Formal Verification of Data-Intensive Applications through Model Checking Modulo Theories

Marcello M. Bersani1 \textbf{Mădălina Erașcu}2 Francesco Marconi1
Silvio Ghilardi3 Matteo Rossi1

1DEIB, Politecnico di Milano, Milano, Italy
2West University of Timișoara and Institute eAustria, Timișoara, Romania
3Università degli Studi di Milano, Milano, Italy

madalina.erascu@e-uvt.ro

July 13, 2017

This research was partially supported by Horizon 2020 project no. 644869 (DICE).
Big Data is everywhere!

Software market switches to Big Data: popular technologies such as Spark, Storm, Hadoop, and NoSQL stimulates Big Data adoption.

Business issue: 65% of Big Data projects still fail (*Capgemini Report 2015*)

Solution:
Integrating Quality Assurance (QA) practices in application development

Prediction of quality properties of DIAs:
- Performance, reliability, *safety properties*
- Helpful early in the DIA design
- Assess the potential impact of architectural changes (iteratively)
Big Data is everywhere!

Software market switches to Big Data: popular technologies such as Spark, Storm, Hadoop, and NoSQL stimulates Big Data adoption.

Business issue: 65% of Big Data projects still fail (*Capgemini Report 2015*)

Solution:

Integrating Quality Assurance (QA) practices in application development

Prediction of quality properties of DIAs:

- Performance, reliability, *safety properties*
- Helpful early in the DIA design
- Assess the potential impact of architectural changes (iteratively)
Big Data is everywhere!

Software market switches to Big Data: popular technologies such as Spark, Storm, Hadoop, and NoSQL stimulates Big Data adoption.

Business issue: 65% of Big Data projects still fail *(Capgemini Report 2015)*

Solution:
Integrating Quality Assurance (QA) practices in application development

DICE project (http://www.dice-h2020.eu/) aims to define methods and tools for the data-aware *quality*-driven development of Date Intensive Applications (DIAs).

Prediction of quality properties of DIAs:
- Performance, reliability, *safety properties*
- Helpful early in the DIA design
- Assess the potential impact of architectural changes (iteratively)
Big Data is everywhere!

Software market switches to Big Data: popular technologies such as Spark, Storm, Hadoop, and NoSQL stimulates Big Data adoption.

Business issue: 65% of Big Data projects still fail (Capgemini Report 2015)

Solution:
Integrating Quality Assurance (QA) practices in application development

DICE project (http://www.dice-h2020.eu/) aims to define methods and tools for the data-aware quality-driven development of Date Intensive Applications (DIAs).

Prediction of quality properties of DIAs:

- Performance, reliability, safety properties
- Helpful early in the DIA design
- Assess the potential impact of architectural changes (iteratively)
Big Data is everywhere!

Software market switches to Big Data: popular technologies such as Spark, Storm, Hadoop, and NoSQL stimulates Big Data adoption.

Business issue: 65% of Big Data projects still fail (Capgemini Report 2015)

Solution:
Integrating Quality Assurance (QA) practices in application development

DICE project (http://www.dice-h2020.eu/) aims to define methods and tools for the data-aware quality-driven development of Date Intensive Applications (DIAs).

Prediction of quality properties of DIAs:

- Performance, reliability, safety properties
- Helpful early in the DIA design
- Assess the potential impact of architectural changes (iteratively)
Big Data is everywhere!

Software market switches to Big Data: popular technologies such as Spark, Storm, Hadoop, and NoSQL stimulates Big Data adoption.

Business issue: 65% of Big Data projects still fail (Capgemini Report 2015)

Solution:

Integrating Quality Assurance (QA) practices in application development

DICE project (http://www.dice-h2020.eu/) aims to define methods and tools for the data-aware quality-driven development of Date Intensive Applications (DIAs).

Prediction of quality properties of DIAs:

- Performance, reliability, *safety properties*
- Helpful early in the DIA design
- Assess the potential impact of architectural changes (iteratively)
Big Data is everywhere!

Software market switches to Big Data: popular technologies such as Spark, Storm, Hadoop, and NoSQL stimulates Big Data adoption.

Business issue: 65% of Big Data projects still fail *(Capgemini Report 2015)*

Solution:
Integrating Quality Assurance (QA) practices in application development

DICE project (http://www.dice-h2020.eu/) aims to define methods and tools for the data-aware *quality*-driven development of Date Intensive Applications (DIAs).

Prediction of quality properties of DIAs:
- Performance, reliability, *safety properties*
- Helpful early in the DIA design
 - Assess the potential impact of architectural changes (iteratively)
Big Data is everywhere!

