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Executive summary

DICE aims at defining a general-purpose methodology and toolset to define data-intensive cloud
applications. This means that applications defined with DICE span different domains. To validate the
productivity gains induced by DICE, three industrial use cases on data-intensive applications have been
carried out through the project (News&Media, e-Government and Maritime operations domains).

The objective of D6.4 is to review the productivity gains of the DICE tools and to show what is to illustrate
their performance in laboratory and real-case business scenarios. Validation and verification of these tools
has been based on predefined KPIs set by the tool owners at the beginning of the project and achieved, or
even surpassed, by the demonstrators.

Exploiting DICE tools to analyze, deploy, monitor, test and improve real Data Intensive Applications
(DIASs), not only improves their overall quality, but also significantly increases the productivity of the
demonstrators and their development and engineering teams. DICE tools have proven to be both user
friendly and practical, while providing significant results mainly to early stage validation, process
automation and monitoring activities. DICE tools can be obtained from: https://github.com/dice-project/.

Copyright © 2018, DICE consortium — All rights reserved 3


https://github.com/dice-project/

Deliverable 6.4 - Final assessment report and impact analysis

Glossary
ADT Anomaly Detection Tool
AIS Automatic Identification System
API Application Programming Interface
CEP Complex Event Processor
CPU Central Process Unit
DDSM DICE Deployment Specific Model
DIA Data-Intensive Application
DICE Data-Intensive Cloud Applications with iterative quality enhancements
DICER DICE Roll Out Tool
DMON DICE Monitoring
DPIM DICE Platform Independent Model
DTSM DICE Technology Specific Model
FCO Flexiant Cloud Orchestrator
GMF Graphical Modelling Framework
IDE Integrated Development Environment
MVP Minimum Viable Product
POC Proof of Concept
QA Quality-Assessment
TCT Trace Checking Tool
TOSCA Topology and Orchestration Specification for Cloud Applications
ucC Use Case
UML Unified Modelling Language
URL Uniform Resource Locator
VM Virtual Machine
VPC Virtual Private Cloud
VTS Vessel Traffic System
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1 Introduction

1.1 Overview

In this deliverable, we showcase and summarize validation and verification results achieved by the tool
owners and by the demonstrators (News&Media, e-Government and Maritime operations domains) within
DICE. As D6.4 is the only public deliverable of WP6, material from previous restricted deliverables (such
as D6.1, D6.2 and D6.3) servers the primary purpose of exposing the use cases to the wide audience, in
addition to presenting for the first time results obtained in the final year of the project.

Emphasis has been given to activities and actions that took place over the last 6 months of the project
(M30-M36), however significant information from work done during the first 30 months of the project is
also presented and highlighted when needed.

Adding to the above, the current deliverable provides detailed information regarding validation activities
and progress made on DICE tools, that have not been reported before and took place from M30 to M36. A
number of tools have undergone significant changes and improvements over this period, while additional
validation activities took place either in a lab environment or within the use cases (demonstrators). For
example, in some cases, tools already evaluated in previous months, have been evaluated again in more
depth in the last semester, to test the new functionalities added to the tools in year 3. As other WPs
dedicated to tool improvements (ie. WP2, 3 and 4) do not have a dedicated deliverable for M36, the current
document also contains information regarding latest technical development concerning the tools.

All DICE tools have been validated by at least one demonstrator, while in some cases tools have been
validated in more than one demonstrators, validating the ability of the DICE framework to act as a general-
purpose development environment. The decision on the optimal number and type of demonstrators to use to
validate a tool has been driven by the Big data technologies used in the demonstrators, for example tools
focused on Apache Storm have been tested mainly in the News&Media demonstrator, while those focused
on Apache Spark have been primarily validated on the tax fraud detection demonstrator.

Table 1: DICE tools validated in Use Case environment

DICE Tool Current Status
Tool Name SATC probeveLop Neziecry

................ or

UMIL Profile

DICE IDE 00|
Deployment Modelling Tool (DICER) S EE

Verification Tool

Simulation Tool |

Optimization Tool
Monitoring Tool I D
Anomaly Detection Tool _
Trace Checking Tool
Enhancement Tool

Quality Testing Tool
Configuration Optimization Tool

Fault Injection Tool | |

The following table summarises the KPIs achieved by the demonstrators.

Table 2: DICE Tools KPIS

Copyright © 2018, DICE consortium — All rights reserved 8
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DICE Tool

Validation KPI

KPI Target

Reduction of

Status of validation KPlIs at
M36 (Use Cases)

Reduction experienced by ATC >
70%

KPI achieved
by at least one
Demonstrator

50+% of
Delivery tool Time fr.om deployment d_eployn)ent Reduction experienced by NETF >
modelling to deployment of | times with Yes
(+ DICER) 90%
the DIA respect to no-
modelling Reduction experienced by PRO
approach >80%
Violations of properties on
Verification timing constraints identified | >=2 ATC: 4 Yes
by Verification tool
PRO: Response time: max. error
18%
Prediction error of response Throughput: max. error 5%
Simulation time. Prediction error of <=30% Utilization: max. error 13.2% Yes
throughput. Prediction error
of resources utilization ATC: Utilization: max. errors
below 20%
Throughput: max.error 16.41%
Optimization | Cost prediction error <=30% NETF: The average percentage Yes
error cost estimate overall was 3%.
ATC: Time to configure: 40%
decrease
Time to configure the <=30% - . . a0
Monitoring monitoring across the DIA; decrease; <5% PRO: Tlme to configure: 94% Yes
- reduction
monitoring overhead overhead
For both case overhead is
negligible, <5%.
Anomaly . 0 PRO: 6,6% of false positives using
detection False positives <10% the Anomaly detection tool es
Number of refined
Trace parameters occurring in the _ .
checking model verified with >=1 ATC:2 Yes
Verification tool
Number of anti-patterns _ ATC:
Enhancement detected in one demonstrator >=1 Number of anti-patterns: 2 es
Quality Manual time required in a >30% ATC: Reduction per Test Cycle: Yes
testing test cycle reduction 34,78%
Confiauration Difference in latency or ATC: Throughput (m/s): ~128%
o tim?zation throughput compared to >30% incr Yes
P default config Latency (ms): ~86.6% decr
. 0 H 1
S Manual time required in a >30% PRO: 66,6% Time saving Yes
Fault injection test cycle reduction (on average)
Y ATC: 20% time saving 9
ATC: 8
DICE IDE !\lumber of DICE tools used 4 PRO: 7 Yes
in each demonstrator NETE: 8

1.2 Work done on Containers

During the last semester of the project, considerable effort has been dedicated to support the use of
containers within the DICE project. This is the main extension achieved for the framework in year 3 of the
project. Although not a planned activity at the beginning of the project, given the relevance that this
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technology is acquiring and its potential benefits, upon suggestions from our reviewers, we considered to
dedicate resources to support and validate it in one of the uses cases.

The reasoning for supporting containers was twofold. First, the exercise of adding the container support
across the DICE tools stack acted as a further validation that showed how extensible the DICE tools are and
what it takes to add a new technology paradigm. As discussed in D7.7, for example as a result of feedback
obtained in public presentations of DICE, end users often want to know if a certain technology can be
added to DICE, and the response is affirmative based on the experience reported in this deliverable.
Second, the popularity of the containers in the industry has grown so high during the DICE project, that the
need for their support would naturally occur from the users.

We therefore extended both the design part of the DICE tools as well as the runtime part. In the design part,
the DICE profile has been modified to allow specifying containers at the DDSM level. The DICER tool has
been extended to support the generation of blueprints from contained-based deployment models. The
optimization tool has been used to identify the minimum cost configuration of the BULMA application
(developed in collaboration between DICE and the EUBRA-BIGSEA project) which implements a
predictive machine learning algorithm for Intelligent Transport Systems (bus trajectories identifications)
and which exploits containers.

To enable the transfer to runtime, we extended the DICE TOSCA technology library with support of the
Docker flavour of the containers. This means that the DICE Deployment Service is capable of deploying
applications that include both components running in classical virtual machines combined with ones
running within containers.

The Posidonia Operations use case (maritime operations) has been used to validate the automatic
deployment of the solution with containers. To make use of good practices in handling containers, some
components have been repackaged in order to better separate the functionality of the different services and
have a container for each service.

Another technology that on the outside appears related to containers is the technology of microkernels.
This is a considerably slimmed down version of the operating system, which lets specially prepared
applications to run close to hardware. The technology is gaining traction in the industry and thus has a
potential to catch up with containers. From the MIKELANGELO project comes OSv as a specific
microkernel solution. XLAB being in both projects had a unique opportunity to include support for OSv
into DICE deployment stack and to showcase a Big Data cluster deployment. PMI has extended the
deployment modelling metamodels accordingly, further extending the possible reach and usage of the
DICE toolset.

1.3 Document Contents
The current document includes the following sections:

e Section 1 provides an overview of this current deliverable by presenting the overall structure and
concept of it.

e Section 2 is dedicated to all DICE tools and provides evidence and material regarding validation
and verification activities which took place throughout the project’s duration, while emphasis has
been given to the period from M30 to M36.

e Section 3 focuses on the three demonstrators (use cases) and provides information regarding their
validation activities of DICE tools in their business environments while presenting the use cases as
a whole to wider audience.

e Section 4 is dedicated to drawing the high-level conclusions of this document.
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2 DICE Tools
2.1 Deployment Modelling Tool (DICER)

DICER is a tool for enabling the model-driven deployment of data-intensive applications (DIAS)
leveraging the Infrastructure-as-Code (laC) paradigm. More specifically, DICER adopts the OASIS
Topology and Orchestration Specification for Cloud Applications (TOSCA) standard as an
architecture deployment description formalism and is able to automatically generate 1aC for DIAs in the
form of TOSCA blueprints from DICE-stereotyped UML models. To this aim, DICER exploits the DICE-
Profiles applied on UML Deployment Diagrams as well as the DIA-specific TOSCA library, both defined
and developed in the scope of the DICE project.

While the technical advancements and the majority of features for the DICER tool were discussed
previously in the context of deliverables D2.3, D2.4 and D2.5, the improvement work aiming at addressing
the feedback received by project reviewers and by our advisory board members did not stop and addressed
3 major technical challenges, namely: (a) containerisation; (b) varied DB support; (c) monitoring-as-a-
service. Following this work, the DICER tool addressed new major additions to encompass the
modelling of generic nodes including generic containers which can now be modelled as standard DDSM
constructs and generated as TOSCA blueprint stubs inside DICER-generated TOSCA laC. Moreover,
DICER is now capable of building 1aC which includes the “monitorable” feature, such that the
Deployment Service can deploy monitoring facilities specific to a certain node. Finally, the DICER
exposed a limited support to data-intensive DB technology - in this respect, the newest version includes
support to MongoDB as further technological package inside DICER modelling and automated deployment
facilities.

The validation methodology for DICER employed a case-study research approach. More in particular, the
DICER team (WP2 and WP5) involved the case-study owners on a series of controlled experiments aimed
at understanding:

1. The chronometric gains of using DICER in action, controlling variables such as experience,
background, and model-savviness of the observer;

2. The amount of laC saved by employing DICER in action;

As described in Section 3, all case studies have evaluated the DICER, with PRO exploiting also the
containerization approach, NETF the varied DB support and all the monitoring-as-a-service features.
Evaluation results show a considerable gain of 7x for the times that are saved by using DICER in action
instead of classical coding-intensive approaches. Moreover, the quantity of code saved with DICER is also
considerable, reaching about 9x times the amount of code needed in a classical approach.

Table 3: Overview of the in-lab experiments with DICER

Avg
generation Gen. LOC
time [s]

Max Num.

Avg deploy. time

Blueprint Used Technology Is]

dep. Elems

Pi Calculus Spark 3 3 1.18 294 442
WordCount Zookeeper Storm 3 4 1.26 393 445
Hadoop cluster HDFS YARN 4 5 1.31 646 550
WikiStats Storm Zookeeper 4 7 1.69 782 480
Cassandra

WikiStats (with Storm Zookeeper

trace-cheking Cassandra Spark 5 10 1.93 1175 675
service) HDFS

For an in-depth assessment of the correctness of the infrastructural code generation as well as effectiveness
of the tool in terms of possibility to compose different technologies in a simple way and in terms of
reduction of lines of infrastructural code to be developed, we performed also some in-lab controlled
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experiments. More specifically, to verify that DICER works correctly without introducing a significant
overhead, we have experimented with various DIAs that exploit different combinations of the technologies
we currently support. Table | shows a summary of some of these experiments. In all the cases, we
developed the deployment model for the corresponding DIA and we generated and deployed the resulting
blueprint on our internal OpenStack Mitaka infrastructure. In all considered cases, the process led to a
correct deployment fulfilling our expectations. The first column in Error! Reference source not found.
ncludes the names we have assigned to the considered DIAs and the second lists the used technologies.
From this column, the reader can see that we have experimented with an increasing combination of
technologies to achieve deployments with a different level of complexity. The Num. Elems column reports
the number of UML modelling elements used to model each DIA. The Max dep. column represents the
length of the longest path in a blueprint’s dependency graph, not counting virtual resources that are created
almost instantly. For example, level 1 represents an architecture with services that are all peers and where
none of the services depends on any other service. Level 2 represents a two-tier architecture, where a
service (e.g., a database) needs to be deployed before another one (e.g., an application) can be deployed
and configured. The larger is the value of Max dep. the larger is the complexity of the deployment
procedure to be executed for the corresponding DIA as it requires a specific deployment order to be kept as
well as a runtime configuration of the dependencies between the involved components. Gen. LOC reports
on the number of Lines of Code of infrastructural software generated by DICER in each experiment. This
number gives an idea on the amount of low level programming effort saved by DICER users. From the
experiments we have conducted, it appears that this number depends on the number of modelling elements.

To quantify the time needed to generate and deploy blueprints, we repeated the experiments 10 times and
com- puted the average duration for generating the blueprint (fifth column in the table) and for
automatically deploying it through the deployment service (seventh column). As we expected, we can see
that the blueprint generation time is significantly lower that the time needed to deploy all considered cases.

transformation time [s]

10 5 20

number of modeling elements
Figure 1: TOSCA blueprint generation avg times per number of modeling elements

To see if DICER was able to handle also cases more complex that the ones in the table, we carried out a
scalability anal- ysis starting from a simple model with a single VMsCluster including one technology
element and by gradually increasing the complexity up to a case that included, 8 VMsClusters, 8 distinct
technology-specific elements (e.g. StormCluster, CassandraCluster, etc.) and 8 distinct DiaJobs. Such
models were randomly generated and the amount of generated infrastructural code ranged from 150 lines,
for the simplest model, to 2092 lines for the more complex one. We ran each single experiment of blueprint
generation 30 times, averaging the resulting generation time. In all cases DICER behaved correctly and
generated the corresponding executable bluprint. Figure 1 plots the time needed for such generation that
remains always within acceptable boundaries.
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2.2 Delivery tool

Transitioning from design environment to the runtime involves having to follow the deployment diagram of
the DIA by taking repetitive steps in an order prescribed by both the deployment diagram and the specifics
of the DIA’s components. An important DevOps tool makes these steps automatically, continuously and
reliably. The DICE Deployment Service with the help of DICE TOSCA technology library and DICE
Configuration Optimisation assumes the role of such a tool in the DICE Methodology.

At the end of M30, the delivery tools reached a phase that was feature complete: it supported all of the core
DICE technologies, and the same blueprint could be deployed without change to any of the supported
infrastructures: FCO, OpenStack or Amazon EC2. After that, we proceeded to validate the tool when used
on Amazon EC2 in order to assess the maturity of the tool for the purposes of the Posidonia Operations
(described later in the report). We also validated the tool ability to adopt new platforms by extending the
technology support to include container and microkernel technologies.

2.2.1  Validation in Amazon EC2

A good application orchestration needs to handle various levels of abstractions in a sensible way. The goal
of modelling the deployments is to capture all the necessary details of an application, while at the same
time it doesn’t have to go too much into detail. It has to specify all the components of the DIA, their
relationships and any configuration that deviates from the defaults. But when it comes to representing the
hosting environment, i.e., the cloud provider’s IaaS details, it is safe to assume that they all share common
elements. For example, they all offer compute and networking capabilities. Therefore, the deployment
representation can hide these details or move it away from the DIA’s representation.

From the perspective of providing such an abstraction, an orchestrator (or, more specifically, the plug-in
that implements specific technology and platform support) has to work out differences and peculiarities that
do exist between providers. It is therefore up to the tool owner to perform the validation that the behavior
of the deployment is comparable to the one observed previously in FCO and OpenStack.

Our approach in this validation was to assess the scenario involving first bootstrapping the delivery tool
and then using it to make the first DIA deploy. The assumption therefore is that the user has a compiled
Storm application® (i.e., a .jar file) and a blueprint for the DIA as a .yaml file describing the whole Spark
cluster, and an Amazon Web Services (AWS) account with permissions to manage resources through the
AWS’s web API. The goal of the validation was to show that the DIA can be successfully deployed in the
Amazon EC2 environment. The time needed for this to occur also needs to be reasonably short: within 3
hours for the first deployment, and less than 30 minutes for each redeployment.

