en).  

With the availability of massive amounts of structured and unstructured information, data organization and 

analytics are a promising solution to find anomalies and uncover violations, and even predicting frauds that 

may happen in the future. Governments are increasingly using Big Data in multiple sectors to help their 

agencies manage their operations, and to improve the services they provide to citizens and businesses. In 

this case, Big Data has the potential to make tax agencies faster and more efficient. Unfortunately, most 

public organizations are still using legacy information systems that don’t support the recent Big Data 

platforms and where the data is highly duplicated, scattered, even diluted (e.g., resulting from COBOL 

programming style) without any consolidated view, no correlation, no explicit semantics and with 

ineffective naming conventions. Documentation is often inadequate or missing. On top of that, the huge 

amount of digital data must be collected from all sorts of sources including non-classical databases and 

“flat files”, sometimes with odd structuring, such as configuration files and comma-delimited text files. 

The point to be made here is that migrating data from such systems into a modern platform is undoubtedly 

a tedious task, and the process can be risky, expensive and disruptive. Because of those limitations, Big 

Data plans are often held back by governments and companies. Using Big Data technologies implies an 

unavoidable step which consists on migrating the legacy database schema and data into a relational 

database. NETF released Blu Age (www.bluage.com), a modernization tool set that automates the 

migration of databases and data allowing them to be standardized. This product allows for joint 

modernization of both the data format and the database schema. Making the transition to NoSQL is more 

common as more and more businesses are doing the same to keep up with the growing volumes of data to 

process.  

 
Figure 38: Big Blu Concept 

Large-scale data analytics is an effective way to detect and understand fraud on a massive scale. Automated 

systems scan vast customer databases looking for anomalous, unusual or suspicious activity in real time. 

Large teams of fraud analysts manually review flagged transactions. NETF believes that it's time for 

governments to start capitalizing on proven Big Data technologies which are already revolutionizing 

business efficiency across industries from healthcare to education and retail. But Fraud management 

requires a holistic approach, blending tactical and strategic solutions as with the state-of-the-art technology 

solutions and best practices in fraud strategy and operations. Traditional fraud detection has not been 

https://www.iota-tax.org/
https://ec.europa.eu/taxation_customs/fight-against-tax-fraud-tax-evasion/missing-part_en
http://www.bluage.com/
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particularly successful, largely because it happens after the fact. New thinking needs to be injected into the 

strategies for dealing with fraud. Through the use of cutting-edge technology that brings transactional, 

analytical, and big data together in real time. Our approach aims to detect deviant behavior much earlier, 

enabling tax agencies to combat fraud in a much more effective way and at very low costs. 

 
Figure 39: Big Blu Impact 

Within Big Blu, we address both of temporal and physical fraud types. Temporal frauds can be related to 

changes compared to last years in incomes for example. The physical type is more related to the geographic 

situation of the data (local, regional or national). Here are two examples of frauds we are able to detect: 

 Identifying taxpayers who are registered in different French departments in order to collect 

fraudulently social aids.  For example, Big Blu can catch a nonexistent address or an address that 

just doesn't compute. 

 The second example is related to the fictitious relocation of the taxpayer who improperly claim 

living abroad in order to not pay tax on income or wealth in France. 

There are many other fraud types we studied and will be processed by Big Blu such as VAT pay back, ID 

theft, etc.  

3.3.1 Use Case Scenarios 

NETF produced a specific model of the description of a taxpayer. This model is based on the CERFA 

forms which are publically available on the Web at https://mon.service-

public.fr/portail/app/cms/public/les_formulaires. Based on CERFA forms, we were able to build a huge 

model with hundreds of attributes describing a taxpayer (name, address, ID card number, married/single/..., 

birthday, car owned, social security number...). This intrinsically raises no privacy/confidentiality issues 

since the random data will not refer to real persons. NETF product processed millions of instances of the 

specific model.  

https://mon.service-public.fr/portail/app/cms/public/les_formulaires
https://mon.service-public.fr/portail/app/cms/public/les_formulaires
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Figure 40: Big Blu Model 