Software market switches to Big Data: popular technologies such as Spark, Storm, Hadoop, and NoSQL stimulates Big Data adoption.

Business issue: 65% of Big Data projects still fail (Capgemini Report 2015)

Solution:
Integrating Quality Assurance (QA) practices in application development

DICE project (http://www.dice-h2020.eu/) aims to define methods and tools for the data-aware *quality*-driven development of Date Intensive Applications (DIAs).

Prediction of quality properties of DIAs:
- Performance, reliability, *safety properties*
- Helpful early in the DIA design
- Assess the potential impact of architectural changes (iteratively)
Focus: Apache Storm technology

Apache Storm (storm.apache.org) technology – used in applications that need efficient processing of unbounded streams of data, such as event log monitoring, real-time data analytics and data normalization.

Applications that use Storm: Yahoo, Twitter, Spotify, The Weather Channel, etc.

Key concepts:
- **streams** – infinite sequences of **tuples** that are processed by the application
- **topologies** – directed graphs
 - nodes represent operations performed over the application data
 - edges indicate how such operations are combined

Types of nodes:
- **input nodes** bring information into the application from the environment: spouts
- **computational nodes** implement the logic of the application by processing information and producing a result: bolts
Focus: Apache Storm technology

Apache Storm (storm.apache.org) technology – used in applications that need efficient processing of unbounded streams of data, such as event log monitoring, real-time data analytics and data normalization.

Applications that use Storm: Yahoo, Twitter, Spotify, The Weather Channel, etc.

Key concepts:

▷ streams – infinite sequences of tuples that are processed by the application
▷ topologies – directed graphs
 ▷ nodes represent operations performed over the application data
 ▷ edges indicate how such operations are combined

Types of nodes:

▷ input nodes bring information into the application from the environment: spouts
▷ computational nodes implement the logic of the application by processing information and producing a result: bolts
Focus: Apache Storm technology

Apache Storm (storm.apache.org) technology – used in applications that need efficient processing of unbounded streams of data, such as event log monitoring, real-time data analytics and data normalization.

Applications that use Storm: Yahoo, Twitter, Spotify, The Weather Channel, etc.

Key concepts:

▶ streams – infinite sequences of tuples that are processed by the application
▶ topologies – directed graphs
 ▶ nodes represent operations performed over the application data
 ▶ edges indicate how such operations are combined

Types of nodes:

▶ input nodes bring information into the application from the environment: spouts
▶ computational nodes implement the logic of the application by processing information and producing a result: bolts
Focus: Apache Storm technology

Apache Storm (storm.apache.org) technology – used in applications that need efficient processing of unbounded streams of data, such as event log monitoring, real-time data analytics and data normalization.

Applications that use Storm: Yahoo, Twitter, Spotify, The Weather Channel, etc.

Key concepts:

- **streams** – infinite sequences of **tuples** that are processed by the application
- **topologies** – directed graphs
 - **nodes** represent operations performed over the application data
 - **edges** indicate how such operations are combined

Types of nodes:

- **input nodes** bring information into the application from the environment: **spouts**
- **computational nodes** implement the logic of the application by processing information and producing a result: **bolts**
Focus: Apache Storm technology

Apache Storm (storm.apache.org) technology – used in applications that need efficient processing of unbounded streams of data, such as event log monitoring, real-time data analytics and data normalization.

Applications that use Storm: Yahoo, Twitter, Spotify, The Weather Channel, etc.

Key concepts:
- **streams** – infinite sequences of **tuples** that are processed by the application
- **topologies** – directed graphs
 - **nodes** represent operations performed over the application data
 - **edges** indicate how such operations are combined

Types of nodes:
- **input nodes** bring information into the application from the environment: spouts
- **computational nodes** implement the logic of the application by processing information and producing a result: bolts
Focus: Apache Storm technology

Apache Storm (storm.apache.org) technology – used in applications that need efficient processing of unbounded streams of data, such as event log monitoring, real-time data analytics and data normalization.

Applications that use Storm: Yahoo, Twitter, Spotify, The Weather Channel, etc.

Key concepts:

- **streams** – infinite sequences of **tuples** that are processed by the application
- **topologies** – directed graphs
 - **nodes** represent operations performed over the application data
 - **edges** indicate how such operations are combined

Types of nodes:

- **input nodes** bring information into the application from the environment: spouts
- **computational nodes** implement the logic of the application by processing information and producing a result: bolts
Focus: Apache Storm technology

Apache Storm (storm.apache.org) technology – used in applications that need efficient processing of unbounded streams of data, such as event log monitoring, real-time data analytics and data normalization.