Table 4: Timings for Amazon EC2 deployment of a Spark application

Task | Time required [minutes]

AWS account setup (manual) 30 min
Collecting AWS parameters (manual) 60 min
Running bootstrap steps (manual) 25 min
Cloudify Manager bootstrap (automated) 15 min
DICE Deployment Service bootstrap (automated) 10 min
DIA deployment (automated) 15 min
Total first deployment time ' 2h 35 min
DIA undeployment (automated) 2 min

DIA deployment (automated) 15 min

Total time subsequent redeployment (per redeployment) 17 min

1 Storm WikiStats: https://github.com/dice-project/DICE-WikiStats/tree/master/storm-wikistats
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In our experiment, we followed the DICE Deployment Service Administration Guide? to set up the DICE
Deployment Service. Then we first ran the deployment of the Spark application by submitting the blueprint
to the DICE Deployment Service instance set up in the previous steps. The same step was for redeploying
the same blueprint, but this includes first the process of clearing the previous deploy.

Table 4 shows the timings that we recorded during this process. The timings apply to an engineer with
basic understanding of operating with command line interfaces, configuration files editing and AWS
handling.

From the results we can see that we can obtain a working DIA runtime within approximately 2:30 h. At the
same time this gives us a platform which lets us have new deploys of the application, complete with the
entire Spark stack, in less than 20 minutes.

2.2.2  Container and microkernel support

The main purpose of the DICE Deployment Service has been to automate deployment and configuration of
the DIAs by installing each of the needed component in a virtual machine®. In this approach, all the
installation and composition happens on the fly according to appropriate Chef Cookbook recipes that are a
part of DICE TOSCA technology library.

In the final 6 months of the project, we have also examined alternative approaches, which bundle parts of
components ahead of time into an image. This image is then executed as a container in a micro-virtualised
environment. The approach has become popular in the industry, because it enables simpler handling of
individual units of processing and computation, which in themselves might be quite complex to set up.
They are also easier to deploy in multi-cloud setting. DICE use case partner Prodevelop has recognised the
usability of the Docker, a representative that is prominent in the container technologies community, for
their internal development and testing processes. This was a valid motivation for us to consider extending
support in the DICE TOSCA technology library to include Docker.

With our support for container technologies we also wanted to make a few more steps ahead. Thanks to
collaboration with the MIKELANGELO* project, we also provide support for a microkernel technology
called OS¥®. Microkernels are related to containers, as they provide a slimmed-down operating system that
runs a component in a lightweight fashion. The added benefit of this technology is that it speeds up
deployment of individual instances of the component, and it also lowers the overhead on memory and CPU
that traditional operating systems apply to any component.

To both validate and demonstrate the support for new technologies, we revisited our city traffic use case
[D5.3]. The use case is a part of collaboration with TIMONS®, and it collects and processes public data
emitted from sensors placed at streets in Ljubljana and published by the public transport company.
Focussing on the batch processing part of the use case, we introduced the following extensions and
updates:

e \We added a web user interface, packaged in a Docker image.
e We replaced the Spark worker nodes set up on virtual machines with Spark workers packaged as
0S' images.
Figure 2 shows the blueprint representation from Cloudify’. We should point out that in this case, the
Docker images used in the blueprint need to be prepared ahead of time and uploaded to a Docker

repository. Also, for the OSY components, their images need to either be bundled with the blueprint upon

2 Administration Guide: https:/github.com/dice-project/DICE-Deployment-Service/blob/master/doc/AdminGuide.md
% Theoretically, bare metal deployments are also possible, but the use cases had no requirement for it so far.
4 MIKELANGELO project: https://www.mikelangelo-project.eu/

® 0S": http://osv.io/
8 https://www.timon-project.eu/

7 Cloudify: http://cloudify.co/
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submission for deployment, or they need to be available in the target interface as an operating system

image (e.g., an AMI on the Amazon EC2).

cassandra_vm [E ? kafka_vm [E g

cassandra cassandra_keyspaces kafka stream_reactor
0 1]

spark_master_vm E data_collectors_vm E zookeeper_vm E

spark_jobs spark_master data_collectors zookeeper
1]

docker_vm [E cassandra-ui [E] osv_spark_worker @ zookeeper_guorum @

docker
k%)
spar... fwe.. docke... cass.: kafka_fw —zook.. spar... docke... spar...

Figure 2: Screenshot of DICE Traffic Application blueprint as shown by Cloudify Web Ul

The outcome of deploying this blueprint to the DICE Deployment Service is as expected: in the target
environment (OpenStack or Amazon EC2) we obtain a working runtime of our use case DIA. This
demonstrates that it is possible to freely mix various complementing technologies into the application,
making composition of DIAs even more flexible.

We should point out that in the case of the OSY components, preparing the microkernel editions requires
special customizations of the source component in order for it to comply with the rules and capabilities of
the OSY operating system. This requires a certain effort of a specialized person, so it cannot be trivially
applied to any application or component. But to see the benefit of doing this from the perspective of the
DevOps, we compared the time of deployment of a blueprint using microkernels with the deployment time
of a regular (i.e., virtual machines only) blueprint. Figure 3 and Figure 4 show the deployment sequences
first of the blueprint where all Spark components are deployed as VMs, and second as the result of the
deployment of the blueprint shown in the Figure 2. Each horizontal line shows the time that the
orchestrator was active configuring an instance of a specific node template.
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Deploying traffic application using prepackaged OSv components (we only replaced Apache Spark
workers) reduced the deployment time from 750 to 500 seconds on average, a reduction by a third from the
VM-only deployment time.

Deployment timeline Deployment timeline
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Figure 3: Timings for regular (VM-only) traffic application Figure 4: Timings of OSv traffic application deployments
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2.2.3 Summary

The validation activities that we continued to perform by the project’s M36 demonstrate the value and
benefits of using the DICE Delivery tool. The originally supported core technologies already enabled
composition and automated deployment of versatile and complex DIAs, with the possibility to supply
custom components using a Script Runner node type. With the added support of Docker and OSv, the
spectrum of possible DIASs is now even wider.

Our own internal validation process was also complemented with the feedback we obtained from some of
the external users. This includes users from the use case partner groups in the consortium (who report their
findings from their own perspective later in this document) and a small number of external users. From
their experience and support queries we find that a certain step in the learning curve remains: the
knowledge of handling system administration tasks. An unavoidable prerequisite for the DICE Delivery
tool to work properly is that the target datacenter or cloud is properly configured in terms of the network,
operating system images, etc. In a public platform such as the Amazon’s EC2, it is possible to prescribe in
the instructions the majority of the parameters, so in that case the overall user experience is higher. But in
custom, private environment such as an OpenStack testbed, there are more possibilities of unforeseen
misconfiguration that may block the deployment process.

Assuming that a customer employs a reasonably trained system administrator, then they can set up and
configure the DICE Delivery tool from zero to a running environment in a few hours. The resulting
services then enable quick deployments of the DIA blueprints. But the users and customers who are new to
Cloud environment may need additional help before they can take full advantage of the tool. As a part of
the work to improve and strengthen the DICE offering we therefore consider expanding on the
documentation. However, this measure might get an opposite effect by potentially making the instructions
alone too intimidating to the users. So as a countermeasure we plan to include additional checks of the
user’s input against the target environment.

2.3 Verification Tool

The DICE Verification Tool (D-VerT) is the tool enabling the formal analysis of safety properties on Data
Intensive Applications (DIAs) from the DICE Platform.
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D-VerT allows application designers to evaluate their design against safety properties, such as reachability
of undesired configurations of the system, meeting of deadlines, and so on.

The analysis, which is mainly focused on the timing behaviour of the applications, follows a model-driven
approach: applications are defined by DIA designers as DICE-profiled UML models through the Papyrus
editor of the DICE Platform.

Once the model is complete and the needed configuration parameters are provided, D-VerT automatically
generates the instance of the formal model corresponding to the UML model, and performs the formal
analysis on it. The outcome of the analysis is then reported in the DICE IDE and is employed by the
designer of an application for refining its model at design time, in case anomalies are detected.

The formal models are based on a Metric Temporal Logic formalism, and the analyses exploit Bounded
Satisfiability Checking techniques.

Currently the tool supports the analysis of both streaming applications designed in Storm (buffer saturation
analysis) and batch applications using the Spark technology (deadline feasibility analysis).

Since M30, various validation activities and refinement have been carried out. The main improvements
regarded both the integration with the DICE Platform and the internals of the tool. In particular, some
optimizations have been studied for the formal models in order to improve verification performances.

The target KPI for DICE Verification Tool indicates that the number of violations of properties on timing
constraints identified by the tool must be >= 2, and this has been achieved on the considered case studies.

The following sections summarize the validation activities that have been performed for the Storm and
Spark technologies on a number of use cases. The validation on the ATC case study is described in detail in
Section 3.

2.3.1  Apache Storm

The Storm technology has been validated on various scenarios. The first validation activity, carried out on a
simple topology having 2 spouts and 3 bolts, was presented in Deliverable D3.5 [9]. Next, the
FocusedCrawler topology, with different configurations, was used as validation in [10]. In order to
evaluate the performance and the scalability of the tool, we carried out many experiments on the presented
topologies, by varying the topology parameters and the number of bolts considered. The following table
shows time and memory consumptions statistics we collected.

Table 5: FocusedCrawler time and memory consumption statistics

Topology Configuration . N. of Bolts Duration Max Memory

focused-crawler-complete 8 2664s 448MB
focused-crawler-reduced-cfg-1 4 95s 142MB
focused-crawler-reduced-cfg-2 4 253s 195MB
focused-crawler-reduced-cfg-3 4 327s 215MB
focused-crawler-reduced-cfg-4 4 333s 206MB
focused-crawler-reduced-cfg-5 4 3184s 317MB
focused-crawler-reduced-cfg-6 4 1060s 229MB
focused-crawler-reduced-cfg-7 2 14s 79MB

While the previously mentioned validations were mostly focused on the evaluation of the formal model and
the server component of the tool, [11] and [12] show the complete usage of D-VerT (from UML modeling
to verification) for the iterative improvement of a web crawler topology. The tool identified 2 major
violations in the topology, and helped the refactoring of the model.

Since M30, the tool was validated both on the ATC use case and on the Wikistats application.
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As described with more details in Section 3, the formal analysis identified the presence of 4 violations in
the crawler topology of the ATC use case, and allowed, by means of the iterative refinement of the model,
for their resolution.

The Wikistats topology is an application performing analytics on web content from the Wikipedia website
in a streaming fashion and stores the resulting statistics to a NoSQL database. We focused on the Storm
topology and modeled it as a DICE-profiled UML Class Diagram using the Papyrus UML editor of the
DICE Platform (Figure 5).
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Figure 5: UML Class Diagram describing the Wikistats topology
Several verification tasks have been performed, focusing on the different nodes in the topology.

D-VerT identified a first violation in the count_links bolt, providing an execution trace in which the
number of messages in its input buffer grows in an unbounded way. After a refinement of the component,
consisting in the improvement of its execution time (alpha parameter) the issue was solved as the tool did
not detect any further problem on the bolt. However, another violation was found in the store_links bolt.
This outcome motivated a further modification in the topology model: by increasing the level of parallelism
of the store_links bolt the verification task did not find any more issues in the component.
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Figure 6: D-VerT dashboard showing verification outcomes for the Wikistats use case

Figure 6 shows the graphical interface through which it is possible to consult the status of the launched
verification tasks. The execution times of the verification tool we collected during the validation on the
Wikistats use case range from tens of seconds to tens of minutes, depending on the configuration.

2.3.2  Apache Spark

Validation activities for the Spark technology were first shown in deliverables D3.6 [13] and D3.7 [14],
both considering a simple application performing a series of transformations on a text file.

Since M30, extensive experimental validations have been made on three different well-known applications:
the simple SortByKey operation, the graph processing algorithm PageRank, and the clustering procedure
K-Means.

The execution DAGs underlying the three applications have different sizes and different levels of
parallelism, and have been executed and analyzed several times with different settings. This allowed us to
evaluate both the accuracy of the formal model against realistic use cases and the scalability of the
approach.

We performed the deadline feasibility check on all the settings of the different applications, varying the
deadlines and recording the execution times.

On average, the tool was able to provide an outcome for feasible deadlines in less than a minute for the
small-sized SortByKey examples, in a few minutes for the medium-sized Pagerank examples, and in tens of
minutes (even hours) for K-Means, the example with the largest size. On the other hand, we registered
extremely higher execution times for the feasibility analysis of deadlines that turned out to be unfeasible,
but close to the minimum feasible deadline. In some of these cases, the tool took days you terminate the
analysis. Since the difference between the analysis of feasible and unfeasible deadlines were so important,
we decided to introduce a timeout to stop the analysis after an amount of time that (according to our
experience and supported by experimental evidence) was reasonably high to conclude that the deadline is
unfeasible.

Experiments have shown promising results in terms of the accuracy of the model. The percentage
difference between the minimum feasible deadline found by the formal analysis and the actual (average)
execution time of the application running on a cluster, was below the 10% on all the settings we
considered. The complete experimental evaluation is available at [15].

After this activity, we implemented some refinements to the Spark formal models aiming at the reduction
of the model size and the mitigation of the state space explosion problem. The final goal of these
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refinements is to reduce memory consumption and the execution time needed to perform verification. The
first experiments show that, on average, the memory consumption halved with the new version of the
model and the execution time decreases up to the 80% in some settings.

2.4 Simulation Tool

The DICE Simulation tool is a simulation-based tool for reliability and efficiency assessment of Data
Intensive Applications (DIA). Simulations carried out by the Simulation tool are model-based simulations.
For performing its model-based simulation task, the tool takes as input UML models annotated with the
DICE profile. It uses Model-to-model (M2M) transformations, that transform the DIA execution scenarios
represented in these profiled UML models into Petri net models. Then, the tool evaluates these Petri nets,
and finally uses the results of the Petri net evaluation to obtain the expected performance and reliability
values in the domain of DIA software models.

At the end of M30, the Simulation tool reached a phase that was feature complete. Currently, the
Simulation tool computes the following metrics:

— Performance assessment: Utilization of hardware devices and execution threads, response time and
throughput of the application.

— Reliability assessment: MTTF, availability and probability of continuous correct operation.

The target Key Performance Indicator (KPI) for the Simulation tool specifies that the tool must predict the
performance metrics with less than 30% of error on average. The DICE Simulation tool satisfies this KPI.

The Simulation tool has been validated at DPIM and DTSM level for reliability and efficiency assessment
of DIA. In particular, performance evaluation has been validated for Posidonia Operations and BluAge case
studies at DPIM level, and News Orchestrator at DTSM level for Apache Storm (see Section 3). Besides,
the Simulation tool has been also validated with synthetic data at DTSM level for Apache Hadoop [3,2],
Apache Storm [5,2] and Apache Spark [6]. In the following paragraphs we detail the validation of every
technology step by step. The Simulation tool is currently being validated for BluAge case study at Apache
Spark level.

2.4.1  Apache Hadoop

The validation results for Hadoop MapReduce has been already presented in Section 6 of the DICE
Deliverable 3.8 [1] and Section 3 of DICE Deliverable 3.1 [2]. The results have been published in [3] and
are here summarized.

The experiments were executed on Amazon EC2 and CINECA, the Italian supercomputing center. The
target version was Hadoop 2.6.0. We studied the performance for various configurations of the Hadoop
MapReduce framework. That is, we analyzed the simulation errors for different number of mappers
(nMaps), reducers (nRed), cores and users. We chose a set of SQL queries that were translated into
MapReduce jobs using Apache Hive [4]. They were executed over a dataset of several files ranging from
250 GBytes to 1 TByte that were used as external tables. The metric that we measured was the system
response time. The SQL queries are identified by the name R1-R5 in the first column of the table. A
description of the SQL sentences can be consulted in [1]. The last column of the table represents the
percentage of relative error between the estimated and real response times. The response times obtained by
simulation (column T swn [ms]) are close to the response times obtained by real executions (column T
[ms]) in the Hadoop MapReduce cluster for most situations. The simulation tool offers good estimations of
the real execution of Hadoop MapReduce systems. For all cases, the relative error is lower than 17.81%;
and reaches a relative error of 0.03% in the best cases. The validation results are summarized in the
following table.
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Table 6: Validation of the DICE Simulation Tool for Apache Hadoop MapReduce

Query Users Cores nRed T (ms) T(?nVS\;N % Error

R3 1 80 1000 1560 1009 1019973 102029844: 0.03

R2 3 40 250 4 4 86023 | 119712.3 -17.81
2.4.2  Apache Storm

The validation results for Storm has been already presented in Section 3 of DICE Deliverable 3.1 [2]. The
results have been published in [5].

The experiments were executed in a cluster with two workstations. All the workstations were characterized
by Intel(R) Core(TM) i7-6700 CPUs (3.40GHz) with 8 cores, 32GBytes of RAM, a Gigabit Ethernet and
Ubuntu Linux OS (version 14.04). The target version was Storm 1.0. We studied the performance for
various configurations of the Storm framework. That is, we analyzed the simulation errors for different
number of cores, number of threads per bolt and thread execution time.