All instances were automatically generated using various algorithms. Each algorithm will generate specific 

text datasets on heterogeneous formats (flat files, legacy proprietary databases, etc). Therefore, it is 

expected that confidentiality constraints won’t be considered. The focus is the direct valorisation of 

existing legacy data by deducing new data with richer semantics. This amounts to processing ill-explained 

financial data whose interpretation may lead to further investigation towards tax fraud management. In this 

case, identifying fraudulent people and organisations (among the tremendous volume of data to be gather, 

correlate and queries to execute) is challenging. Big Blu consolidates data from different data stores and 

provides a technical infrastructure to help users move away from using data mining to visualize 

information toward forecasting and making up decision between suggested options, as in the spirit of Big 

Data applications. 

 
Figure 41: DICE Adoption 

NETF built a simple but realistic plan for the development of the use case. This scenario is made of 3 core 

steps. We started our strategy by building a Minimum Viable Product. This MVP has been developed, 
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deployed and tested on various configurations on a private Cloud. DICE allowed us to accelerate the 

creation of an initial prototype for Big Blue and make a technical and business case for the viability of the 

open source technologies used by DICE in the context of tax fraud detection. The success of this initial 

activity has lead the consortium to identify as one of the main benefits of DICE the possibility to cheaply 

build proof-of-concepts within organizations for their products. A more in-depth analysis of this has later 

been developed in D7.7. 

The second step of our plan was to test and validate DICE tools within an adoption perspective. This work 

took place last year and allow us to identify the tools which will accelerate the third and last step which is 

the release of version 1.0 of Big Blu. This first release is stable and based on a scalable architecture which 

can be deployed on a production environment. 

 
Figure 42: Big Blu Architecture 

The initial version of Big Blu which was developed last year has been largely enriched with new features 

based on a new architectural choices. Big Blu is made of 3 main parts:  

 The graphical user interface which is a web application developed using html, css and JavaScript 

programming languages. We recently added jQuery and Bootstrap in order to enhance the user 

experience. Our end-users will be tax agents working in various treasury departments. In order to 

provide them a user-friendly tool, we started building a solution with a rich GUI (Graphical User 

Interface). This latter includes menus, navigation/exploration pages, configuration tools, etc.   

 The big data application itself which is based on Apache Cassandra for data management and 

Apache Spark for data processing. This part includes the biggest and most important part of the 

demonstrator. In fact, it includes the core feature of the tool which is in charge of the data 

processing in order to detect fraudulent conducts. 

 And a webservice which makes the glue between the user-interface and the Data-Intensive 

Application. 
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In order to avoid any privacy and/or confidentiality issue, we decided to process imaginary but realistic 

data. Thus, we implemented a piece of software we called “Taxpayers Random Generator Module” which 

is able to generate, according to our needs, information describing millions of taxpayers. These data are the 

main input for the whole product.  

 
Figure 43: Taxpayers Random Generator Module 

For our use case, we opt for the Lambda Architecture which is actually a reference architecture for Batch 

and Real-Time processing in the Big Data ecosystem. This architecture relies on a Data Input Stream which 

is in our case a Cassandra Cluster filled with various kind of information related to taxpayers. So far, we 

built this Cluster and are now able to explore and query it to gather details and provide them to the 

processing unit. 

 
Figure 44: Taxpayers Random Generator Module Architecture 

Our Big Data application made of these technologies is continuously running. The Cassandra databases are 

filled with taxpayers’ detail, historical tax declarations, etc. The application will be performing 

computation on all data including new generated inputs. These data have to be processed using Fraud 

indicators which are a set of rules described by a domain expert. In the case of a new Fraud Indicator, we 

have to proceed to a new batch processing phase on all data. But we need to be able to answer any query 

using a merge between old batch results and new real-time computations. The user will be notified on the 
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graphical user interface with the taxpayers who may be fraudulent. Provided results will mainly have a 

record of value among others and in no case lead to an automatic condemnation. The demonstrator will just 

facilitate the task of filtering and gathering data for fiscal agents in order to increase productivity.  