Applications that use Storm: Yahoo, Twitter, Spotify, The Weather Channel, etc.

Key concepts:
- **streams** – infinite sequences of *tuples* that are processed by the application
- **topologies** – directed graphs
 - **nodes** represent operations performed over the application data
 - **edges** indicate how such operations are combined

Types of nodes:
- *input nodes* bring information into the application from the environment: spouts
- *computational nodes* implement the logic of the application by processing information and producing a result: bolts
Focus: Apache Storm technology

Apache Storm (storm.apache.org) technology – used in applications that need efficient processing of unbounded streams of data, such as event log monitoring, real-time data analytics and data normalization.

Applications that use Storm: Yahoo, Twitter, Spotify, The Weather Channel, etc.

Key concepts:

- **streams** – infinite sequences of **tuples** that are processed by the application
- **topologies** – directed graphs
 - **nodes** represent operations performed over the application data
 - **edges** indicate how such operations are combined

Types of nodes:

- **input nodes** bring information into the application from the environment: spouts
- **computational nodes** implement the logic of the application by processing information and producing a result: bolts
Focus: Apache Storm technology

Apache Storm (storm.apache.org) technology – used in applications that need efficient processing of unbounded streams of data, such as event log monitoring, real-time data analytics and data normalization.

Applications that use Storm: Yahoo, Twitter, Spotify, The Weather Channel, etc.

Key concepts:

▶ **streams** – infinite sequences of **tuples** that are processed by the application
▶ **topologies** – directed graphs
 ▶ **nodes** represent operations performed over the application data
 ▶ **edges** indicate how such operations are combined

Types of nodes:

▶ **input nodes** bring information into the application from the environment: **spouts**
▶ **computational nodes** implement the logic of the application by processing information and producing a result: **bolts**
Focus: Apache Storm technology

Apache Storm (storm.apache.org) technology – used in applications that need efficient processing of unbounded streams of data, such as event log monitoring, real-time data analytics and data normalization.

Applications that use Storm: Yahoo, Twitter, Spotify, The Weather Channel, etc.

Key concepts:

- **streams** – infinite sequences of **tuples** that are processed by the application
- **topologies** – directed graphs
 - **nodes** represent operations performed over the application data
 - **edges** indicate how such operations are combined

Types of nodes:

- **input nodes** bring information into the application from the environment: **spouts**
- **computational nodes** implement the logic of the application by processing information and producing a result: **bolts**
Focus: Apache Storm technology

Apache Storm (storm.apache.org) technology – used in applications that need efficient processing of unbounded streams of data, such as event log monitoring, real-time data analytics and data normalization.

Applications that use Storm: Yahoo, Twitter, Spotify, The Weather Channel, etc.

Key concepts:

- **streams** – infinite sequences of **tuples** that are processed by the application
- **topologies** – directed graphs
 - **nodes** represent operations performed over the application data
 - **edges** indicate how such operations are combined

Types of nodes:

- *input nodes* bring information into the application from the environment: **spouts**
- *computational nodes* implement the logic of the application by processing information and producing a result: **bolts**
Example of Storm topology

Finite state automata describing the states of a spout (left) and bolt (right)

Features of the topology:
- parametric in the number of nodes and processes
- the number of nodes is known at design-time, hence fixed

Infinite-state model checking!

Suitable abstraction: array-based systems. (Ghilardi et al.)

Safety verification of Storm topologies: given queue(s) bound(s) defined by the designer, “all bolt queues have a limited occupation level”.

Example of Storm topology

Finite state automata describing the states of a spout (left) and bolt (right)

Features of the topology:
- parametric in the number of nodes and processes
- the number of nodes is known at design-time, hence fixed

Infinite-state model checking!

Suitable abstraction: array-based systems. (Ghilardi et al.)

Safety verification of Storm topologies: given queue(s) bound(s) defined by the designer, “all bolt queues have a limited occupation level”.
Example of Storm topology

Finite state automata describing the states of a spout (left) and bolt (right)

Features of the topology:

- **parametric** in the number of nodes and processes
- the number of nodes is known at design-time, hence fixed

Infinite-state model checking!

Suitable abstraction: **array-based systems.** (Ghilardi et al.)

Safety verification of Storm topologies: given queue(s) bound(s) defined by the designer, “all bolt queues have a limited occupation level”.
Example of Storm topology

Finite state automata describing the states of a spout (left) and bolt (right)

Features of the topology:
- parametric in the number of nodes and processes
- the number of nodes is known at design-time, hence fixed

Infinite-state model checking!