The Storm example consists of two spouts (data generators/file readers) and three bolts (data processing).
The Storm application executes a word count. We considered the utilization of each bolt as performance
metric, i.e., the percentage of time that the threads associated to a bolt are active and processing tuples (see
columns %BX Cap). The simulation tool offers good estimations of the real execution of Storm systems.
For all cases, the relative error is lower than 15.7%; and reaches a relative error of 0.068% in the best cases
(see columns %BX Error). We have varied the execution time of the bolts and the arrival rate of messages
to the spouts. The validation results are summarized in the following table.

Table 7: Validation of the DICE Simulation Tool for Apache Storm

Experiment  Cores % B1 % B2 % B3 % B1 % B2 % B3
P Cap Ca Cap Error Error Error
R5 11 39.4 38.7 17 0.068 3.275 4.18
R10 11 9.5 11.9 7.3 15.738 0.958 12.618
2.4.3  Apache Spark

The validation results for Spark has been already presented in Appendix D of DICE Deliverable 3.4 [6].

In order to validate the Simulation tool, we have worked with several publicly available libraries and
benchmarks for Spark. Concretely, we presented results from the SparkPrimes example, a toy example
presented in DICE Deliverable 3.4 that computes a set of prime numbers; and the spark-perf suite
developed by Databricks [7], a performance testing framework for Apache Spark 1.0+ that covers the more
important parts of the ecosystem (Spark Core RDD, SQL + DataFrames and machine learning with MLIib).

In particular for the spark-perf suite, we have evaluated the performance of several Spark Core operations.
We have focused on analysing different combinations of count and aggregation operations (e.g., mapping
and count, filtering and count, mapping and grouping by integer keys, mapping and grouping by string
keys, mapping and reducing, etc.). The aforementioned examples were run with different job
configurations. Mainly, we have parameterized: a) the number of assigned cores to each job; and b) the
number of tasks per operation. The execution environment where the Spark applications were launched
consists of a Spark Master (coordinator) and a set of six workstations for running the computations. The
workstations are virtual machines deployed on the flexiOPS FCO cloud [8]. All the workstations were
characterised by virtual AMD CPUs (4x2.60GHz) with 4GBytes of RAM, a Gigabit ethernet and Ubuntu
Linux (version 14.04) OS.

The validation results are summarized in the following table. It shows the error rate in the response times
predicted by our tool for the SparkPrimes and the spark-perf suite with respect to the real executions.
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Particular cases of SparkPrimes have high errors, for instance, 32.2%. Some cases in the spark-perf suite
reached up to 26.094% of error. We suspected that these errors could be caused by the exponential
distribution that simulates the mean execution time of the tasks. Therefore, we used an alternative
probability distribution (Erlang distribution) in order to provide a better accuracy.

We repeated the experiments using the Erlang distribution instead of the exponential one. On average, the
errors with the Erlang distribution were 2.27% smaller for the SparkPrimes example; and we got a
reduction of up to 12.87% for the spark-perf suite. More in detail, we observed that the Erlang distribution
fits better than the exponential one when there are a few number of parallel tasks per operation with respect
to the total number of cores in the cluster (numTasks < 200). Conversely, the exponential distribution fits
better than the Erlang distribution when there are a high number of parallel tasks per operation with respect
to the total number of cores in the cluster (numTasks >= 400). The internal behaviour of the Spark
application master is faded out when managing large number of tasks.

Table 8: Validation of the DICE Simulation Tool for Apache Spark

(0) i [0) =
Experiment numTasks & Spgl:(l:rnmes & s;é?:l;rperf
R7 18 200 32.2 26.094
R9 18 800 2.94 0.013

2.5 Optimization Tool

D-SPACE4Cloud is the the optimization tool developed within the DICE framework to support the
capacity planning process of shared Hadoop Cloud clusters for MapReduce, Spark and Storm applications
with quality of service guarantees. In a nutshell, the tool implements a search space exploration able to
determine the optimal virtual machine (VM) type, possibly from different providers, and the optimal
number of instance replicas.

The underlying optimization problem is demonstrated to be NP-hard and it is solved heuristically, whereas
job execution times are estimated via queueing network (QN) or Stochastic Well Formed Net (SWN)
models by relying on the DICE Simulation tool model to model transformations. D-SPACE4Cloud
implements an optimization mechanism that efficiently explores the space of possible configurations.

During the third year, D-SPACE4Cloud was extended to support Spark applications, which are the core of
the NETF case study. In the last six months, we improved the tool GUI (an Eclipse plugin) and developed
a new component, which relies on a very fast ad-hoc simulator PMI developed within the EUBRA-
BIGSEA project® and which is able to derive optimization models directly from Spark logs. In this
deliverable we summarise our validation results for the capacity planning of Spark applications in public
clouds. The validation of the tool for MapReduce applications has been reported in®. The results of the
validation for private clouds are reported in the DICE Deliverable D3.9.

To validate D-SPACEA4Cloud, we aimed at assessing the quality of the optimal solution obtained using D-
SPACEA4Cloud. Assuming to optimize a given DIA and a deadline to meet, we focus on the response time
measured in a real cluster provisioned according to the number of VMs determined by the optimization
procedure, quantifying the relative gap as a metric of the optimizer accuracy. Formally:

Error-deadline % = (D- Trea))/Trea (1)

where D is the deadline and T the execution time measured on the real cluster, so that possible misses
would yield a negative result.

8 http://www.eubra-bigsea.eu
° M. Ciavotta, E. Gianniti, D. Ardagna: D-SPACE4Cloud: A Design Tool for Big Data Applications. ICA3PP 2016: 614-629
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The second error metric we considered is the cost prediction error evaluated as percentage difference of the
minimum cost cluster configuration identified by inspection able to fulfill a deadline set a priori and the
cost of the cluster identified by D-SPACE4Cloud. Formally:

Error-cost % =(Ceiuster - Cp-space4cioud) / Cp-spacE4cioud (2)

Note that, this latter is the target KPI for the D-SPACE4Cloud tool validation, whose median value should
be below 30%.

D-SPACE4Cloud has been validated by considering the NETF case study, the TPC-DS industry benchmark
by deploying the DIAs on Microsoft Azure platform. Moreover, thanks to the collaboration with the
EUBRA-BIGSEA project, PMI validated its tool by considering the BULMA application developed within
EUBRA-BIGSEA deployed on Docker containers.

25.1 TPC-DS Case Study

The TPC Benchmark DS (TPC-DS) is a decision support benchmark that models several generally
applicable aspects of a decision support system, including queries and data maintenance. Although the
underlying business model of TPC-DS is a retail product supplier, the database schema, data population,
queries, data maintenance model and implementation rules have been designed to be broadly representative
of modern decision support systems. TPC-DS run on RDBMS but also on many Big Data environments
like Hadoop and Spark.

The supporting schema contains vital business information, such as customer, order, and product data.
TPC-DS is based on snowflakes schema. It consists of multiple dimensions and fact tables. Each dimension
has a single surrogate key. The fact tables join with dimensions using each dimension table surrogate key.
The experimental settings were the same as in the NEFT case study. For the validation we considered two
gueries Q26 and Q52 at 500 GB scale and, we considered six cases ran on D12v2 VMs, varying the
deadlines. The table below summarizes results.

Table 9: TPC-DS D-Space4Cloud error metrics

Cluster Cluster

. Simulator Error-

VM Time L -

Query o reall (ms) prediction  deadline real DS4C (I:Eorsl;oor/

yp time (ms) % (nCores)  (nCores) °
Q26 D12v2 | 186,659 158, 287 15% 48 52 -8%
Q52 D12v2 | 188,860 150, 488 20% 48 52 -8%
Q26 D12v2 | 304,048 186, 066 39% 32 36 -11%
Q52 D12v2 | 263,034 175, 394 33% 32 36 -11%
Q26 D12v2 | 454,054 332,364 27% 20 24 -17%
Q52 D12v2 | 410,588 353,852 14% 20 24 -17%

First of all, none of the considered runs led to a deadline miss. Moreover the relative error is always below
20%, with a worst case result of 17% and the average settling at 12%. The tool is conservative and always
allocates one additional VM. Overall we can conclude that the optimization tool is effective in identifying
the minimum cost solution at design time, guaranteeing that deadlines are met as well.

2.5.2 BULMA Case Study

Thanks to the involvement of PMI in the EUBRA-BIGSEA project, DICE tools have been validated also
on Docker container based deployments by considering the project BULMA application. The goal of
BULMA is to provide high-quality integrated geospatial-temporal training data to support predictive
machine learning algorithms of Intelligent Transport Systems applications and services.The problem faced
by BULMA is the following. The task of identifying bus trajectories from the sequences of noisy
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geospatial-temporal data sources is known as a map-matching problem. It consists of performing the
linkage between the bus GPS trajectories and their corresponding road segments (i.e., predefined trajectory
or shapes) on a digital map. BULMA is a novel unsupervised technique capable of matching a bus
trajectory with the correct shape, considering the cases in which there are multiple shapes for the same
route (common cases in many Brazil cities, e.g., Curitiba and Sdo Paulo). Furthermore, BULMA is able to
detect bus trajectory deviations and mark them in its output. BULMA application has been run on Spark
1.6, where each executor was allocated to a Docker container with 2 cores and 4GB of memory. The data
set considered includes the data of five days of bus GPS data gathered in Curitiba. Overall 4 different
configurations up to 48 cores were considered and results are summarized in Table 10. Even if in this case
one scenario (the one at 48 cores) led to a deadline miss, the accuracy of the simulation tools is in line with
the previous analysed scenarios based on virtualized systems. The average absolute percentage cost error is
16% below the 30% median error envisioned for the target KPI.

Table 10: BULMA D-Space4Cloud error metrics

Simulator

pedcionime  Timere(n) | SN0, S Ggise e
723,876,859 724,858,500 15% 36 40 -10%
644,487,201 693,636,333 -20% 48 46 4%
1,039,256,814 1,126,044,750 39% 12 16 -25%
781,989,438 797,890,000 33% 24 32 -25%

2.6 Monitoring Tool

The DICE monitoring platform (DMon) is designed to be a scalable system with minimal collection
overhead that is able to collect performance monitoring data from big data services underlying most data
intensive applications. It currently supports: YARN, Spark, Storm, MongoDB, Cassandra, System metrics
etc.

DMon has several core features meant to ease the workload of the end user. For example, DMon is able to
automatically detect Storm topologies as well as some basic Spark and YARN services which aids in the
setup process. It is also capable of automatically generating basic visualizations for all big data
frameworks.

At M30 the monitoring tool is feature complete: monitoring metrics for all DICE supported technologies
are collected, metric processing overhead is of loaded to DMon significantly reducing collection overhead,
deployment is done automatically via blueprints by the DICE deployment service. Since M30 most of the
work done was for performance improvements and minor bug fixes. As part of T.4.2 during the
development of the Anomaly detection tool we have added an artefact repository to DMon. This repository
is designed to hold all predictive models trained by the anomaly detection tool. This feature has been
optimized in this period.

On of the main optimizations done in this period was applied to the WSGI (Web Server Gateway Interface)
used by DMon. This was done to ensure the best possible availability of monitoring data. As we can see in
Figure 7 we have benchmarked a number of solutions such as; Tornado, Bjoern and Gunicorn using the
Locust load testing tool. As a baseline we have also included the standard WSGI called Werkzeug.
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Figure 7: Benchmark with various WSGI setups for DMon

Another important modification was made to DMon which allows the monitoring of different versions of
some of the Big Data frameworks supported by the DICE methodology. Of particular interest is Spark
which has different ways of exporting performance metrics in versions 1.x than 2.x.

The monitoring tool fulfils all KPIs by virtue of; its automatic deployment by the Deployment service thus
considerably reducing the time it takes to configure and the processing of monitoring data inside DMon all
collection components (such as the dmon-agent) are tasked only with forwarding the metrics to the DMon
controller.

2.7 Anomaly Detection Tool

The anomaly detection tool (ADT) is designed to detect contextual anomalies in performance metrics
collected during DIA execution. It allows developers and designers to see how their application performs
and notifies them in the case an anomaly occurs. In contrast to other solutions based on rules which mainly
deal with a limited number of metrics (features) ADT can use the entire spectrum of features available
during DIA execution.

It is designed to form a lambda type architecture together with the monitoring platform. DMon is the
serving layer where all monitoring data is stored and queried as well as the location where trained models
are stored. ADT has two modes of operation. First it has a training mode where models are trained and
validated. The second mode is the prediction mode where trained models are instantiated and are used for
detecting. These two modes represent the batch and speed layer respectively from a lambda architecture.

ADT was also used on a new use case dealing with fraud detection in credit card transactions. In this use
case the data available is very imbalanced having an extremely low anomaly occurrence (well under
0.0005%). It is important to mention that the available data was synthetically generated based on real
transaction features.
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Figure 8: Dataset features and missing values

In the case of machine learning libraries such as XGBoost missing values are dealt with automatically by
the underlying algorithm, it is able to learn which is the best imputation values. However, other methods
are susceptible to these missing values in the data. This fact has lead us to include features in ADT which
signal if missing values are detected. We can see from Figure 8 some of the selected features for anomaly
detection. Some of the features had missing values which is easily seen from figure Figure 8. From Figure
9 we can see the ADT calculated Pearson correlations generated during the initial analysis of the available
dataset.

Pearson Correlation of Integer-type features
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Figure 9: Pearson correlation for floating point and integer features
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All supervised and unsupervised methods have been tested on this dataset their average performance is
around 6% to 8% false positives. Figure 10 shows a partial decision tree trained using ADT while Figure
11 shows the training vs cross validation graph.
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class = Yes
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Figure 10: ADT created Decision Tree example
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Figure 11: Training vs validation score for ADT Random Forest

This dataset has proven to be of significant challenge as most methods implemented in ADT where until
this point tested on datasets which had a maximum of 50000 to 1 ratio with regard to anomalies while in
this scenario the ratio is much closer to 1 million to 1. Because of this usage of pre-processing methods for
unbalanced dataset such as SMOTE and ADASYN is of great interest. Preliminary integration of these
methods have yielded very promising results ADT being able to detect anomalies detecting 7.8% false
positives.

2.8 Trace checking Tool

DICE-TraCT is the DICE tool which enables the trace checking analysis of DIA logs. Trace checking is an
approach for the analysis of system executions that are recorded as sequences of timestamped events to
establish whether the system logs satisfy a property, usually specified in a logical language. Adding to the
above, trace checking is a way to check the correctness of the ordering of the events occurring in the
system and of the time delays between pairs of events. Moreover, it is useful when the aggregated data that
are available from the monitoring system are not enough to conclude the correctness of the system
executions with respect to some specific criteria. Additionally, trace checking is a possible technique to
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achieve this goal and can be used on purpose to extract information from the executions of a running
application.

According to the DICE methodology, trace checking is performed after verification to allow for continuous
model refinement.

Since M30, DICE-TraCT underwent various validation and refinement activities that were carried out by
using realistic applications such as the well-known Wikistats and also NewsAsset, the use case scenario
owned by ATC. The complete DICE-TraCT framework based on a client-server structure was tested under
the Wikistats application through the analysis of the logs extracted by the monitoring platform. The
implementation of the IDE concluded the activity of the DICE-TraCT tool. The next figure shows the result
of the analysis of the Wikistats topology that is sent to DICE-TraCT IDE by the DICE-TraCT engine.

DICE-TraCT allows the users to implement specific monitoring solutions for the collection of information
through the analysis of the application logs. In particular, DICE-TraCT enables the analysis of the logs to
elicit the parameter values, related to certain specific features of the running application, that are necessary
for the verification carried out by D-VerT. In our scenario, those parameters cannot be directly extracted
from the monitoring platform of the framework used to implement the DIA, e.g., Storm. For instance, the
parameter sigma, that characterizes the abstraction of the bolt functionality, can be calculated by means of
the analysis of the logs with the trace-checking technique implemented by DICE-TraCT, whereas an
estimation via the Storm monitoring service turns out to be unfeasible.

DICE-TraCT easily fulfils the requirements on the KPlIs as it can extract all the parameter values necessary
for the verification with D-VerT, for every component of the topology. DICE-TraCT, in fact, can provide
the average emit rate of the all the spouts and both sigma and the average time required by the bolts for
elaborating their inputs, for all the bolts in the topology.

2.9 Enhancement Tool

The DICE Enhancement tool is designed for iteratively enhancing the DIAs quality. Enhancement tool
aims at providing a performance and reliability analysis of big data applications, updating UML models
with analysis results, and proposing a refactoring of the design, if performance anti-patterns are detected.