 
Figure 45: Big Blue Screenshot 

The security and privacy is not an option for a product such Big Blu which is supposed to process personal 

and sensitive data. For this reason, we added an important security layer that performs authentication, 

authorization, cryptography, and session management for the application users. An administrator is in 

charge of managing (create/edit/delete) the user accounts. Regarding the privacy, we have been explicitly 

asked by some potential customers to focus on role specifications. The main goal is to be able to specify 

different roles according to the tax agent granted permissions. To address this point, we implemented and 

integrated the SecureUML profile which facilitates the specification of various roles and permissions and 

brings. This is what have been implemented using Apache Shiro (https://shiro.apache.org/). Moreover the 

details provided at the model level are used later by the Trace Checking tool while the application is 

running in order to check whether the authorizations are not violated. 

 
Figure 46: Big Blu Model 

https://shiro.apache.org/
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In the following section, we will present some screenshots and discuss the main features offered by Big 

Blu. 

 
Figure 47: Big Blu Screenshot 1 

This screen allows the user to launch a new fraud detection and see all the launched detections, check their 

status, access to their results and see main statistics. This is a private environment where users can only see 

their own detections.  

 
Figure 48: Big Blu Screenshot 2 

In the last version of Big Blu, we give the possibility to users to create multiple detections. In fact, after 

multiple discussions with some potential customers, we decided to completely reconsider the way Fraud 

Indicators (FI) were initially managed. In fact, in the initial version of the prototype we built “static” Fraud 
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Indicators which cannot be enriched and/or personalized by end-users. This initial implementation was 

useful in order to validate the whole idea and the underlying technologies. But it has limitations mainly 

because it needs new development (advanced users) in order to add new FI. The new version of Big Blu 

allows users to build their own requests using all the available data about taxpayers in the database. Big Blu 

is a kind of requests engine. 

 
Figure 49: Big Blu Screenshot 3 

Compared to the initial version, NETF completely changed the way detections are managed in order to let 

end-users customize their queries and build Fraud Indicators according to specific needs. 

 
Figure 50: Big Blu Screenshot 4 

Provided results will mainly have a record of value among others and in no case lead to an automatic 

condemnation. Big Blu will just facilitate the task of filtering and gathering data for fiscal agents in order to 

increase productivity.  
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Figure 51: Apache Zeppelin 

We decided to push the Fraud Management further and propose an advanced ecosystem in which advanced 

users can write and validate new detections without coding. For this feature, we used the open source 

Apache Zeppelin (https://zeppelin.apache.org/) environment where the user can query various Big Data 

databases for instance Cassandra and visualize the results. Moreover Machine Learning algorithms can be 

tested on data subsets before launching massive data processings on the whole dataset. 

3.3.2 Validation & Impact analysis  

An important point to underline is that Big Blu was developed from scratch during the DICE project. It 

means that NETF had not an existing application which will be migrated to a Big Data environment using 

the DICE ecosystem. The target market of NETF is emerging and to the best of our knowledge, there are 

no existing solutions similar to our solution. In fact, e-government applications are mainly based on legacy 

systems which need to be modernized before being able to make benefits of any Big Data related 

technologies. Actually, modernizing such software is the primary market of NETF and we are investigating 

to enrich our offer by proposing to our partners a direct valorization of the modernized data by using our 

tax fraud detection product.  

The initial objectives of our product were mainly related to the adoption of the Big Data ecosystem which 

is completely new for us. NETF made a significant effort in going forward in the product realization and in 

fact we have already identified the appropriate architecture, frameworks and technologies. We also started 

the implementation of the prototype and are already looking for applying the results to be able to detect 

simple but actual frauds. That’s said, a survey recently made by Information Week shows that the main 

barrier SMEs are facing about using Big Data Software is that the expertise is scarce and expensive. 