Suitable abstraction: array-based systems. (Ghilardi et al.)

Safety verification of Storm topologies: given queue(s) bound(s) defined by the designer, “all bolt queues have a limited occupation level”.
Example of Storm topology

Finite state automata describing the states of a spout (left) and bolt (right)

Features of the topology:
- parametric in the number of nodes and processes
- the number of nodes is known at design-time, hence fixed

Infinite-state model checking!

Suitable abstraction: array-based systems. (Ghilardi et al.)

Safety verification of Storm topologies: given queue(s) bound(s) defined by the designer, “all bolt queues have a limited occupation level”.
Example of Storm topology

Finite state automata describing the states of a spout (left) and bolt (right)

Features of the topology:
- parametric in the number of nodes and processes
- the number of nodes is known at design-time, hence fixed

Infinite-state model checking!

Suitable abstraction: array-based systems. (Ghilardi et al.)

Safety verification of Storm topologies: given queue(s) bound(s) defined by the designer, “all bolt queues have a limited occupation level”.
Example of Storm topology

Finite state automata describing the states of a spout (left) and bolt (right)

Features of the topology:
- parametric in the number of nodes and processes
- the number of nodes is known at design-time, hence fixed

Infinite-state model checking!

Suitable abstraction: array-based systems. (Ghilardi et al.)

Safety verification of Storm topologies: given queue(s) bound(s) defined by the designer, “all bolt queues have a limited occupation level”.

Array-based Systems

Formalizing an array-based system means specifying:

- the set of initial states
- the ordering of the actions (by means of a transition relation)
- the set of unsafe states (the negation of the formula we want to check)

Examples (Cubicle syntax):

- `init (i x) { T = 0.0 && B[i,x]=I && ... } \leadsto \forall i, x \ldots`

- `transition spout.emit(i j) \leadsto \exists i, j \ldots`
 requires `{Tsmin<Stime[i] && SubscribedBS[j,i]=True && ...}
 `{L[l]:=case
 | l=j : L[l]+1.0
 | _ : L[l];

- `unsafe(i) { L[i]>1.5 } \leadsto \exists i \ldots`

Symbolic representation of array-based systems: quantified first-order logic formulae.
Verification of array-based systems: decision procedure based on backward reachability.

Termination of the decision procedure:

- the current set of reachable states has a non-empty intersection with the set of initial states (safety check) \(\Rightarrow \) system is unsafe
- the current set has reached a fix-point (fix-point check) \(\Rightarrow \) system is safe
Array-based Systems

Formalizing an array-based system means specifying:

- the set of initial states
- the ordering of the actions (by means of a transition relation)
- the set of unsafe states (the negation of the formula we want to check)

Examples (Cubicle syntax):

- `init (i x) { T = 0.0 && B[i,x]=I && ... } ⇝ ∀ i, x ...`
- `transition spout.emit(i j) ⇝ ∃ i, j ...`

 requires `{Tsmin<Stime[i] && SubscribedBS[j,i]=True && ...}`

 `{ L[1]:=case
 | 1=j : L[1]+1.0
 | _ : L[1];
 }

- `unsafe(i) { L[i]>1.5 } ⇝ ∃ i ...

Symbolic representation of array-based systems: quantified first-order logic formulae. Verification of array-based systems: decision procedure based on backward reachability. Termination of the decision procedure:

- the current set of reachable states has a non-empty intersection with the set of initial states (safety check) ⇒ system is unsafe
- the current set has reached a fix-point (fix-point check) ⇒ system is safe
Array-based Systems

Formalizing an array-based system means specifying:

- the set of initial states
- the ordering of the actions (by means of a transition relation)
- the set of unsafe states (the negation of the formula we want to check)

Examples (Cubicle syntax):

- `init (i x) { T = 0.0 && B[i,x]=I && ... } \Rightarrow \forall i, x ...`

- `transition spout.emit(i j) \Rightarrow \exists i, j ...`

 `requires {Tsmin<Stime[i] && SubscribedBS[j,i]=True && ...} { L[1]:=case
 | 1=j : L[1]+1.0
 | _ : L[1];
 }

- `unsafe(i) { L[i]>1.5 } \Rightarrow \exists i ...