At the end of M30, the Enhancement tool reached a phase that was feature complete:

o DICE-FG: Integrated a novel estimation algorithm for hostDemand, called est-le, that outperforms
several state-of-the-art algorithms

e DICE-APR: Developed and improved two submodules, Tulsa and Anti-Pattern Detection and
Refactoring (APDR).

o Tulsa, a M2M transformation tool, transforms the design time model (i.e, UML model),
which is annotated with runtime performance quality characteristics by DICE FG tool, into
performance model, Layered Queueing Network (LQN) model. Tulsa has a standalone
version which executes a series of transformation tasks specified in an Ant build file. A
specific launch configuration can be invoked from the IDE run-configuration panel. The
run-configuration in question invokes model-to-model transformation that parses the UML
diagrams and returns a LQN model for performance anti-pattern detection.

o APDR also has a standalone version. It detects the pre-defined performance anti-patterns
(i.e., Infinite Wait and Excessive Calculation), formally defined by using Matlab scripts, of
DIAs and provides refactoring suggestions to the designer. It supports Big Data
technologies (e.g. Storm).
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e Enhancement Tool Plug-in: DICE Enhancement tool (i.e., DICE-FG and DICE-APR) has been
integrated in the DICE IDE as a plug-in by M30. It can be invoked through the Pop-up menu.

2.9.1 Lab validation

The Enhancement tools have been validated on the ATC and NETF studies and details can be found in the
corresponding use case sections later in this deliverable. Additionally, we here report additionaly lab
validation activities carried out in YR3.

We modified a Storm application, WikiStats, to test our approach. The application processes and analyses
web pages from the popular Wikimedia website in order to extract some statistics that are then stored into a
database. The test environment is based on DICE IDE 1.0.0 and MATLAB Compiler Runtime (MCR)
R2015a. The WikiStats application is composed of 8 components. We assume that the threshold on the
number of components, which can be deployed on a server, is 2. The upper bound of the CPU utilization is
0.4. The maximum number of calls is 1 and the upper bound of response time is 4.0 sec.

The problem faced by WikiStats is the following. The task of providing a refactoring of the design if the
performance anti-patterns (i.e, Infinite Wait and Excessive Calculation) are found in the WikiStats
application. It consists of modelling, analysis, extraction, detection and refactoring. 1) Modelling. Two
models (i.e., architecture model and performance model) need to be generated for the later processing. The
user of DICE IDE builds the design time model in the form of UML by using Papyrus editor in the DICE
IDE. The UML model of WikiStats is annotated with core tags (e.g., hostdemand) of stereotypes of
MARTE and DICE profiles. Enhancement tool plugin helps to generate performance model (i.e., LQN)
according to the corresponding UML model. 2) Analysis. Both the solved LQN model and the performance
analysis results can be obtained with the help of LINE solver. The analysis results of CPU utilization of the
cluster is 0.4989. 3) Extraction. Extracting the constraints (i.e., performance upper bound) to be used in the
deployment refactoring. 4) Detection and refactoring. As results of the Excessive Calculation detection and
refactoring, the threshold on the number of components is 2, the current deployment violates the bound.
Furthermore, the utilization 0.4989 is greater than the threshold on CPU utilization (0.4). Thus the
Excessive Calculation anti-pattern is found. As results of the Infinite Wait detection and refactoring, there
are 2 components that have more than one function call but only one of them has the response time that is
greater than the threshold (4.0 sec). Thus, the refactoring suggestions for those two anti-patterns are shown
in Figure 12 and Figure 13, validating the ability of the tool to identify anti-patterns and provide
suggestions.

& 1 Problems @ Javadoc [ Declaration & console
% | Anti-pattern Detection Start :

AP1: Infinite Wait.

AP1 (IW): Syncall Call Checking - file: C:\Users\lcroy\Downloads\dice-1.8.08-win32.win32.x86_64\workspace\Demo\LgnFile.xml

The following components have too many Syn-Calls.

WikiArticleSpout has 2 calls.

CategoriesExtractBolt has 2 calls.

AP1 (IW): Response Time Checking - file: C:\Users\lcroy\Downloads\dice-1.0.8-win32.win32.x86_64\workspace\Demo\LgnFile_line.xml

Response time of the following component is higher than thresholds.
Component: CategoriesExtractBolt, response time: 45.000000000000000

The following components might need to be redesigned or duplicated.
Component: CategoriesExtractBolt

Figure 12: Infinite Wait detection and refactoring suggestion
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= #l Problems @ Javadoc [ Declaration B Console

AP2: Excessive Calculation.

AP2 (EC): Entry Checking - file: C:\Users\lcroy\Downloads\dice-1.0.8-win32.win32.x86_64\workspace\Demo\LgnFile.xml

The following processor has too many components.

processors: Cluster; number of components: 8

AP2 (EC): Utilization Checking - file: C:\Users\lcroy\Downloads\dice-1.0.0-win32.win32.x86_64\workspace\Demo\LgnFile line.xml

uUtilization of the following processor is higher than thresholds.
processors: Cluster, utilization: @.498880621633184

The following 4 components from Cluster have high processing time.

You may try to migrate them to a new server to balance the utilization.
Component: CategoriesExtractBolt, mean processing time: 45.0

Component: LinksPerPageCassandraWriter, mean processing time: 38.9
Component: CategoriesPerPageCassandralriter, mean processing time: 20.0
Component: PagesPerCategoryCassandraWriter, mean processing time: 18.8

Figure 13: Excessive Calculation detection and refactoring suggestions
2.10 Quality testing Tool

The quality testing tool (QT) offers a Java library (QT-LIB) and a workload generation tool (QT-GEN) for
stress testing data-intensive applications. The tool supports Apache Storm and Apache Kafka, and through
the latter it can deliver data pipelines to several other platforms including Apache Spark. QT-GEN allows
to generate a workload to be injected in the application, either by random number generation or through the
fitting and sampling of a class of hidden Markov models on existing workload traces for the system. The
latter is particularly useful to create new tests in systems that process commercial data, which would be
expensive to buy, such as Twitter datasets. QT-LIB enacts the test by reading the workload produced by
QT-GEN and sending JSON tuples on output streams at the frequency requested by the end user.

QT has been presented in deliverables D5.4 (Storm) and D5.5 (Kafka and Spark). On top of the
experiments reported there, we have performed additional validations of the QT-LIB tool to establish its
ability to harness the physical resources of the load testing machines. It was decided to focus on further
validation of QT-LIB since QT-GEN has been the subject of a journal publication, see D5.4, therefore its
maturity was deemed largely sufficient for practical use by third parties.

Typically, in stress testing exercises the machine that hosts the workload generator soon becomes a
bottleneck, as the volume of data and outgoing requests grows. This is expected as the larger the host
utilization, the largest the parallelism of the testing tool. It is however a problem when the testing tool is
not able to saturate the host or the target, as this typically points to a software bottleneck due to incorrect
programming of the tool or misconfiguration of the underpinning platforms. To ensure that QT was not
affected by this issue, we carried out new experiments to verify the scalability of the library.

messages/min
1Rquny

1006.934 ~1008.14

times of experiment

Figure 14: Further validation of QT-LIB load injector: saturation of target

Figure 14 illustrates one of the experiments we have carried out to establish the ability of QT-LIB to scale.
We have run a basic Storm setup on a two-core machine, and injected load from QT-LIB. We increased the
volume of messages emitted by QT-LIB and we verified that this was able to correctly generate the load on
the target machine up to its saturation. In the figure, we see that the number of emitted messages per
worker on Storm remains constant around 24,000 as the number of workers exceeds 2 (note that the values
reported in the figure are per worker), suggesting that the Storm platform has indeed saturated.
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We have then carried out extra experiments to establish the scalability of the QT-LIB framework on the
host, which extend the ones presented in D5.4. Figure 15 reports the results of these experiments. As we
see, by increasing the parallelism of the QT-LIB injector in terms of number of spouts and emitted
messages during the observation period, the system continues to produce correct results even with a
parallelism of 512 spouts, which represents a rather large scenario for a small testbed like the one
considered in our lab tests. This further confirms the absence of software bottlenecks in the QT tool.

times of experiment

Figure 15: Further vaIidaﬁon of QT-LIB ioad injector: ééturétion of host
2.11 Configuration optimization Tool

CO focuses on optimizing data-intensive application configurations based on a technique known as
Bayesian Optimization, which is a machine learning methodology for black-box global optimization. In
this methodology, the unknown response of a system to a new configuration is modelled using a Gaussian
process (GP), an important class of machine learning models. GPs are used to predict the response of the
platform to changes in configuration. GPs can take into account mean and confidence intervals associated
with measurements, predict system behavior in unexplored configurations, and can be re-trained quickly to
accommodate for new data. Experimental results indicate that Bayesian optimization method can be much
faster on real systems than existing auto-tuning techniques. CO was first developed in deliverables D5.1
and later refined with transfer learning methods in deliverable D5.2, which bootstrap the method from an
existing set of GPs based on an earlier release of the application. Later, in D5.3 we have integrated CO in
the DICE IDE, allowing the user to specify configuration parameters within given ranges directly from the
GUL.

CO has been extensively validated on various types of Big Data workloads and platforms, in particular
Storm and Cassandra. In addition to the material included in D5.1 and D5.2, experiments have also been
carried out to validate the performance of the method in relation to other blackbox methods and across
multiple dimensions.

For example, Figure 16 shows a comparison of the CO algorithm based on transfer learning, named
TL4CO, with tree-based regression and polynomial fitting methods. Lower error values indicate solutions
closer to the global optimum. The figure, overall, indicates that the CO methods are able to optimally
configure a data-intensive application, in this case a Storm-based system, than existing methods in the state
of the art.
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Figure 16: Further validation of configuration optimization tool

2.12 Fault injection Tool

The FIT allows users to generate faults on their Virtual Machines, giving them a means to test the
resiliency of their installation. Using this approach the designers can use robust testing, highlighting
vulnerable areas to inspect before it reaches a commercial environment. Users or application owners can
test and understand their application design or deployment in the event of a cloud failure or outage, thus
allowing for the mitigation of risk in advance of a cloud based deployment.

To validate the impact of FIT usage the common task manager program ‘top’ found in many Unix-like
operating systems was used. Using the Linux ‘top’ command on the target VM the current state of its
resources can then be seen.

Regarding CPU saturation, before running the CPU overload fault, the %Cpu usage is measured. While
running the CPU overload the %Cpu quickly rises to near 100%. The stress command issued by the FIT
would typically account for around 99.2% of the available CPU capacity.

Regarding memory saturation, the FIT ‘stressmem’ feature is called with designated parameters. The tool
first connects via SSH to the VM and determined the OS version by checking the /etc/*-release for the
version of the OS (Ubuntu in our case). It then looks for the memory stress tool suitable for Ubuntu, for
example Memtester. If the tool is not found first the DICE FIT installs the tool along with dependencies.
Finally, the FIT calls Memtester to saturate memory in the target node. Again, a standard monitoring tool
such as ‘top’ (in the %MEM column) will show the 2GB (or whatever was specified in the memory size
parameter of stressmem) RAM available to the VM being saturated.

The use of standard measurement tools already bundled with the OS means it is then easy for use cases to
ensure the injected fault is having the desired effect.

2.13 DICE IDE

The pivotal tool of the project is the DICE IDE. It integrates the execution of the different DICE tools and
it gives support to a new MDE methodology. The IDE is an integrated development environment tool for
MDE where a designer can create models to describe data-intensive applications and their underpinning
technology stack.

The IDE offers the ability to specify DIAs through UML models. From these models, the toolchain guides
the developer through the different phases of quality analysis, formal verification being one of them.
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The IDE is based on Eclipse Neon 4.6, which is the de-facto standard for the creation of software
engineering models based on the MDE approach. The Eclipse IDE has been customized with suitable plug-
ins that integrate the execution of the different tools, in order to minimize learning curves and simplify
adoption. Not all tools are integrated in the same way. Several integration patterns, focusing on the Eclipse
plugin architecture, have been defined. They allow the implementation and incorporation of application
features very quickly. Moreover, creating custom versions of DIA applications are easier and without
source code modifications need. DICE Tools are accessible through the DICE Tools menu.

2.13.1 IDE Global Architecture

The overall goal of the IDE is to become the main access gateway for all designers and developers willing
to adopt and follow the proposed methodology for building DIA applications.

The IDE guides the developer through the methodology, based on tools’ Cheat Sheets. It initially offers the
ability to specify the data-intensive application through UML models stereotyped with performance
profiles. From these models, the tool-chain guides the developer through the different phases of quality
analysis (e.g., simulation and/or formal verification), deployment, testing, and acquisition of feedback data
through monitoring data collection and successive data warehousing. Based on runtime data, an iterative
guality enhancements tool-chain detects quality incidents and design anti-patterns. Feedbacks are then used
to guide the developer through cycles of iterative quality enhancements.

2.13.2 Conclusions

Improvements provided by the use of the IDE in order to develop data-intensive applications are: (1) User-
friendly IDE, (2) Support for most of the phases of software development cycle, (3) Plug-In Updates, (4)
Integration with other quality tools, (5) IDE customizations, (6) Access to remote repositories, and (7)
Advanced UML modelling.

The last version (v1.0.1) was published on January 11, 2018 and it is a minor revision of the first release
version (v1.0.0) of the DICE IDE and includes the last version of the DICE tools. DICE IDE allows to
update the different DICE tools through the option “check for updates” of the help menu.

The IDE has been used for the validation of all the DICE tools, since the access and interaction with the
other tools are done through the IDE, moreover the IDE has been used in the development of the three
industrial DIA use cases explained in this deliverable.

Internally, for each new version of the IDE a set of validations has been made to ensure that the integration
with the other tools works properly. These validations consist in review the cheat sheets, configuration
properties, menu entries and update site for each integrated tool.
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3 Deployment and Impact of Tools in Use Cases Environment

All three demonstrators have been using and validating DICE tools in their development and business
environment, throughout the whole project lifetime. All tools have been validated by at least one use case,
while a large number of tools have been validated in more than one use case. Part of the material presented
in this section is a summary of material already presented extensively in previous confidential deliverables
D6.1 to D6.3, and we find necessary to comment on them in order to provide a complete overview to the
reader.
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Figure 17: DICE tools deployment methodology
3.1 ATC Use Case

We are currently experiencing a social web explosion, which is giving the power of speech back to the
citizens who had been practically deprived of this since the gradual explosion of the population that made it
impossible for news to travel via the old channel of the ‘word-of-mouth’. We now live through the new
phenomenon of the ‘e-word-of-mouth’, which is travelling in rapid paces and huge volumes through
tweets, posts and blogs. This could be an opportunity for direct access to information coming from first
hand sources, as it was happening centuries ago in small societies. The problem is that the scales are now
very much different and all the sides have their say in this big bang of gossiping: truth and lies, positive and
negative, genuine and fake. Verifying content in an easy, transparent and fast way is becoming more and
more relevant, especially when taking into consideration (a) the sheer quantity of content found in Social
Networks, and (b) the fact that a lot of content consists of hoaxes, rumours or deliberately misleading
information (e.g. propaganda, fake news, spin). ATC has used DICE tools to develop the Trend Topic
Detector Module of TruthNest, a unique web platform which can be used for assisting the end user to
verify the validity of a post coming from the social media.

3.1.1 Use Case Scenarios

TruthNest is an online comprehensive tool that can promptly and accurately discover, analyse, and verify
the credibility and truthfulness of reported events, news and multimedia content that emerge in social
media in near real time (see Figure 18). The end user has the ability to verify the credibility of a single post
within seconds by activating, with a single click, a series of analysis events for achieving the desired result.
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More specific, TruthNest users will be able to bring in streams from social networks which will then be
able to analyse and gain insights as to several dimensions of the verification process. In addition, they will
also be able to create and monitor new “smart” streams from within TruthNest.

Figure 18: TruthNest Screenshot

An important module for TruthNest - which has been developed from scratch is the “Trend Topic
Detector”. The “Trend Topic Detector” provides to the end user a visualisation environment showing
prominent trends that derive from social media, and, more specifically, from Twitter. What is critical to
mention at this stage, is that only the “Trend Topic Detector” module has been developed by using DICE
tools while the rest of TruthNest’s components have been developed by using conventional tools and
methodologies as these have been used by ATC’s engineering and development team.

P g

Figure 19: Trend Topic detector
3.1.1.1 Trend Topic Detector
3.1.1.1.1 Description

The Trend Topic Detector is the heart of our News Orchestrator application and is centered around a
clustering module. This creates clusters of tweets that relate to the search criteria submitted. The clusters
are formulated by grouping the tweets found based on their common terms. The module tracks a percentage
of the tweets posted onwards on Twitter, as the Twitter streaming API limitations impose. While it is
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restricted currently on Twitter stream API, it can take input from multiple social media (YouTube, Flickr
and others) however it has not been implemented yet.

3.1.1.1.2 Architecture & Topology

The main pipeline of the clustering module is implemented as a Storm topology, where sequential bolts
perform specific operations on the crawling procedure. These bolts include entity extraction (by using
Stanford NER classifier) and minHash computation to estimate how similar the formulated sets are. The
tweets terms are extracted and indexed in a running Solr instance. The most frequent terms are computed in
a rolling window of 5 minutes and 20 clusters are formulated by default. A label (typically the text of a
tweet) is assigned to each cluster. The results are stored in a Mongo database. The module is highly
configurable and offers nearly real time computation of clusters.
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Figure 20: News Orchestrator Architecture

The main purpose of topic-detector part of focused crawler is the extraction of trending topics contained in
items shared through social networks. By trending topics, we refer to frequent features (n-grams, named
entities, hashtags) that exhibit an abnormal increase on the current timeslot compared to the previous ones.