Hadoop, MapReduce and Cassandra are not point-and-click technologies. There is quite a bit of Linux 

https://zeppelin.apache.org/
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configuration, some Java coding and a set of frameworks to make smoothly work together. Unless you get 

hands-on experience with each of those parts in a use-case context, the climb will be steep. In fact, while 

working on the initial version of Big Blu, we struggled with some technical issues mainly related to 

specificites of the Big Data ecosystem. Thus we need concrete solutions unless we won’t be able to move 

from an MVP to a first release. While building our solution we have faced some technical and 

methodological issues. We report below, a list of 4 core questions:  

 How to build a reliable architecture? 

 How to test different cluster configurations? 

 How to accelerate my Code-Build-Deploy-Run cycle? 

 How to monitor my runtime environment? 

Actually some DICE tools are partially or completely tackling these issues. DICE is relieving users of a big 

part of this burden by proposing a set of tools in order to facilitate the adoption of Big Data technologies. In 

the following sections, we explain how the tools have concretly helped us to answer the questions listed 

above. If the reader is interested in getting more details, we recommend to see the public deliverables 

available online at www.dice-h2020.eu.  

3.3.2.1 Simulation Tool 

So to the question “How to build a reliable architecture?”, the simulation tool proposes a user-friendly 

approach to validate an architecture at early-stage at very low cost in terms of time spent in implementation 

and operations. For example, given a set of requirements for a tax agency, we can identify and create 

optimal architecture or evaluate alternatives and measure the impact of business logic changes. For instance 

we have identified at which requests rate, we may face time response issues and set up 2 potential solutions 

which can be automatically deployed if needed. These models can also be used for documentation purpose 

since they are at the DPIM level which means contains all the application business logic. More detailed 

information about this validation can be found in D6.3-Consolidated Implementation and evaluation. 

3.3.2.2 Enhancement Tool 

The simulation tool can take as input UML models automatically adjusted by the Enhancement tools and 

especially DICE-FG tool which can add resource usage and breakdown information gathered directly from 

the production environment or the Cloud where the data-intensive software is running. In the case of 

NETF’s application, DICE-FG considers monitoring data gathered during the execution of Spark jobs as its 

basis to improve the models. More detailed information about this validation can be found in D6.3-

Consolidated Implementation and evaluation. 

3.3.2.3 DICER & Delivery Tools 

One of the most time consuming tasks while prototyping a Big Data application is building clusters 

(designing and deploying the infrastructure) since the engineer must manually install all the needed 

services, frameworks, etc. This task may need to be repeated several times before obtaining the most 

suitable cluster configuration in terms of cost, performance, etc. This is exactly the issue addressed by 

DICER which allows the users to create throw-away clusters for fast prototyping, or persist the ones that 

prove useful in the form of a model at the DDSM level. In addition, based on this model, DICER 

automatically generate the TOSCA blueprints to be automatically deployed. And this is exactly the role of 

the deployment tool which takes a TOSCA blueprint (generated by DICER or not) as an input and 

automatically install the required frameworks, start the services and deploy the Data Intensive Application. 

For this reason, this operation can be repeated at a very low cost each time the developer needs to test a 

new cluster configuration or a new version of the Big Data application. 

http://www.dice-h2020.eu/
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NETF started working on Big Blu before the release of the DICE tools. So in order to test our application, 

we manually built our clusters using command lines and scripts. This activity was conducted by one 

engineer fully dedicated to this task. We estimate the time spent for 63 hours (approximately 9 full working 

days). The adoption of DICER and the deployment tool combined together allows to reach a high level of 

productivity. In fact, we were able to design and deploy the same cluster configuration within few hours 

(~6 hours compared to 9 days). The engineer who made this exercise was not expert in the manual process 

neither in DICER and the deployment tool.  

Table 23: DICER & Deployment Tools Validation Results 1 

 
Few months after the initial comparison, we did again the same installations on another cloud using a new 

cluster configuration. And we obtained different values mainly explained by the gained experience on the 

various tools. Although it is obvious that the user is able to rapidly design and deploy a cluster thanks to the 

DICE tools. In a concrete scenario, we will probably build our own scripts in order to move from a fully 

automated approach to a semi-automated one with built-in house tools. The main advantages from our 

point of view is the ability to create throw-away clusters for fast prototyping using various technologies and 

frameworks.  