Symbolic representation of array-based systems: quantified first-order logic formulae. Verification of array-based systems: decision procedure based on backward reachability. Termination of the decision procedure:

- the current set of reachable states has a non-empty intersection with the set of initial states (safety check) \(\Rightarrow \) system is unsafe
- the current set has reached a fix-point (fix-point check) \(\Rightarrow \) system is safe
Array-based Systems

Formalizing an array-based system means specifying:

- the set of initial states
- the ordering of the actions (by means of a transition relation)
- the set of unsafe states (the negation of the formula we want to check)

Examples (Cubicle syntax):

- `init (i x) { T = 0.0 && B[i,x]=I && ... } \Rightarrow \forall i,x ...
- transition spout.emit(i j) \Rightarrow \exists i,j ...
- requires {Tsmin<Stime[i] && SubscribedBS[j,i]=True && ...}
 {
 L[1]:=case
 | 1=j : L[1]+1.0
 | _ : L[1];
 }
- unsafe(i) { L[i]>1.5 } \Rightarrow \exists ...

Symbolic representation of array-based systems: quantified first-order logic formulae. Verification of array-based systems: decision procedure based on backward reachability. Termination of the decision procedure:

- the current set of reachable states has a non-empty intersection with the set of initial states (safety check) \Rightarrow system is unsafe
- the current set has reached a fix-point (fix-point check) \Rightarrow system is safe
Array-based Systems

Formalizing an array-based system means specifying:

- the set of initial states
- the ordering of the actions (by means of a transition relation)
- the set of unsafe states (the negation of the formula we want to check)

Examples (Cubicle syntax):

- `init (i x) { T = 0.0 && B[i,x]=I && ... } \Rightarrow \forall i, x ...
- transition spout.emit(i j) \Rightarrow \exists i, j ...
 requires {Tsmin<Stime[i] && SubscribedBS[j,i]=True && ...
 \{
 L[l]:=case
 | l=j : L[l]+1.0
 | _ : L[l];
 \}
- unsafe(i) { L[i]>1.5 } \Rightarrow \exists i ...

Symbolic representation of array-based systems: quantified first-order logic formulae. Verification of array-based systems: decision procedure based on backward reachability. Termination of the decision procedure:

- the current set of reachable states has a non-empty intersection with the set of initial states (safety check) \(\Rightarrow\) system is unsafe
- the current set has reached a fix-point (fix-point check) \(\Rightarrow\) system is safe
Array-based Systems

Formalizing an array-based system means specifying:

▶ the set of initial states
▶ the ordering of the actions (by means of a transition relation)
▶ the set of unsafe states (the negation of the formula we want to check)

Examples (Cubicle syntax):

▶ init (i x) { T = 0.0 && B[i,x]=I && ... } \implies \forall_{i,x} ...

▶ transition spout.emit(i j) \implies \exists_{i,j} ...

requires {Tsmin<Stime[i] && SubscribedBS[j,i]=True && ...}

{
 L[1]:=case
 | l=j : L[1]+1.0
 | _ : L[1];
}

▶ unsafe(i) { L[i]>1.5 } \implies \exists_{i} ...

Symbolic representation of array-based systems: quantified first-order logic formulae. Verification of array-based systems: decision procedure based on backward reachability. Termination of the decision procedure:

▶ the current set of reachable states has a non-empty intersection with the set of initial states (safety check) \Rightarrow system is unsafe
▶ the current set has reached a fix-point (fix-point check) \Rightarrow system is safe
Array-based Systems

Formalizing an array-based system means specifying:

- the set of initial states
- the ordering of the actions (by means of a transition relation)
- the set of unsafe states (the negation of the formula we want to check)

Examples (Cubicle syntax):

- init \((i, x) \) \{ \(T = 0.0 \) \&\& \(B[i, x] = I \) \&\& ... \} \implies \forall i, x ...

- transition spout_emit\((i, j) \) \implies \exists i, j ...

 requires \{Tsmin<Stime[i] \&\& \text{SubscribedBS}[j,i]=True \&\& ...\}

 \{ \begin{align*}
 L[1] &:= \text{case} \\
 | l=j : L[1]+1.0 \\
 | _ : L[1];
 \end{align*} \}

- unsafe\((i) \) \{ \(L[i] > 1.5 \) \} \implies \exists i ...

Termination of the decision procedure:

- the current set of reachable states has a non-empty intersection with the set of initial states (safety check) \(\Rightarrow \) system is unsafe
- the current set has reached a fix-point (fix-point check) \(\Rightarrow \) system is safe
Array-based Systems

Formalizing an array-based system means specifying:

▶ the set of initial states
▶ the ordering of the actions (by means of a transition relation)
▶ the set of unsafe states (the negation of the formula we want to check)

Examples (Cubicle syntax):

▶ init (i x) { T = 0.0 && B[i,x]=I && ... } ⇝ \(\forall i, x \ldots \)

▶ transition spout.emit(i j) ⇝ \(\exists i, j \ldots \)

requires \{ Tsmin<Stime[i] && SubscribedBS[j,i]=True && ... \}

\{
 L[1]:=case
 | l=j : L[1]+1.0
 | _ : L[1];
\}

▶ unsafe(i) { L[i]>1.5 } ⇝ \(\exists i \ldots \)

Symbolic representation of array-based systems: quantified first-order logic formulae.
Verification of array-based systems: decision procedure based on backward reachability.