The main pipeline of topic-detector is implemented as an Apache Storm topology, where the sequential
bolts perform a specific operation on the detection procedure. The overall topology is depicted in the
following figure.
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Figure 21: Trend Topic Detector Topology
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The input stream consists of items: these refer to tweets published in Twitter. There are two spouts that are
possible to inject items in the topology: a) one that listens to a Redis message broker following the
Publish/Subscribe pattern, and b) one waiting for incoming items from Twitter's Streaming API. The items
fed to the detector through Redis may be produced by any independent process. One possibility is to use
the Stream Manager project.

The first bolt in the topology extracts named entities from the text of the messages injected in the topology
by the spouts. For this procedure, Stanford NER 2extractor is used. The next bolt extracts a signature from
the text based on the MinHash algorithm. Intuitively, items with similar text will have identical signatures.
The next bolt extracts terms from the items i.e. n-grams and hashtags. These three bolts add the extracted
data in the corresponding fields of the Item class. Solr indexer bolt used to index the items in a running
instance of Solr. This index can be used afterwards to get the items relevant to an extracted topic.

At that point the topology is split into two parallel pipelines: the first one is used to extract trending topics
based on trending terms, while the second used to cluster items based on minhash signature. Both of these
pipelines use the same sequence of bolts, operate on a different field of the items (terms and minhash
signature respectively).

The first bolt in these pipelines is the TermsRollingCountBolt. This bolt performs rolling counts of
incoming objects (terms or minhash). Rolling means that by using a sliding window the bolt keeps track of
statistics of an object to the current time window compared to the previous ones. At the end of each time
window, the bolt emits a rolling count tuple per object, consisting of the object itself, its latest rolling
count, a metric that indicates how trending is the object and the actual duration of the sliding window (just
for testing as the length of the windows is constant).

As each object can emitted from multiple nodes in a distributed topology, the next two bolts used to
aggregate and rank the objects, in a map-reduce fashion. The final ranking bolt emits a ranking of top
objects (terms or minhash) for the current time window. Finally, each of the objects in the rank is stored in
a MongoDB instance. The time stamp of the current window is also stored in order to keep track of the
evolution of these objects over time. Finally, for each of the emitted top objects a label is extracted by
using the text of the indexed items. Then by using either the terms or the minhash value a Solr query is
performed. From this query, we get the most relevant and most popular item and we use its text as a label
of the object.

3.1.2 Validation & Impact analysis

In the architecture described it is worth mentioning that although the Trend Topic Detector application
deals with big streams of social networks data the use of Big Data technologies in the processing layer is
quite limited. The idea is to re-engineer the architecture and introduce Big Data technologies where this is
possible. By identifying and addressing quality-driven metrics we expect to isolate bottlenecks in the
architecture and revise/redesign those parts by introducing Big Data technologies. More specifically, the
revised architecture should satisfy the following requirements:

e High Availability

o The system should be stable on a 24/7 basis
e Fault tolerance

o The system should recover automatically in case of failure without losing significant data
e Performance

o The system should be able to scale up in terms of throughput
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The time behaviour of the Trend Topic Detector application is quite critical since the analysed information
regarding the trending topics extracted should be indexed and exposed by the User Interface in almost real
time, enhancing in this way the importance of the identified news topics. In order to achieve the above, we
have applied a number of DICE tools in our environment, in order to validate and assess their results in a
“real business” environment.

3.1.21 DICE IDE

DICE IDE has been used as the main access point of most DICE tools throughout the whole process of
testing and validating DICE Tools. Using the IDE allowed us to minimize the learning curve we needed to
cover for using the tools, as the IDE is based on Eclipse which was being already used by ATC engineers.
Minimising the learning curve, allowed us to shift resources from training to production activities, which
allowed us more time for application development, testing and productisation.

3.1.2.2 DICER and Deployment Service

The DICER tool allowed us to express the infrastructure needs and constraints for the Trend Topic Detector
application and also to automatically generate deployment blueprints to be used on a cloud environment.
We evaluated the usefulness of the DICER tool in terms of time saving, with regard to the time needed to
setup the infrastructure manually from scratch, and the degree of automation that DICER offers. Note that
in the total time that we computed for the DICER execution time we included the time needed by the DICE
Deployment service to deploy the generated blueprint.

Table 11: DICER and Deployment Service KPI for the ATC use case

Manual siatup time DICER time (mins) Time saving (%) DICER automation
[mins) (%)
230 40 82.6 72.5

The whole process was really fast and we achieved a time saving almost 80% compared to the time we
needed previously when we were installing manually the Storm cluster and all of its dependencies
(Zookeeper etc) as well as the Storm application and all the dependencies for the persistence layer. The fact
that the TOSCA blueprints allow the refinement of the Storm-specific configuration parameters in advance
is really convenient since we can experiment with different Storm cluster setups by applying another
reconfiguration, resulting in a new testbed, until we reach the most efficient in terms of performance and
throughput for our topologies. More detailed information can be found in D6.2-Initial implementation
and evaluation.

3.1.2.3 Monitoring Tool

The ability to monitor Trend Topic Detector’s deployed topologies is necessary in order to identify any
possible bottleneck or even to optimize the performance and throughput by adding more parallelization for
example. We have installed the Monitoring platform core modules, and we then used one of the features of
latest Deployment Service release to automatically register the Storm cluster nodes on the core services of
Monitoring platform during the infrastructure/application deployment phase. The monitoring was
performed not only on a per (Stormcluster) node but also on a per application level which allowed us to
distinguish between issues related to hardware specifications of the nodes and issues related to the
application’s internal mechanics like the size of internal message buffer of Storm. More detailed
information can be found in D6.2-Initial implementation and evaluation.

Table 12: Monitoring Platform KPI for the ATC use case

Manualstup tme x nodes

10 mins x 3 nodes = 30 mins 6 mins x 3 nodes = 18 mins
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3.1.2.4 Quality Testing Tool

The Trend Topic Detector uses the Twitter’s Streaming API which allows low latency real time access to
Twitter’s global stream of tweet data by making a long lived HTTP request and parsing the response
incrementally. In that way, it avoids using the Twitter REST APl where the API rate limit window duration
is 15 minutes and the maximum number of allowed requests/call is up to 180 per time window. But the
Streaming API also imposes some limitations regarding the size of the sampled tweets which is
approximately ~1% of the total number of tweets published. The goal is to request a paid APl from Twitter
which would allow the Trend Topic Detector to crawl and analyse a bigger quota of the stream of published
tweets. The logic was to run the Quality Testing tool for helping us in evaluating the maximum input rate
that the trending topic detector topology can handle without drastically affecting the performance, mostly
in terms of response time.

So, the goal of the experiment with quality testing was to stress test the capacity of the Trend Topic
Detector topology. More specifically, we wanted to check how the topology is behaving in case of burst
events (either political or social or economic) taking place in Twitter. Whenever such case happens, the
social media users generate a significant high volume of messages and the DICE Quality Testing tool can
help in simulating such heavy load conditions.

In order to validate the performance of the tool, a chrono assessment has been performed comparing the
manual time that ATC engineers would need to perform manually the stress testing of the topology to the
time that is required by the Quality Testing tool to perform a similar. As a result, we discovered that the
reduction in time per test cycle is proportional to the number of experiments/iterations. More specific for:

e Reduction of: 27.027% for 4 experiments/iterations

e Reduction of: 34.782% for 5 experiments/iterations
More detailed information can be found in D6.3-Consolidated Implementation and evaluation.
3.1.2.5 Configuration Optimisation Tool

In general, a typical Storm deployment comprises of a variety of configuration properties that affect the
behaviour of nimbus, supervisors as well as the topologies. It is a non-trivial task for a developer to select
optimal values for the configuration properties in order to fine tune the Storm topology execution. This is
usually a complicated task accomplished by experts in this area. We have applied the Configuration
Optimization tool on the Trend Topic Detector topology, starting by making the topology reliable, that is to
properly acknowledge the successfully processed tuples in order to have valid and consistent results
regarding the performance metrics (throughput and response time) on each iteration of the tool. Also, we
have created an offline feed Twitter replay script, to emit an already crawled corpus of Twitter items with a
fixed rate for having a better control over the experiments. This has been done to avoid the sudden peaks in
the input rate coming from the Twitter Streaming API (a common case when for example a burst event,
political economical or other, happens), that could otherwise affect randomly the consistency of the
measurements results on each iteration.
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Figure 22: Configuration Optimisation Tool results

In order to evaluate the improvement by applying the Configuration Optimization tool on the Storm
configuration that the Trend Topic Detector relies on, the ATC engineers have monitored the topology
throughput as well as the latency. As it is shown in Figure 22, the impact on performance is more than
twice compared to the default configuration which is a significant improvement. This achievement has
been achieved after only 100 iterations which resulted in a total of 16 hours (100 * 10 minutes) of
execution. The corresponding validation KPI has been fully addressed, resulting in a more than 30%
improvement in both the throughput and the latency metrics. Adding to the above, by using this tool we
have managed to do this without the need of a senior expert, but only with the support of a junior engineer,
which allowed us to reduce resources thus shift them to other activities. More detailed information can be

found in D6.3-Consolidated Implementation and evaluation.
Table 13: Configuration Optimsation Results in ATC Use Case

Throughput (m/s) Latency (ms)

Default config 1.4 30
TLACO 3.2 4
~128% incr ~86.6% decr

3.1.2.6 Fault Injection Tool

Since the Trend Topic Detector topologies deal with a cloud deployment it is quite critical to be able to test
the consequences of faults early in the development phase in a controlled environment rather than once the
application is in production. It is important for the Trend Topic Detector DIA to be comprised of reliable
topologies due to the nature of the processing it performs: if for example there is a burst event at some time
then losing some of the social networks messages due to network failures/repartitions could affect the
guality of the trending topics identified at that period.

For the reasons above, we deployed the Fault Injection tool in order to test how the application behaves in
terms of reliability and fault-tolerance and eliminate any single point of failure as possible. To this end, we
used the Fault Injection tool to randomly stop/kill not only the various types of Storm processes (himbus,
supervisor and worker processes) but also a whole node of the Storm cluster, and we checked how those
actions affect the proper execution of the topologies

Copyright © 2018, DICE consortium — All rights reserved 40



Deliverable 6.4 - Final assessment report and impact analysis

Mimbus node Supervisor node
| i Vs |
Supervisor node Supervisor node

Figure 23: Fault injection tool indicative scenario

Finally, we used the Fault Injection tool to generate high memory and CPU usage for the Storm cluster
VMs to simulate high memory/CPU load. The various processing bolts of the topology were not affected
too much since none of them is high CPU-bound or memory greedy. Using the Fault Injection Tool
allowed us to deploy a larger number of “faults” when compared to the manual procedure (20%), therefore
be able to collect a larger number of results. However, we didn’t manage to reach the desired KPI, set by
the tool owner. Additional validation activities are currently on going and will continue after M36.

Table 14:Fault Injection Results

Average manual Total manual setup  Fl setup time (mins) Time saving (%)

setup time per time (mins) * L
tool/fault{mins)
‘ 15 | 3*3%15=135 3*3*12=108 20

More detailed information can be found in D6.2-Initial implementation and evaluation.

3.1.2.7 Verification Tool

Sormboots l The DICE Verification Tool (D-VerT) has been used in the Trend
J'paroul{s:n:s_soj Topic Detector case study to perform formal analysis on the

Crawler topology, and check for the presence of timing violations
possibly leading to the saturation of the input buffer in some bolts.
The topology has been designed at the DTSM level as a DICE —
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Figure 24: Class Diagram of the Crawler
topology
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was not enough, as resulted in another violation, while, with a parallelism level of 6, no violation was
found by the tool.

Table 15 shows the D-VerT dashboard for some of the configuration that underwent verification.

Table 15: D-VerT Tasks Dashboard
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Adding to the above, in the following table we report the details of the most relevant verification tasks
performed and described above. The highlighted alpha and parallelism refer to the current bolt under
verification, and have to be considered as the only variations with respect to the initial configuration of the
topology.

Table 16: Verification Tasks

Bolt under verification  alpha parallelism Outcome Verification Time

UrlExpansionBolt 2.0 4 SAT (violation found) 118s

UrlExpansionBolt 1.0 4 SAT (violation found) 1435

UrlExpansionBolt 0.5 4 UNSAT (NO violation 72755
found)

UrlCrawlDeciderBolt 1.0 1 SAT (violation found) 770s

UrlCrawlDeciderBolt 1.0 4 SAT (violation found) 1483s

UrlCrawlDeciderBolt 1.0 6 UNSATf(()'l\Jr%;”OIanon 1461s

As a conclusion, we can report that by deploying the verification tool, we managed to easily spot four (4)
violations of properties on timing constraints, which allowed us to apply all possible configurations,
without the need of spending countless resources for spotting these violations.

3.1.2.8 Trace Checking Tool

The Trace Checking Tool has been employed for the
validation and the refinement of the DICE-TraCT. By
deploying the DICE-TraCT allowed us to implement
specific monitoring solutions for the collection of
information through the analysis of the application logs.
More specific, the tool enabled us to analyse the logs to
elicit the parameter values, related to certain specific
features of the running application, that are necessary for
the verification carried out by the Verification tool. In
particular, the value of two parameters sigma for the Storm
bolts and emit rate for the Storm spouts have been evaluated
Figure 25: Trace Checking Tool through the trace-checking analysis. The obtained values
have been used in the Verification tool to refine the DTSM
model of the application. The application logs have been analyzed in order to calculate the value of sigma
for two bolts EntityExtraction and ClusterLabeler.

3.1.2.9 Simulation Tool

Scalability, bottleneck detection and simulation/predictive analysis are some of the core requirements for
the News Orchestrator DIA. We have deployed the DICE Simulation tool in order to perform a
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performance assessment of our Storm based DIA that would allow us to predict the behavior of the system
prior to the deployment of it on a production cloud environment. The results from deploying the tool,
showed that for some of the bolts (approximately more than half) the prediction error is indeed very small,
less than 10%, predicting quite accurately the capacity of the bolts. For ATC engineers, having a tool like
the DICE Simulation tool in the stack of the tools is a significant advantage. Every new feature that is
added in the News Orchestrator DIA may result in an undesired imbalance with regards to the performance
of the system. Being able to validate the performance impact on the DIA prior to the actual deployment on
a cloud infrastructure gives the flexibility to fine tune the topology configuration in advance and take
corrective actions (i.e. scaling by increasing bolts parallelism) without wasting resources (costs and efforts)
that would be otherwise required by an actual deployment on the cloud. More detailed information can be
found in D6.3-Consolidated Implementation and evaluation.

3.1.2.10 Enhancement Tool

The main pipeline of topic-detector of ATC case is also tested on APR. The detector is implemented as a
storm topology, where the sequential bolts perform a specific operation on the detection procedure. The test
environment is based on DICE IDE 1.0.0 and MATLAB Compiler Runtime (MCR) R2015a. The ATC
application is composed of 18 components. We assume that the threshold on the number of components,
which can be deployed on a server, is 8. The upper bound of the CPU utilization is 0.8. The maximum
number of call is 1 and the upper bound of response time is 7.0 sec.

The problem faced by ATC is the following. The task of providing a refactoring of the design if the
performance anti-patterns (i.e, Infinite Wait and Excessive Calculation) are found in the ATC application.
It consists of modelling, analysis, extraction, detection and refactoring. 1) Modelling. Two models (i.e.,
architecture model and performance model) need to be generated for the later processing. DICE IDE builds
the design time model in the form of UML by using Papyrus editor. The UML model of ATC is annotated
with core tags (e.g., hostdemand) of stereotypes of MARTE and DICE profiles. APR helps to generate
performance model (i.e., LQN) according to the corresponding UML model. 2) Analysis. Both the solved
LQN model and the performance analysis results can be obtained with the help of the LINE solver. The
analysis results of CPU utilization of the cluster is 0.9968. 3) Extraction. Extracting the constraints (i.e.,
performance upper bound) to be used in the deployment refactoring. 4) Detection and refactoring. As
results of the Excessive Calculation detection and refactoring, the threshold on the number of component is
8, the current deployment violates the bound. Furthermore, the utilization 0.9968 is greater than the
threshold on CPU utilization (0.8). Thus the Excessive Calculation anti-pattern is found. As results of the
Infinite Wait detection and refactoring, there are two component that have more than one function call but
only one of them response time is great than the threshold (7.0 sec). Thus, the refactoring suggestions for
those two anti-patterns are shown in Figure 26 and Figure 27.

Cecaaton O

Figure 26: Infinite Wait detection and refactoring suggestion
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Figure 27: Excessive Calculation detection and refactoring suggestions

DICE APR can detect 2 performance anti-patterns in the Storm topology. DICE APR takes some
performance indexes, e.g., response time and CPU utilization, as input parameters, and detects the
application performance anti-patterns by mean of analyzing the solved performance model with
performance bounds, and provides architecture refactoring suggestions. Tests executed on the Storm-based
applications (e.g., Wikistats and ATC case) have shown that DICE APR tool is able to effectively detect
performance anti-patterns. The tool enables the end user to quickly identify the performance issues of
running Storm applications and apply the corresponding refactoring action (e.g., component redesign).