Table 24: DICER & Deployment Tools Validation Results 2 

 
Recently we initiated a new project for which our Ops team insisted to use a proprietary solution. We made 

the same exercise and we obtained these results which can be mainly explained by the fact that this tool is 

not dedicated to Big Data so if the end-user needs to install Cassandra, she or he have to manage to provide 

all the installation scripts. More detailed information  about this validation can be found in D6.2-Initial 

implementation and evaluation. 

3.3.2.4 Optimization Tool 

NETF collaborated with PMI to employ the Optimization Tool (D-SPACE4Cloud) to examine the impact 

of securing its database on the performance of Spark detection jobs. Anonymization and encryption of data 

were the two approaches adopted to secure the database. D-SPACE4Cloud allowed us to measure the costs 

for each technique. We realised that, even if from one side encryption add CPU overhead to the system, in 

some situations encryption resulted even in a performance improvement. D-SPACE4Cloud assisted us to 

get an insight into the effects of security regarding Spark jobs. D-SPACE4Cloud has been validated by the 

NETF case study. Three fraud indicators have been considered at different scale (10 and 30 millions of 

taxpayers) implementing also privacy mechanisms. Across the six cases analysed, D-SPACE4Cloud 

identified the correct cluster configuration (minimum number of nodes fulfilling the deadline) for five of 

them. In only one case, the error was of a single VM with 17% additional cost. The average percentage 

error cost estimate overall was 3%. More detailed information about this validation can be found in D6.3-

Consolidated Implementation and evaluation. 
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3.3.2.5 Monitoring Tool 

In order to validate and measure the robustness of our application, we need to supervise a plethora of 

metrics. Some are related to the application itself but others are related to the underlying frameworks. In 

order to monitor our runtime environment, we have 2 options: either install a dedicated tool per framework 

(if it exists) or install the DICE monitoring tool within few minutes and get all the required metrics. More 

than that, most of the other DICE tools offer the possibility to automatically exploit such metrics. 

3.3.2.6 Fault Injection Tool 

The fault injection tool (FIT) has been adopted in order to make sure that the Cassandra replication is 

working correctly so failed nodes can be replaced with no downtime. In fact, FIT generates faults within 

Virtual Machines and at the Cloud Provider Level. The purpose of the FIT is to test the resiliency of a 

cloud installation as an application target. With this approach, the designers can use robust testing, showing 

where to harden the application before it reaches a commercial environment and allows us (as application 

owners) to test and stress Big Blu design/deployment in the event of a cloud failure or outage. Thus, 

allowing for the mitigation of risk in advance of a cloud based deployment. 

3.3.3 Discussion 

NETF has tested and validated a part of the DICE tools. We are actually convinced of their added value 

mainly for early stage validation, process automation and monitoring. We think that a great work has been 

done not only for the implementation of the tools but also for in terms of user experience and user-

friendliness. This latter was made at the level of each tool but also at the IDE level, for example in terms of 

scenario workflows. 
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4 Conclusion 

The current deliverable provides an overview of the validation activities developed as part of the DICE 

project both on laboratory and on real life cases (use cases), to be disseminated publicly. Material from 

previous “confidential” deliverables has been refined and presented in a relatively simplistic manner for the 

average reader, while emphasis has been given to results obtained over the last 6 months of the project. 

All DICE tools have been validated while KPIs have been respected and met while in some cases, these 

KPIs have been surpassed as obtained results proved to be much higher than the ones predicted in the 

original proposal. 

Especially regarding the productivity of the DevOps team of a Data Intensive Application, this has been 

increased by far. In fact, by using DICE tools, the time needed for implementing a number of activities and 

deployments, has been decreased significantly, thus allowing engineers and developers to be more efficient 

and shift resources to parallel activities. From the managerial point of view, the DICE tools allow the team 

to achieve the same results in less time and with cheaper labour costs (i.e. junior engineers vs senior 

engineers), which is translated into significant savings for a company.  
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