Termination of the decision procedure:

▶ the current set of reachable states has a non-empty intersection with the set of initial states (safety check) ⇒ system is unsafe
▶ the current set has reached a fix-point (fix-point check) ⇒ system is safe
Array-based Systems

Formalizing an array-based system means specifying:

- the set of initial states
- the ordering of the actions (by means of a transition relation)
- the set of unsafe states (the negation of the formula we want to check)

Examples (Cubicle syntax):

- \(\text{init} \ (i \ x) \{ \ T = 0.0 \ \&\& \ B[i,x]=I \ \&\& \ldots \} \ \Rightarrow \ \forall_{i,x} \ldots \)

- \(\text{transition spout_emit}(i \ j) \ \Rightarrow \ \exists_{i,j} \ldots \)

 \[\text{requires} \ \{\ Tsmin<Stime[i] \ \&\& \ SubscribedBS[j,i]=True \ \&\& \ldots \} \]

 \[\{\ L[l]:=\text{case} \]
 \[\quad \mid \ l=j : \ L[l]+1.0 \]
 \[\quad \mid \ _ : \ L[l]; \]

- \(\text{unsafe}(i) \ \{\ L[i]>1.5 \} \ \Rightarrow \ \exists_{i} \ldots \)

Termination of the decision procedure:

- the current set of reachable states has a non-empty intersection with the set of initial states (safety check) \(\Rightarrow \) system is unsafe
- the current set has reached a fix-point (fix-point check) \(\Rightarrow \) system is safe
Array-based Systems

Formalizing an array-based system means specifying:

- the set of initial states
- the ordering of the actions (by means of a transition relation)
- the set of unsafe states (the negation of the formula we want to check)

Examples (Cubicle syntax):

- **init** (i x) \{ T = 0.0 \&\& B[i,x]=I \&\& ... \} \implies \forall_{i,x} ...
- **transition spout.emit**(i j) \implies \exists_{i,j} ...
 requires \{ Tsmin<Stime[i] \&\& SubscribedBS[j,i]=True \&\& ... \}
 \{ L[1]:=\text{case}
 \mid l=j : L[1]+1.0
 \mid _ : L[1];
 \}
- **unsafe**(i) \{ L[i]>1.5 \} \implies \exists_{i} ...

Symbolic representation of array-based systems: *quantified first-order logic formulae*. Verification of array-based systems: *decision procedure* based on backward reachability. Termination of the decision procedure:

- the current set of reachable states has a non-empty intersection with the set of initial states (safety check) \implies system is unsafe
- the current set has reached a fix-point (fix-point check) \implies system is safe
Array-based Systems

Formalizing an array-based system means specifying:
▶ the set of initial states
▶ the ordering of the actions (by means of a transition relation)
▶ the set of unsafe states (the negation of the formula we want to check)

Examples (Cubicle syntax):
▶ init (i x) { T = 0.0 && B[i,x]=I && ... } \iff \forall i,x...
▶ transition spout.emit(i j) \iff \exists i,j...
requires {Tsmin<Stime[i] && SubscribedBS[j,i]=True && ...}
{L[1]:=case
| l=j : L[1]+1.0
| _ : L[1];
}
▶ unsafe(i) { L[i]>1.5 } \iff \exists i...

Symbolic representation of array-based systems: quantified first-order logic formulae.
Verification of array-based systems: decision procedure based on backward reachability.
Termination of the decision procedure:
▶ the current set of reachable states has a non-empty intersection with the set of initial states (safety check) \implies system is unsafe
▶ the current set has reached a fix-point (fix-point check) \implies system is safe
Array-based Systems

Formalizing an array-based system means specifying:
- the set of initial states
- the ordering of the actions (by means of a transition relation)
- the set of unsafe states (the negation of the formula we want to check)

Examples (Cubicle syntax):

- init (i x) \{ T = 0.0 \&\& B[i,x]=I \&\& ... \} \leadsto \forall_{i,x} ...