3.1.3 Discussion

Throughout the deployment of DICE tools during the last 36 months, we have managed to validate most of
the tools in our development environment. Moreover, a number of DICE tools have provided a significant
advantage by reducing our development time thus reducing our operational and development costs by a
significant percentage or even allowing us to assign less experienced developers to complicated projects
instead of wasting “expensive” senior developers time. DICE tools have also enabled us to develop and
fine tune a critical module for us (Trend Topic Detector) which has evolved into a powerful tool, sitting in
the heart of one of our newest and most innovative products ready to be deployed into the market.

3.2 PRO Use Case

Posidonia Operations is an Integrated Port Operation Management System highly customizable that allows
a port to optimize its maritime operational activities related to the flow of vessels in the port service area,
integrating all the relevant stakeholders and computer systems.

In technical terms, Posidonia Operations is a real-time and data intensive platform able to connect to AIS
(Automatic Identification System), VTS (Vessel Traffic System) or radar, and automatically detect vessel
operational events like port arrival, berthing, unberthing, bunkering operations, tugging, etc.

Posidonia Operations is a commercial software solution that is currently tracking maritime traffic in Spain,
Italy, Portugal, Morocco and Tunisia, thus providing service to different port authorities and terminals.

The goals of creating this case study are adopting a more structured development policy (DevOps),
reducing development/deployment costs and improve the quality of our software development process.

In the use case, the following scenarios are considered: deployment of Posidonia Operations on the cloud
considering different parameters, support of different vessel traffic intensities, add new business rules (high
CPU demand), run simulation scenario to evaluate performance and quality metrics.

3.2.1  Business goals
Three main business goals have been identified for the Posidonia Operations use case.

e Lower deployment and operational costs.
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Posidonia Operations is offered in two deployment and operational modes: on-premises and on a virtual
private cloud. When on-premises, having a methodology and tools to ease the deployment process will
result in a shortened time to production, thus saving costs and resources. In the case of a virtual private
cloud deployment, it is expected that the monitoring, analysis and iterative enhancement of our current
solution will result in better hardware requirements specifications, which in the end are translated into
lower operational costs.

o Lower development costs.

Posidonia Operations is defined as a “glocal” solution for maritime operations. By “glocal” we mean that it
offers a global solution for maritime traffic processing and analysis that can be configured, customized and
integrated according to local requirements. In addition, the solution operates in real-time making tasks like
testing, integration, releasing, etc. more critical. By the application of the methodology explained in the
book, these tasks are expected to be improved in the development process, thus resulting in shortened
development lifecycles and lower development costs.

e Improve the quality of service.

Several quality and performance metrics have been considered of interest for the Posidonia Operations use
case. Monitoring, predictive analysis or ensure reliability between successive versions will end in an
iterative enhancement of the quality of service to our current customers.

3.2.2  System Architecture

Posidonia Operations is an integrated port operations management system. Its mission consists on
“glocally” monitor vessels’ positions in real time to improve and automatize port authorities operations.
The below image shows the general architecture of Posidonia Operations. The architecture is based on
independent Java processes that communicate with each other by means of a middleware layer that gives
support to a Message Queue, a Publication and Subscription API and a set of Topics to exchange data
among components.

Base Station ((:l:))
(( ) ) S ‘\’\essa%e — =— =
I N .
AlS Vessels Tracking PARSER CEP
l Complex Event processor
l:lj:l:]j Message Broker - Bus I

WEB

Operations

Figure 28: Posidonia Operations general architecture

An overview of the main components for Posidonia Operations would be:

e Vessels in the service area of a port send AIS messages that include their location and other
metadata to a central station. (This is out of the scope of the architecture diagram)

e An AIS Receiver (a spout) receives those messages and emits them through a streaming channel
(usually a TCP connection)
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e The AIS Parser (a bolt) is connected to the streaming channel, parses the AIS messages into a
middleware topic and publishes it to a Message Queue.

e Other components (bolts) subscribe to the Message Queue to receive messages for further
processing. As an example, the Complex Event Processing engine receives AlS messages in order
to detect patterns and emit events to a different Message Queue.

e The Posidonia Operations client "Web" allows to the employees of the port to have a visual tool
that allows them to control the location of the vessels in real time. This website shows on a map the
different vessels that are within the area of influence of a port, with a list of operations that are

i Algirds:

happening.
< C | ® 109.231.122.180 7o
I POS'don'a % TEST A ADMINTRADOR = m
berthings administration  simulation
subzone e
e poéhbas & T
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Figure 29: Posidonia Operations Client
3.2.3  Use Case Scenarios

There exists different usual scenarios where Posidonia Operations development lifecycle can benefit from
the DICE Framework and DICE Methodology. These scenarios are a small subset of the possible ones but
are representative of interesting situations and are based on our current experience delivering a data
intensive application to port authorities and terminals.

3.2.3.1 Deployment Scenario

Currently Posidonia Operations can be deployed in two fashions:

e On-premises: The port authority provides its own infrastructure and the platform is deployed on
Linux virtual machines

e In the cloud: Posidonia Operations is also offered as a SaaS for port terminals. In this case, we use
the Amazon Virtual Private Cloud (VPC) to deploy an instance of Posidonia Operations that gives
support to different port terminals.

Apart from this, Posidonia Operations configuration varies depending on the deployment environment:

e Hardware requirements (number of nodes, CPU, RAM, DISK) to deploy of Posidonia Operations
on each port is based on the team experience. For each deployment, the hardware requirements are
calculated manually by engineers, considering the estimation of the number of vessels and the
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complexity of the rules applies for each message to be analysed. DICE tools can help to tune
automatically the appropriate hardware requirements for each deployment.

e Posidonia Operations deployment and configuration is done by a system administrator and a
developer and it varies depending on the port authority. Although deployment and configuration is
documented, the DICE tools can help to adopt a DevOps approach, where deployment and
configuration can be modelled in order not only to better understand the system by different
stakeholders, but also to automate some tasks.

e A DevOps approach can help to provide also test and simulation environments that will improve
our development lifecycle.

3.2.3.2 Support vessels traffic increase for a given port

Posidonia Operations core functionality is based on analysing a real-time stream of messages that represent
vessels positions to detect and emit events that occur on the real world (a berth, an anchorage, a bunkering,
etc.).

Different factors can make the marine traffic of a port increase (or decrease), namely:
e Weather conditions
e Time of the day
e Season of the year
e Current port occupancy
e etc.

This means that the number of messages per second to be analysed is variable and can affect performance
and reliability of the events detected if the system is not able to process the streaming data as it arrives.
When this is not possible, messages are queued and this situation has to be avoided.

We currently have tools to increase the speed of the streaming data to validate the behaviour of the system
in a test environment. However, the process of validating and tuning the system for a traffic increase is a
tedious and time consuming process where DICE tools can help to improve our current solution.

3.2.3.3 Add new business rules (CEP rules) for different ports

Analysis of the streaming data is done by a Complex Event Processing engine. This engine can be
considered as a “pattern matcher”. For each vessel position that arrives, it computes different conditions,
that when satisfied produce an event.

The number of rules (computation) to be applied to each message can affect the overall performance of the
system. Actually, the number and implementation of rules vary from one deployment to other.

DICE tools can help on different quality and performance metrics, simulation and predictive analysis,
optimization, etc. in order to tune our current solution.

3.2.3.4 Give support to another port in the cloud instance of Posidonia Operations

Give support to another port (or terminal) in the cloud instance of Posidonia Operations usually means:
e Increase the streaming speed (more messages per second)
e Increase on computation needs (more CEP rules executed per second)

e Deployment and configuration of new artefacts and/or nodes
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In this case, DICE tools can help improve Posidonia Operations also on estimating the monetary cost of
introducing a new port on the cloud instance.

3.2.3.5 Run asimulation to validate performance and quality metrics among versions

CEP rules (business rules) evolve from one version of Posidonia Operations to another. That means that
performance and quality of the overall solution could be affected by this situation among different versions.
Some examples of validations we currently do (manually):

e Performance: New version of CEP rules don’t introduce a performance penalty on the system
e Performance: New version of CEP rules don’t produce queues

o Reliability: New version of CEP rules provide the same output as prior version (they both detect
the same events)

One of the main issues of the current situation is that measuring the performance (system performance and
quality of the data provided by the application) is done manually and it’s very costly to obtain an objective
quantification. By using DICE simulation tools, performance and reliability metrics can be predicted for
different environment configurations, thus ensuring high quality versions and non-regression.

3.24 Validation & Impact analysis

The requirements of the Posidonia Operations use case can be classified in three types:
1. Assessment of the impact in performance after changes in software or conditions.
2. Automatic extraction of relevant performance metrics and KPIs
3. Automation of deployment

After analysing the DICE Tools, we have detected which tools would be interesting to use to achieve the
requirements. This section explains how we used the tools for the use case.

3.24.1 DICE IDE

The DICE IDE integrates all the tools of the proposed platform and gives support to the DICE
methodology. The IDE is an integrated development environment tool, based on Eclipse, for MDE where a
designer can create models to describe data-intensive applications and their underpinning technology stack.
The DICE IDE integrates the execution of the different tools, in order to minimize learning curves and
simplify adoption. More detailed information can be found in D6.2-Initial implementation and
evaluation.

3.24.2 DICER

The DICER tool allows us to generate the equivalent TOSCA Blueprint (deployment recipe) from the
Posidonia use case DDSM created using the DICE IDE. This Blueprint is used by the deployment service
to automatically deploy the Posidonia use case. With this tool you can obtain different blueprints for
different configurations of the use case. The generated TOSCA blueprint file contains all the information
specified in the DDSM Model and can be used to deploy the full use case. No manual changes were made
to the generated TOSCA Blueprint for the deployment. More detailed information can be found in D6.2-
Initial implementation and evaluation.
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Figure 30: Posidonia use case DDSM

To deploy the solution on flexiOPS FCO, we used the new Delivery Tool plugin available

IDE “0.1.14” (see Figure 31).
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Figure 31: Delivery Tool plugin - Run Configuration Dialog

3.2.4.3 Deployment Service

Apply

Clese

Deploy the Posidonia Operations manually is quite time and cost consuming. Deployment Service is able to
deploy on the cloud a configuration of the Posidonia Operations use case in few minutes. The last version
of the deployment service works over FCO and Amazon AWS. To deploy a solution using the deployment
service it is needed to provide as an input the TOSCA Blueprint of it. This blueprint is obtained using the

DICER tool.

Using Deployment service, the deployment is faster (only few minutes), you can deploy different
configurations of your solution, and it does not require system administrator experts because the

deployment is automatized.
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Figure 32 shows the four machines created by the Delivery Tool as it was specified in the DDSM model
and the corresponding TOSCA blueprint. If we access to the Posidonia web client (id: 109.231.122.180),
we can see a map of the Valencia’s Port with the current vessels in its area of action (see Figure xx). The
vessels are shown because all other Components are running properly and are providing the information
that is shown into the web client.

posidonia 30/03/2017 4m with monitoring

¢ Blueprint successfully deployed
Since Friday, March 31, 2017 10:54 AM

o

WEB_ip 109.231.122.180 IP of the WEB's host
rabbitmg_ip 109.231.122.129 IP of the RabbitMQ’s host
data_parser_ip 109.231.122.126 IP of the data parser's host

cep_ip 109.231.122.157 IP of the CEP's host

Figure 32: Posidonia use case - Deployed machines

In the last year of the DICE project, the DICER and deployment tool included support for deployments on
the Amazon Web Services (AWS). We have used the last versions of these tools to deploy Posidonia
Operations on AWS with the support of the XLAB.

To be able to carry out automatic deployments on amazon, it is necessary to install a set of software tools.
Specifically, you should install Cloudify Manager and Deployment service in your instance of AWS EC2.

The same DDSM used to deploy the use case on FCO was used to deploy the uses case on Amazon. The
only change made was to modify the name of the “Image” used to display "posidonia web client", which
due to its complexity, we opted to use an image of the machine instead of installing it from scratch using
the deployment service. In the Amazon deployment, we used exactly the same strategy and configuration
that we had used for the FCO deployment.

The image of the “Operation web client” was created manually in a local environment using virtual box
software, after that we used an import facility provided by AWS to import the ISO image.

Some problems arose when trying to use the new image during the deployment due to permission issues,
because the deployment service was not able to access to the machine created from the image. Moreover,
we had to modify the scripts used to configure the machine to correct issues related with the remote
configuration of the “Posidonia web Client”

Once the AWS is configured and tested, the time required to deploy the full use case on AWS is between
12-15 minutes.

Table 17: DICER and Deployment Service KPI for the Prodevelop use case

without DICE : . . .0 Automation with
(min) With DICE (min) Time saving(%b) DICE (%)

ST A0 600-1200 300 50%-75% 100%

Next deployments VU] 20 97,3%- 98,6% 100%
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3.2.4.4 Monitoring Tool

This tool allows us to obtain metrics in real time for a running instance of the Posidonia Operations:
Generic hardware performance metrics (CPU and memory consumption, disk usage, etc.) and Specific use
case metrics, such as, number of events detected, location of the events, execution time per rule, messages
per second, etc.

The reported results, provided by the monitoring platform, allow the architect and developers to eventually
update the DDSM and/or DPIM models to achieve a better performance. Another interesting point is that
the Monitoring Tools facilitates the integration with the Anomaly Detection Tool and the Trace Checking
Tool, because both tools use the information stored in the monitoring as a data input.

Figure 33 shows one of the dashboards created for the Posidonia use case. This dashboard contains 3
visualizations related with the “rules/events” detected by the CEP component:

e “avg micros of rules” shows a linear graph with the average execution cost of the different rules in
the last minutes group by minutes.

e “Pie Chart Rules (occurrences)” shows a chart distribution with the number of rules executed in a
period group by type of rule.

e “Pie Chart Rules (sum of microseconds)” shows a chart distribution with the cost of the rules
executed in a period group by type of rule.

@SIMPLE_ANCHOR_IN

Figure 33: Posidonia use case - Dashboard 2

Figure 34 shows the “dashboard 3 created for the Posidonia use case. This dashboard contains 3
visualizations related with the location of “rules/events” detected by the CEP component:

e “map” shows a map with the exact location of the rules detected in a period of time. Each point of
the map represents the exact location where they occurred. The bigger the point is, more events
occurred in that location.

e “amount of events in time” shows the number of event that occurs each minute group by type of
event.

e “total events” counts the number of events analysed by the Posidonia use case system.
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Figure 34: Posidonia use case - D-MON Dashboard 3
This tool allows us to obtain metrics for a running instance of Posidonia Operations:

e Generic hardware performance metrics (CPU and memory consumption, disk usage, etc.)

e Specific use case metrics, such as, number of events detected, location of the events, execution
time per rule, messages per second, etc.

The reported results allow the architect and developers to eventually update the DDSM and/or DPIM
models to achieve a better performance.

Another interesting point is that the Monitoring Tools facilitates the integration with the Anomaly
Detection Tool and the Trace Checking Tool, because both tools use the information stored in the
monitoring as a data input. More detailed information can be found in D6.2-Initial implementation and
evaluation.

3.2.4.5 Fault Injection Tool

DICE Fault Injection Tool (FIT) is used to generate faults within virtual machines. In Posidonia use case,
this tool is useful to check how the CEP component behaves against a high CPU load. To observe the
behaviour of the system, we use the Monitoring Tool that contains a specific visualization for the system
load.

Although the Fault Injection Tools can launch other types of faults, for Posidonia use case, only the High
CPU fault is relevant to evaluate the response of the system to this situation. It’s important validate that the
System continues working and no event is lost when a high load happens.

Posidonia use case behaves well against high CPU demands, and only a little increment in the required time
to process events is observed. Moreover, no event is lost due to the high CPU demand and we can affirm
that Posidonia use case is reliable against high CPU loads. More detailed information can be found in D6.3-
Consolidated Implementation and evaluation.

3.2.4.6  Anomaly Detection Tool

Anomaly Detection Tool allows us to validate that the system works as is expected with the current rules
and with the addition of new ones. That is, no events are lost, no false positives are given, the execution
time is kept within a reasonable range or the order of events detected is adequate.
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Anomaly Detection Tool is mostly used in the use case to detect anomalies related with the processing time
required of the different events that the system analyses.

First of all, we studied the log file generated by the CEP component (see Table 18Table 1). The
“component” column represents the type of rule, the “key” column represents the timestamp, the “method”
column represents the function called, the “ms” represents the time need to evaluate the rule and the “Ship”
column represent the identification of the vessels. We observed that each type or rule analysed has a
similar execution cost (column “ms”).