- transition spout.emit(i j) \leadsto \exists_{i,j} ...

 requires \{Tsmin<Stime[i] \&\& SubscribedBS[j,i]=True \&\& ...\}
 \{
 L[1]:=case
 | l=j : L[1]+1.0
 | _ : L[1];
 \}

- unsafe(i) \{ L[i]>1.5 \} \leadsto \exists_{i} ...

Symbolic representation of array-based systems: quantified first-order logic formulae. Verification of array-based systems: decision procedure based on backward reachability. Termination of the decision procedure:

- the current set of reachable states has a non-empty intersection with the set of initial states (safety check) \Rightarrow system is unsafe
- the current set has reached a fix-point (fix-point check) \Rightarrow system is safe
Array-based Systems

Formalizing an array-based system means specifying:
- the set of initial states
- the ordering of the actions (by means of a transition relation)
- the set of unsafe states (the negation of the formula we want to check)

Examples (Cubicle syntax):
- `init (i x) { T = 0.0 && B[i,x]=I && ... } \leadsto \forall i,x ...

- `transition spout.emit(i j) \leadsto \exists i,j ...

 requires \{ Tsmin<Stime[i] && SubscribedBS[j,i]=True && ... \}
 \{ L[l] := case
 | l=j : L[l]+1.0
 | _ : L[l];
 \}

- `unsafe(i) { L[i]>1.5 } \leadsto \exists i ...

Symbolic representation of array-based systems: *quantified first-order logic formulae.*

Verification of array-based systems: *decision procedure* based on *backward reachability.*

Termination of the decision procedure:
- the current set of reachable states has a non-empty intersection with the set of initial states (*safety check*) \(\Rightarrow \) system is unsafe
- the current set has reached a fix-point (*fix-point check*) \(\Rightarrow \) system is safe
Array-based Systems

Formalizing an array-based system means specifying:

▶ the set of initial states
▶ the ordering of the actions (by means of a transition relation)
▶ the set of unsafe states (the negation of the formula we want to check)

Examples (Cubicle syntax):

▶ init (i x) { T = 0.0 && B[i,x]=I && ... } ⇝ ∀ i,x ...

▶ transition spout_emit(i j) ⇝ ∃ i,j ...

requires {Tsmin<Stime[i] && SubscribedBS[j,i]=True && ...}
{
 L[1]:=case
 | l=j : L[1]+1.0
 | _ : L[1];
}

▶ unsafe(i) { L[i]>1.5 } ⇝ ∃ i ...

Symbolic representation of array-based systems: quantified first-order logic formulae. Verification of array-based systems: decision procedure based on backward reachability. Termination of the decision procedure:

▶ the current set of reachable states has a non-empty intersection with the set of initial states (safety check) ⇒ system is unsafe
▶ the current set has reached a fix-point (fix-point check) ⇒ system is safe
Modeling assumptions

- Focus on the behavior of the queues of the bolts
- How time parameters of the topology affect the accumulation of tuples in the queues of the bolts
 - Time frequency the spouts send information to the subscribed bolts, i.e., *minimum time between two consecutive spout emits*
 - Tuples processing time for each bolt, i.e., *the time required by bolts to process a tuple (execution rate)*
- Spouts are considered sources of information; their queues are not represented
- Each bolt has one receiving queue and no sending queue
- Two approaches for abstracting the queues of the bolts:
 - Each bolt has one receiving queue for each of its parallel instances (multiple queues) ($L[i, x]$)
 - One single receiving queue is shared among all its parallel instances (shared queues) ($L[i]$)
- Usage of discrete counters for queues size changes
Modeling assumptions

- Focus on the behavior of the queues of the bolts
- How time parameters of the topology affect the accumulation of tuples in the queues of the bolts
 - Time frequency the spouts send information to the subscribed bolts, i.e. minimum time between two consecutive spout emits
 - Tuples processing time for each bolt, i.e. the time required by bolts to process a tuple (execution rate)
- Spouts are considered sources of information; their queues are not represented
- Each bolt has one receiving queue and no sending queue
- Two approaches for abstracting the queues of the bolts:
 - Each bolt has one receiving queue for each of its parallel instances (multiple queues) \(L[i, x] \)
 - One single receiving queue is shared among all its parallel instances (shared queues) \(L[i] \)
- Usage of discrete counters for queues size changes
Modeling assumptions