Table 18: Example of the Rules execution cost

Component

AIS_SENTENCE_LISTENER | 201706 HANDLE_MESSAGE | 209 211636100

~ - 22T11:53:04.278Z -
SIMPLE_ANCHOR ouT | 201706 UPDATE_ACTIVE 710 305965000

— - 22T11:53:04.272Z =
STOP_OVER ouT | 203706 UPDATE_ACTIVE 652 305965000

- - 22T11:53:04.271Z —~
SIMPLE_DOCK_sTop | 291706 UPDATE_ACTIVE 293 305965000

- - 22T11:53:04.270Z —
STOP OVER_IN | 2047706~ UPDATE_ACTIVE 680 305965000

- - 22T11:53:04.270Z ~
SIMPLE_DOCK_sTop | 291706 UPDATE_ACTIVE 295 305965000

- = 22T11:53:04.269Z —
AIS_SENTENCE LISTENER | 201706 HANDLE_MESSAGE | 9483 305965000

= - 22T11:53:04.263Z -
SIMPLE_ANCHOR ouT | 201706 UPDATE_ACTIVE 755 305965000

- - 22T11:53:04.262Z —
STOP_OVER ouT | 29L7-06- UPDATE_ACTIVE 618 305965000

- - 22T11:53:04.261Z —
STOP_OVER IN | 203706 UPDATE_ACTIVE 686 305965000

- - 22T11:53:04.260Z —~
SIMPLE_DOCK_sTop | 201706 UPDATE_ACTIVE 303 305965000

- = 22T11:53:04.259Z =
AIS_SENTENCE_LISTENER | 201706 HANDLE_MESSAGE | 199 225366000

- - 22T11:53:04.246Z -
AIS_SENTENCE_LISTENER | 201706 HANDLE_MESSAGE | 766 224161160

- - 22T11:53:04.245Z -

To validate the use case, some anomaly detection methods have been used: AdaBoost, Decision Tree and
Random Forest. For supervised learning methods labelled anomalies from application data instances are a
prerequisite. The data sets must be labelled to create a viable training and validating data set. Once this is
done the resulting predictive models can be easily applied at runtime. We manually label a dataset
comprising over 4800 data points taking into account the considerations of the Table 19.

For validation purposes, we ran all supervised and unsupervised methods on this data set. We can see in the
following table the results of the first validations. First, we ran a baseline where all methods had their
parameters set to default values and saved both the score and the time it took to train a model (BScore,
BTime). After that, we ran parameter optimization on all methods and executed a 10-fold cross validation
with 30% of the dataset used for validation. We can see that the parameter optimization not only allow us
to optimize the predictive performance but also the required training time (BScore and BTime for the
baseline and FScore and FTime for the best performing).
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Table 19: Anomaly Detection Experiments

. Param CcVv CcVv . .
Method @ BScore BTime CV Time Fscore FTime
Search Mean | STD
RF 0,68 0,06114888 | 185,445639 99,08% 0,05 27,5004401 1 457320094
2 8 % 2 1
DT 0,53 0,00485110 | 5,03477907 99.97% 0,09 0,04783701 | 0,99891371 | 0,00360298
3 2 % 9 8 2
AD 0,51 0,23577499 | 62,6346280 | 100,00 0,00 0,41509294 1 0,05479002
4 6 % % 5
NN 0,34 0,56407304 1771.0435 100.00 0.00 0.2695 1.0 0.03283
6 % %

An interesting observation which can be made using ADT is the so called feature importance. It is in fact
showing what the impact of each feature from the data set has on the classification model. Table XX shows
the feature importance for the tree based classification methods. The Features column represent the name of
the feature analysed and the columns AdaBoot, Decision Tree and Random Forest contain the impact of
each feature in each method. The higher the number, the more important the feature.

One surprising fact evident in the Table 20 is that although “ms” feature has quite an impact on the
predictive model it is not the most representative.

Table 20: Feature Importance

Features AdaBoost Decision Tree Random Forest
AIS_SENTENCE_LISTENER 0,1 0,193142068 0,153848567
RETRACT_OLD_AISGEOMDATA 0,1 0,000700426 0,005668693
SESSION 0,1 0,00990615 0,032303538
SIMPLE_ANCHOR_IN 0,1 0,052707564 0,196569172
SIMPLE_DOCK_START_OUT 0,1 0,003373742 0,035556067
SIMPLE_DOCK_STOP 0,1 0,091526082 0,208327863
STOP_OVER_IN 0,1 0,526665234 0,194793414
ms 0,3 0,121978734 0,172932687

The last validation experiment was done for Isolation Forest (ISF) unsupervised method. Because we have
already labelled data we can run the unsupervised method and see if it identifies the correct anomalies. Of
course, Isolation Forest is not able to distinguish between distinct types of anomalies. It can mark events as
normal or anomalous however, this is enough to test the ratio of false positives to true positives.

Table 21 shows the performance of Isolation Forest. It shows the total manually labelled anomaly and
detected anomalies count, the number of false positives and good anomalies detected. Percentage labelled
denotes the percentage of anomalies from the original data set, percentage detected denotes the percentage
of ISF detected anomalies. This shows that although ISF didn’t detect all the anomalies (15.5 % from the
original 22.4 %) it had a relatively small false positive count (58 anomalies yielding an accuracy of 93.4%).
During the testing phase, it was evident that the more data you feed to ISF the more accurate it becomes.
We tested the method with only 6500 events. It is possible to reduce the error significantly by adding more
events.
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Table 21: Feature Performance

Metric CEP

Labelled anomalies 1447

Detected anomalies 999

False positives 58

Good Anomalies 941

Percentage labelled 22,4

Percentage detected 15,5

Accuracy 93,4

During this period, the Anomaly Detection Tool has been validated to detect anomalies related with the
cost execution time of the different events that the CEP component analyses, this cost impact directly in the
performance of the system

The ISF method did not detect all the anomalies (15.5 % from the original 22.4 %) but it had a relatively
small false positive count (accuracy of 93.4%). It is possible in increase the accuracy of the method by
considering a bigger set of data.

We achieved quality KPI “False positives”, by having a 6,6% of false positives using the Anomaly
Detection Tool. More detailed information can be found in D6.3-Consolidated Implementation and
evaluation.

3.2.4.7 Simulation Tool

The vessels traffic increase for a given port directly affects the Posidonia Operations performance if the
system is not properly sized. We have worked with the Simulation Tool and the Monitoring tool to define
the dimension of the system and to monitor it in real time.

Analysis of the streaming data is done by a Complex Event Processing engine. This engine can be
considered as a “pattern matcher”, for each vessel position that arrives it computes different conditions, that
when satisfied produce an event. The number of rules (computation) to be applied to each message can
affect the overall performance of the system. Actually, the number and implementation of rules vary from
one deployment to other. In recent months, a significant effort has been made to improve the quality and
the validation of the use case

The input to the Simulation Tool is a DPIM model, which provides the relevant magnitudes of the
application. In our use case, the relevant magnitudes are the number of CEPs, the number of rules used by
each CEP and the computational cost associated to each rule, and the expected input message rate
(messages per second).

The Simulation Tool will compute the estimated maximum throughput which can be handled by the
application with the parameters specified. If the expected input message rate is higher than the maximum
throughput, then the prediction is that the application will not be able to run properly in the expected
circumstances.

This tools therefore provides:
e Prediction of the consequences of scaling the application at design time
e lterative enhancement

e Comparison among multiple configurations
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After executing the simulation tool, we get the maximum throughput of the system. In this case the
maximum throughputs obtained are equal to the message rate specified as input parameter, so we can
conclude that the AIS parser can support the configurations of 5, 6 and 7 messages per second provided:

VL5 Simulation Result aOdb4b1b-4c9c-4b0d-a391-fd65e9dcaeed

4" Domain Measure: throughput = 4.96035013211 (unit: Hz) [Domain Element: Activity ParserScenario(AD)]
¥ & throughput: (expr=$throughput, source=calc, statQ=mean)

¢,»expr -> $throughput

£.»source -> calc

¢,»statQ -> mean

Figure 35: Simulation system running

Several configurations of the simulation tool can be configured and launched at one time. With the
simulation tool is possible to obtain a plot of the predicted throughput for the given configurations (see
Figure 36).
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Figure 36: Throughput for different configurations

More detailed information can be found in D6.2-Initial implementation and evaluation.
3.2.4.8 Validation Activities on Containers

Posidonia use case has been used to validate the automatic deployment of the solution with containers.
While containers can be used simply to encapsulate and isolate applications in a similar manner to virtual
machines, they’re most effective when used as a fundamentally new way of packaging and architecting
applications. Instead of large monolithic applications, application design will increasingly use architectures
composed of small, single-function “Microservices”, independent services that communicate through
network interfaces. This suits agile and DevOps approaches, and reduces the unintended effects associated
with making changes in one part of a large monolithic program

To make use of good practices in handling containers, some components have been repackaged in order to
better separate the functionality of the different services and have a container for each service
"microservices".

Figure 37 contains the description of the Posidonia DDSM model using containers. We have used a mix-
approach. The rabbit and the cep components are deployed using virtual machines and the parser
component is deploy using containers.

We have selected this approach, because Message Broker and CEP components requires a lot of resources.
For these components, it is better to have a full machine instead of using components. In addition to that,
the parser component does not need so many resources, which motivates the use of containers for the
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deployment. This component is internally composed of two services “simulation” and “AlIS-parser
processor”:

e Simulation: The component used to simulate the AIS messages sent by vessels. In the production
version, the messages are obtained from a real antenna placed in the port.

e Parser: The component that processes all the messages sent by the simulator and publishes the
information into the broker.
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Figure 37: Posidonia DDSM Model using containers

In addition to modifying the model, Prodevelop had to redo the scripts to adapt them to the use of
containers. Once the "blueprint” file of the model has been generated by the DICER tool, the deployment
has been successfully completed in minutes with the new scripts.

The time required to deploy the solution using containers is between 20-30% less than the time required to
deploy the initial solution without containers.

3.25 Discussion

After finalizing the use case we have used and validated most of the DICE tools. we can classify the results
obtained in four categories:

a) Assessment of the impact in performance after changes in software or conditions

o Predict at design time the impact of changes in the software (humber of rules, number of CEPs)
and/or conditions (input message rate “Simulation Tool”, CPU overloads “Fault Injection Tool”)

e Detect some bottleneck and anomalies with the use of the Anomaly Detection Tool. In the
following months, we will conclude the validation of the Trace Checking Tool and we will able to
have more control over the Posidonia use case and detect more bottlenecks and performance issues.

b) Increase the Quality of the system
o Detect punctual performance problems with the use of the Anomaly Detection Tool.

e Detect errors in the CEP component. Detection of loss rules and false rules detection and delays in
the detection of the rules compared to the real time in which the event happened.

c) Automatic extraction of relevant KPI

o Easy computation of application execution metrics (generic hardware metrics such as CPU,
memory consumption, disk access, etc).
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e [Easy computation of application-specific metrics which have to do with computational cost of
rules, number of messages processed per second, location of events on a map etc.

¢ Quantification of application performance in terms of percentage of port events correctly detected
by the CEP(s).

d) Automation of deployment
e Much faster deployment.
e Possibility of deployment in different cloud providers and configurations.
e Possibility of using containers for the deployment in some components.
e Added new components to the use case that are automatically deployed.
e Automatic configuration of the monitoring tool after deployment.
o Increased number of test deployments for quality testing.
o Easily understandable system configuration due to use of diagrams

In order to validate the use case, some metrics were defined at the beginning of the project. The impact
analysis of applying DICE to the use case can be summarized with the following metrics:
Table 22: Prodevelop KPIs Summary

KPI Result

At most 30% ERROR in the computational cost
estimation provided by the Simulation Tool for a
given application configuration

This could be computed in a reverse way. For example: The

Simulation Tool predicts that the current CEP configuration
will be able to handle, at most, 2000 messages per minute. The
true maximum input rate should be between 1400 and 2600.

At least 50% REDUCTION in deployment time.

Current time: 10 hours. Time with DICE: 20 minutes
Reduction: 97.6%

At least 30% REDUCTION when configuring
Monitoring compared to our current solution

Current time: 3 hours. Time with DICE: 10 minutes (almost
transparently configured through Delivery Tool) Reduction:
94.5%

At least ONE application-specific quality metric

The metric is the correctness rate (percentage of events
correctly detected by the CEP). It is provided by the Trace
Checking Tool.

At least FOUR DICE tools used in a profitable
way in our use case (apart from DICE profile and
DICE IDE)

A set of DICE Tools has been validated in the use case:
Monitoring Tool, Trace Checking Tool, Simulation Tool,
Delivery Tool, DICER Tool, Anomaly Detection Tool and
Fault Injection Tool

<10 % False positives

we achieved quality KPI “False positives”, by having a 6,6%

of false positives using the Anomaly Detection Tool.

3.3 NETF Use Case

Within DICE, NETF built a new product (Big Blu) to demonstrate the capabilities of Big Data in e-
government applications especially for Tax fraud detection. Therefore, compared to the other
demonstrators, this use case shows the ability of DICE to support the development of a new application
from scratch.

Fraud is a huge industry. It is impossible to quote an accurate cost of fraud, not least because much of it is
still undetected, but The European Union has estimated the fiscal loss lost due to tax evasion to be of the
order of 1 trillion euros per year. It’s no surprise, therefore, that the governments/organizations most hit by
the crime have been stepping up their game in recent years with huge investment in fraud management
technology. Many initiatives have been launched both at national and European levels aiming to combat
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frauds and build various solutions (see https://www.iota-tax.org/ and
https://ec.europa.eu/taxation customs/fight-against-tax-fraud-tax-evasion/missing-part_en).

With the availability of massive amounts of structured and unstructured information, data organization and
analytics are a promising solution to find anomalies and uncover violations, and even predicting frauds that
may happen in the future. Governments are increasingly using Big Data in multiple sectors to help their
agencies manage their operations, and to improve the services they provide to citizens and businesses. In
this case, Big Data has the potential to make tax agencies faster and more efficient. Unfortunately, most
public organizations are still using legacy information systems that don’t support the recent Big Data
platforms and where the data is highly duplicated, scattered, even diluted (e.g., resulting from COBOL
programming style) without any consolidated view, no correlation, no explicit semantics and with
ineffective naming conventions. Documentation is often inadequate or missing. On top of that, the huge
amount of digital data must be collected from all sorts of sources including non-classical databases and
“flat files”, sometimes with odd structuring, such as configuration files and comma-delimited text files.

The point to be made here is that migrating data from such systems into a modern platform is undoubtedly
a tedious task, and the process can be risky, expensive and disruptive. Because of those limitations, Big
Data plans are often held back by governments and companies. Using Big Data technologies implies an
unavoidable step which consists on migrating the legacy database schema and data into a relational
database. NETF released Blu Age (www.bluage.com), a modernization tool set that automates the
migration of databases and data allowing them to be standardized. This product allows for joint
modernization of both the data format and the database schema. Making the transition to NoSQL is more
common as more and more businesses are doing the same to keep up with the growing volumes of data to
process.
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Figure 38: Big Blu Concept

Large-scale data analytics is an effective way to detect and understand fraud on a massive scale. Automated
systems scan vast customer databases looking for anomalous, unusual or suspicious activity in real time.
Large teams of fraud analysts manually review flagged transactions. NETF believes that it's time for
governments to start capitalizing on proven Big Data technologies which are already revolutionizing
business efficiency across industries from healthcare to education and retail. But Fraud management
requires a holistic approach, blending tactical and strategic solutions as with the state-of-the-art technology
solutions and best practices in fraud strategy and operations. Traditional fraud detection has not been
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particularly successful, largely because it happens after the fact. New thinking needs to be injected into the
strategies for dealing with fraud. Through the use of cutting-edge technology that brings transactional,
analytical, and big data together in real time. Our approach aims to detect deviant behavior much earlier,
enabling tax agencies to combat fraud in a much more effective way and at very low costs.
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Figure 39: Big Blu Impact

Within Big Blu, we address both of temporal and physical fraud types. Temporal frauds can be related to
changes compared to last years in incomes for example. The physical type is more related to the geographic
situation of the data (local, regional or national). Here are two examples of frauds we are able to detect:

e Identifying taxpayers who are registered in different French departments in order to collect
fraudulently social aids. For example, Big Blu can catch a nonexistent address or an address that
just doesn't compute.

e The second example is related to the fictitious relocation of the taxpayer who improperly claim
living abroad in order to not pay tax on income or wealth in France.

There are many other fraud types we studied and will be processed by Big Blu such as VAT pay back, ID
theft, etc.

3.3.1  Use Case Scenarios

NETF produced a specific model of the description of a taxpayer. This model is based on the CERFA
forms  which are publically  available on the Web at https://mon.service-
public.fr/portail/app/cms/public/les_formulaires. Based on CERFA forms, we were able to build a huge
model with hundreds of attributes describing a taxpayer (name, address, ID card number, married/single/...,
birthday, car owned, social security number...). This intrinsically raises no privacy/confidentiality issues
since the random data will not refer to real persons. NETF product processed millions of instances of the
specific model.
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Figure 40: Big Blu Model

All instances were automatically generated using various algorithms. Each algorithm will generate specific
text datasets on heterogeneous formats (flat files, legacy proprietary databases, etc). Therefore, it is
expected that confidentiality constraints won’t be considered. The focus is the direct valorisation of
existing legacy data by deducing new data with richer semantics. This amounts to processing ill-explained
financial data whose interpretation may lead to further investigation towards tax fraud management. In this
case, identifying fraudulent people and organisations (among the tremendous volume of data to be gather,
correlate and queries to execute) is challenging. Big Blu consolidates data from different data stores and
provides a technical infrastructure to help users move away from using data mining to visualize
information toward forecasting and making up decision between suggested options, as in the spirit of Big
Data applications.

DICE Adoption
(2015 - 2017)

Build an MVP Release 1.0
(2015) (2017)

Figure 41: DICE Adoption

NETF built a simple but realistic plan for the development of the use case. This scenario is made of 3 core
steps. We started our strategy by building a Minimum Viable Product. This MVP has been developed,
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deployed and tested on various configurations on a private Cloud. DICE allowed us to accelerate the
creation of an initial prototype for Big Blue and make a technical and business case for the viability of the
open source technologies used by DICE in the context of tax fraud detection. The success of this initial
activity has lead the consortium to identify as one of the main benefits of DICE the possibility to cheaply
build proof-of-concepts within organizations for their products. A more in-depth analysis of this has later
been developed in D7.7.

The second step of our plan was to test and validate DICE tools within an adoption perspective. This work
took place last year and allow us to identify the tools which will accelerate the third and last step which is
the release of version 1.0 of Big Blu. This first release is stable and based on a scalable architecture which
can be deployed on a production environment.
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Figure 42: Big Blu Architecture

The initial version of Big Blu which was developed last year has been largely enriched with new features
based on a new architectural choices. Big Blu is made of 3 main parts:

— The graphical user interface which is a web application developed using html, css and JavaScript
programming languages. We recently added jQuery and Bootstrap in order to enhance the user
experience. Our end-users will be tax agents working in various treasury departments. In order to
provide them a user-friendly tool, we started building a solution with a rich GUI (Graphical User
Interface). This latter includes menus, navigation/exploration pages, configuration tools, etc.

— The big data application itself which is based on Apache Cassandra for data management and
Apache Spark for data processing. This part includes the biggest and most important part of the
demonstrator. In fact, it includes the core feature of the tool which is in charge of the data
processing in order to detect fraudulent conducts.

— And a webservice which makes the glue between the user-interface and the Data-Intensive
Application.
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In order to avoid any privacy and/or confidentiality issue, we decided to process imaginary but realistic
data. Thus, we implemented a piece of software we called “Taxpayers Random Generator Module” which
is able to generate, according to our needs, information describing millions of taxpayers. These data are the
main input for the whole product.
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Figure 43: Taxpayers Random Generator Module

For our use case, we opt for the Lambda Architecture which is actually a reference architecture for Batch
and Real-Time processing in the Big Data ecosystem. This architecture relies on a Data Input Stream which
is in our case a Cassandra Cluster filled with various kind of information related to taxpayers. So far, we
built this Cluster and are now able to explore and query it to gather details and provide them to the
processing unit.
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Figure 44: Taxpayers Random Generator Module Architecture

Our Big Data application made of these technologies is continuously running. The Cassandra databases are
filled with taxpayers’ detail, historical tax declarations, etc. The application will be performing
computation on all data including new generated inputs. These data have to be processed using Fraud
indicators which are a set of rules described by a domain expert. In the case of a new Fraud Indicator, we
have to proceed to a new batch processing phase on all data. But we need to be able to answer any query
using a merge between old batch results and new real-time computations. The user will be notified on the

Copyright © 2018, DICE consortium — All rights reserved 63



Deliverable 6.4 - Final assessment report and impact analysis

graphical user interface with the taxpayers who may be fraudulent. Provided results will mainly have a
record of value among others and in no case lead to an automatic condemnation. The demonstrator will just
facilitate the task of filtering and gathering data for fiscal agents in order to increase productivity.
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Figure 45: Big Blue Screenshot

The security and privacy is not an option for a product such Big Blu which is supposed to process personal
and sensitive data. For this reason, we added an important security layer that performs authentication,
authorization, cryptography, and session management for the application users. An administrator is in
charge of managing (create/edit/delete) the user accounts. Regarding the privacy, we have been explicitly
asked by some potential customers to focus on role specifications. The main goal is to be able to specify
different roles according to the tax agent granted permissions. To address this point, we implemented and
integrated the SecureUML profile which facilitates the specification of various roles and permissions and
brings. This is what have been implemented using Apache Shiro (https://shiro.apache.org/). Moreover the
details provided at the model level are used later by the Trace Checking tool while the application is
running in order to check whether the authorizations are not violated.
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In the following section, we will present some screenshots and discuss the main features offered by Big
Blu.
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Figure 47: Big Blu Screenshot 1

This screen allows the user to launch a new fraud detection and see all the launched detections, check their
status, access to their results and see main statistics. This is a private environment where users can only see
their own detections.
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Figure 48: Big Blu Screenshot 2

In the last version of Big Blu, we give the possibility to users to create multiple detections. In fact, after
multiple discussions with some potential customers, we decided to completely reconsider the way Fraud
Indicators (FI) were initially managed. In fact, in the initial version of the prototype we built “static” Fraud
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Indicators which cannot be enriched and/or personalized by end-users. This initial implementation was
useful in order to validate the whole idea and the underlying technologies. But it has limitations mainly
because it needs new development (advanced users) in order to add new Fl. The new version of Big Blu
allows users to build their own requests using all the available data about taxpayers in the database. Big Blu

is a kind of requests engine.
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Figure 49: Big Blu Screenshot 3

Compared to the initial version, NETF completely changed the way detections are managed in order to let
end-users customize their queries and build Fraud Indicators according to specific needs.
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408 - 28yrs = 15k % 71.8%
Taxpayers Age Income 1 Income decrease
Copy csv Print Search:

Tax Tax
Birth Birth Birth Declaration Declaration Income Income Declaration Declaration
Taxpayer Lastname Firstname Commune Date Department Date 1 Date 2 Gender 1 2 2
0096b52d-03f-41a2-adec- Lecomte Auréle Weyersheim  July 20th 1992 | 67 May 14th2016at | April 16th2017at | M 4421239 | 0.00
5748d0d276aa 129 pm 3:42 pm
013368d5-2255-4726-a4d2- Chauvin Xavier Monistrol-sur- | December 26th | 43 May 20th2013at | April 15th 2014 at | M 1822026 | 21,187.57
15 Loire 1987 6:20 pm 2:40 am
Boulanger Cyrille Sinde-Noble  March 31st 59 May 27th2014at | April21st2015at | M 36371.53 | 34,880.40
1993 12:56 am 12:08 pm
Duva Amin Pessac November 26th | 33 May 29th2015at | April 10th2016at | M 2662198 | 16.022.79
1990 1212am 6:10 pm 12b9-219b8b977192
Hoarau Adéodat Montainville | November 18th | 28 Apiil 16th 20162t | May 21st2017at | M 0.00 4329559 | Occe5d75-06ch-daaa-afds- | c6
1988 3:33am 10:27 am
Pichon Maugis Sainte- April 26th 1986 | 79 May 23rd2013at | May 8th2014at | M 3091737 | 0.00
Radegonde 8:02 pm 11:49 pm
Paris Camillien Saint-Nazaie  March 21st 4 Apiil 26th 2016at | April 4h2017at | M 0.00 21,150.94
1987 3:15pm 10:14 pm
Dupuis Hugues Saint-Sauveur ~ September 33 Apiil9th2016at  April5th2017at | M 0.00 23,906.13
24th 1992 7:30 pm 3:10 pm
Lucas Saganan SaintCloud  January2nd | 92 May 26th 2013at | April 11th2014at | M 0.00 16,502.57
1991 9:33pm 4:16 pm
Amaud Victorin Claix April 22nd 38 May 19th2015at | May 14th2016at | M 0.00 0.00 667b778-2acd-4668-Beaa-
1982 7:57 pm 3:42 pm b0T99aa1cds6

Showing 1 to 10 of 408 entries
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Figure 50: Big Blu Screenshot 4

Provided results will mainly have a record of value among others and in no case lead to an automatic
condemnation. Big Blu will just facilitate the task of filtering and gathering data for fiscal agents in order to
increase productivity.
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Figure 51: Apache Zeppelin

We decided to push the Fraud Management further and propose an advanced ecosystem in which advanced
users can write and validate new detections without coding. For this feature, we used the open source
Apache Zeppelin (https://zeppelin.apache.org/) environment where the user can query various Big Data
databases for instance Cassandra and visualize the results. Moreover Machine Learning algorithms can be
tested on data subsets before launching massive data processings on the whole dataset.

3.3.2 Validation & Impact analysis

An important point to underline is that Big Blu was developed from scratch during the DICE project. It
means that NETF had not an existing application which will be migrated to a Big Data environment using
the DICE ecosystem. The target market of NETF is emerging and to the best of our knowledge, there are
no existing solutions similar to our solution. In fact, e-government applications are mainly based on legacy
systems which need to be modernized before being able to make benefits of any Big Data related
technologies. Actually, modernizing such software is the primary market of NETF and we are investigating
to enrich our offer by proposing to our partners a direct valorization of the modernized data by using our
tax fraud detection product.

The initial objectives of our product were mainly related to the adoption of the Big Data ecosystem which
is completely new for us. NETF made a significant effort in going forward in the product realization and in
fact we have already identified the appropriate architecture, frameworks and technologies. We also started
the implementation of the prototype and are already looking for applying the results to be able to detect
simple but actual frauds. That’s said, a survey recently made by Information Week shows that the main
barrier SMEs are facing about using Big Data Software is that the expertise is scarce and expensive.
Hadoop, MapReduce and Cassandra are not point-and-click technologies. There is quite a bit of Linux
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configuration, some Java coding and a set of frameworks to make smoothly work together. Unless you get
hands-on experience with each of those parts in a use-case context, the climb will be steep. In fact, while
working on the initial version of Big Blu, we struggled with some technical issues mainly related to
specificites of the Big Data ecosystem. Thus we need concrete solutions unless we won’t be able to move
from an MVP to a first release. While building our solution we have faced some technical and
methodological issues. We report below, a list of 4 core questions:

e How to build a reliable architecture?

o How to test different cluster configurations?

e How to accelerate my Code-Build-Deploy-Run cycle?
e How to monitor my runtime environment?

Actually some DICE tools are partially or completely tackling these issues. DICE is relieving users of a big
part of this burden by proposing a set of tools in order to facilitate the adoption of Big Data technologies. In
the following sections, we explain how the tools have concretly helped us to answer the questions listed
above. If the reader is interested in getting more details, we recommend to see the public deliverables
available online at www.dice-h2020.eu.

3.3.2.1 Simulation Tool

So to the question “How to build a reliable architecture?”, the simulation tool proposes a user-friendly
approach to validate an architecture at early-stage at very low cost in terms of time spent in implementation
and operations. For example, given a set of requirements for a tax agency, we can identify and create
optimal architecture or evaluate alternatives and measure the impact of business logic changes. For instance
we have identified at which requests rate, we may face time response issues and set up 2 potential solutions
which can be automatically deployed if needed. These models can also be used for documentation purpose
since they are at the DPIM level which means contains all the application business logic. More detailed
information about this validation can be found in D6.3-Consolidated Implementation and evaluation.

3.3.2.2 Enhancement Tool

The simulation tool can take as input UML models automatically adjusted by the Enhancement tools and
especially DICE-FG tool which can add resource usage and breakdown information gathered directly from
the production environment or the Cloud where the data-intensive software is running. In the case of
NETEF’s application, DICE-FG considers monitoring data gathered during the execution of Spark jobs as its
basis to improve the models. More detailed information about this validation can be found in D6.3-
Consolidated Implementation and evaluation.

3.3.2.3 DICER & Delivery Tools

One of the most time consuming tasks while prototyping a Big Data application is building clusters
(designing and deploying the infrastructure) since the engineer must manually install all the needed
services, frameworks, etc. This task may need to be repeated several times before obtaining the most
suitable cluster configuration in terms of cost, performance, etc. This is exactly the issue addressed by
DICER which allows the users to create throw-away clusters for fast prototyping, or persist the ones that
prove useful in the form of a model at the DDSM level. In addition, based on this model, DICER
automatically generate the TOSCA blueprints to be automatically deployed. And this is exactly the role of
the deployment tool which takes a TOSCA blueprint (generated by DICER or not) as an input and
automatically install the required frameworks, start the services and deploy the Data Intensive Application.
For this reason, this operation can be repeated at a very low cost each time the developer needs to test a
new cluster configuration or a new version of the Big Data application.
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NETF started working on Big Blu before the release of the DICE tools. So in order to test our application,
we manually built our clusters using command lines and scripts. This activity was conducted by one
engineer fully dedicated to this task. We estimate the time spent for 63 hours (approximately 9 full working
days). The adoption of DICER and the deployment tool combined together allows to reach a high level of
productivity. In fact, we were able to design and deploy the same cluster configuration within few hours
(~6 hours compared to 9 days). The engineer who made this exercise was not expert in the manual process
neither in DICER and the deployment tool.

Table 23: DICER & Deployment Tools Validation Results 1

Tested approach Time spent (hours)

Manual 63
DICER + Deployment 6 (Ratio = x10.5)

Few months after the initial comparison, we did again the same installations on another cloud using a new
cluster configuration. And we obtained different values mainly explained by the gained experience on the
various tools. Although it is obvious that the user is able to rapidly design and deploy a cluster thanks to the
DICE tools. In a concrete scenario, we will probably build our own scripts in order to move from a fully
automated approach to a semi-automated one with built-in house tools. The main advantages from our
point of view is the ability to create throw-away clusters for fast prototyping using various technologies and
frameworks.

Table 24: DICER & Deployment Tools Validation Results 2

Tested approach Time spent (hours)

Manual 18
DICER + Deployment 2 (Ratio = x9)

Recently we initiated a new project for which our Ops team insisted to use a proprietary solution. We made
the same exercise and we obtained these results which can be mainly explained by the fact that this tool is
not dedicated to Big Data so if the end-user needs to install Cassandra, she or he have to manage to provide
all the installation scripts. More detailed information about this validation can be found in D6.2-Initial
implementation and evaluation.

3.3.2.4 Optimization Tool

NETF collaborated with PMI to employ the Optimization Tool (D-SPACE4Cloud) to examine the impact
of securing its database on the performance of Spark detection jobs. Anonymization and encryption of data
were the two approaches adopted to secure the database. D-SPACE4Cloud allowed us to measure the costs
for each technique. We realised that, even if from one side encryption add CPU overhead to the system, in
some situations encryption resulted even in a performance improvement. D-SPACE4Cloud assisted us to
get an insight into the effects of security regarding Spark jobs. D-SPACE4Cloud has been validated by the
NETF case study. Three fraud indicators have been considered at different scale (10 and 30 millions of
taxpayers) implementing also privacy mechanisms. Across the six cases analysed, D-SPACE4Cloud
identified the correct cluster configuration (minimum number of nodes fulfilling the deadline) for five of
them. In only one case, the error was of a single VM with 17% additional cost. The average percentage
error cost estimate overall was 3%. More detailed information about this validation can be found in D6.3-
Consolidated Implementation and evaluation.
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3.3.2.5 Monitoring Tool

In order to validate and measure the robustness of our application, we need to supervise a plethora of
metrics. Some are related to the application itself but others are related to the underlying frameworks. In
order to monitor our runtime environment, we have 2 options: either install a dedicated tool per framework
(if it exists) or install the DICE monitoring tool within few minutes and get all the required metrics. More
than that, most of the other DICE tools offer the possibility to automatically exploit such metrics.

3.3.2.6 Fault Injection Tool

The fault injection tool (FIT) has been adopted in order to make sure that the Cassandra replication is
working correctly so failed nodes can be replaced with no downtime. In fact, FIT generates faults within
Virtual Machines and at the Cloud Provider Level. The purpose of the FIT is to test the resiliency of a
cloud installation as an application target. With this approach, the designers can use robust testing, showing
where to harden the application before it reaches a commercial environment and allows us (as application
owners) to test and stress Big Blu design/deployment in the event of a cloud failure or outage. Thus,
allowing for the mitigation of risk in advance of a cloud based deployment.

3.3.3 Discussion

NETF has tested and validated a part of the DICE tools. We are actually convinced of their added value
mainly for early stage validation, process automation and monitoring. We think that a great work has been
done not only for the implementation of the tools but also for in terms of user experience and user-
friendliness. This latter was made at the level of each tool but also at the IDE level, for example in terms of
scenario workflows.
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4 Conclusion

The current deliverable provides an overview of the validation activities developed as part of the DICE
project both on laboratory and on real life cases (use cases), to be disseminated publicly. Material from
previous “confidential” deliverables has been refined and presented in a relatively simplistic manner for the
average reader, while emphasis has been given to results obtained over the last 6 months of the project.

All DICE tools have been validated while KPIs have been respected and met while in some cases, these
KPIs have been surpassed as obtained results proved to be much higher than the ones predicted in the
original proposal.

Especially regarding the productivity of the DevOps team of a Data Intensive Application, this has been
increased by far. In fact, by using DICE tools, the time needed for implementing a number of activities and
deployments, has been decreased significantly, thus allowing engineers and developers to be more efficient
and shift resources to parallel activities. From the managerial point of view, the DICE tools allow the team
to achieve the same results in less time and with cheaper labour costs (i.e. junior engineers vs senior
engineers), which is translated into significant savings for a company.
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