- Focus on the behavior of the queues of the bolts
- How time parameters of the topology affect the accumulation of tuples in the queues of the bolts
 - Time frequency the spouts send information to the subscribed bolts, i.e. *minimum time between two consecutive spout emits*
 - Tuples processing time for each bolt, i.e. *the time required by bolts to process a tuple (execution rate)*
- Spouts are considered sources of information; their queues are not represented
- Each bolt has one receiving queue and no sending queue
- Two approaches for abstracting the queues of the bolts:
 - each bolt has one receiving queue for each of its parallel instances (multiple queues) \((L[i,x])\)
 - one single receiving queue is shared among all its parallel instances (shared queues) \((L[i])\)
- Usage of discrete counters for queues size changes
Modeling assumptions

- Focus on the behavior of the queues of the bolts
- How time parameters of the topology affect the accumulation of tuples in the queues of the bolts
 - Time frequency the spouts send information to the subscribed bolts, i.e. *minimum time between two consecutive spout emits*
 - Tuples processing time for each bolt, i.e. *the time required by bolts to process a tuple (execution rate)*
- Spouts are considered sources of information; their queues are not represented
- Each bolt has one receiving queue and no sending queue
- Two approaches for abstracting the queues of the bolts:
 - Each bolt has one receiving queue for each of its parallel instances (multiple queues) ($L[i, x]$)
 - One single receiving queue is shared among all its parallel instances (shared queues) ($L[i]$)
- Usage of discrete counters for queues size changes
Modeling assumptions

- Focus on the behavior of the queues of the bolts
- How time parameters of the topology affect the accumulation of tuples in the queues of the bolts
 - Time frequency the spouts send information to the subscribed bolts, i.e. *minimum time between two consecutive spout emits*
 - Tuples processing time for each bolt, i.e. *the time required by bolts to process a tuple (execution rate)*
- Spouts are considered sources of information; their queues are not represented
- Each bolt has one receiving queue and no sending queue
- Two approaches for abstracting the queues of the bolts:
 - each bolt has one receiving queue for each of its parallel instances (multiple queues) \((L[i, x])\)
 - one single receiving queue is shared among all its parallel instances (shared queues) \((L[i])\)
- Usage of discrete counters for queues size changes
Modeling assumptions

- Focus on the behavior of the queues of the bolts
- How time parameters of the topology affect the accumulation of tuples in the queues of the bolts
 - Time frequency the spouts send information to the subscribed bolts, i.e. *minimum time between two consecutive spout emits*
 - Tuples processing time for each bolt, i.e. *the time required by bolts to process a tuple (execution rate)*
- Spouts are considered sources of information; their queues are not represented
- Each bolt has one receiving queue and no sending queue
- Two approaches for abstracting the queues of the bolts:
 - Each bolt has one receiving queue for each of its parallel instances (multiple queues) ($L[i,x]$)
 - One single receiving queue is shared among all its parallel instances (shared queues) ($L[i]$)
- Usage of discrete counters for queues size changes
Modeling assumptions

- Focus on the behavior of the queues of the bolts
- How time parameters of the topology affect the accumulation of tuples in the queues of the bolts
 - Time frequency the spouts send information to the subscribed bolts, i.e. *minimum time between two consecutive spout emits*
 - Tuples processing time for each bolt, i.e. *the time required by bolts to process a tuple (execution rate)*
- Spouts are considered sources of information; their queues are not represented
- Each bolt has one receiving queue and no sending queue
- Two approaches for abstracting the queues of the bolts:
 - each bolt has one receiving queue for each of its parallel instances (multiple queues) ($L[i, x]$)
 - one single receiving queue is shared among all its parallel instances (shared queues) ($L[i]$)
- Usage of discrete counters for queues size changes
Modeling assumptions

- Focus on the behavior of the queues of the bolts
- How time parameters of the topology affect the accumulation of tuples in the queues of the bolts
 - Time frequency the spouts send information to the subscribed bolts, i.e. *minimum time between two consecutive spout emits*
 - Tuples processing time for each bolt, i.e. *the time required by bolts to process a tuple (execution rate)*
- Spouts are considered sources of information; their queues are not represented
- Each bolt has one receiving queue and no sending queue
- Two approaches for abstracting the queues of the bolts:
 - each bolt has one receiving queue for each of its parallel instances (multiple queues) \((L[i, x])\)
 - one single receiving queue is shared among all its parallel instances (shared queues) \((L[i])\)
- Usage of discrete counters for queues size changes
Modeling assumptions

- Focus on the behavior of the queues of the bolts
- How time parameters of the topology affect the accumulation of tuples in the queues of the bolts
 - Time frequency the spouts send information to the subscribed bolts, i.e. *minimum time between two consecutive spout emits*
 - Tuples processing time for each bolt, i.e. *the time required by bolts to process a tuple (execution rate)*
- Spouts are considered sources of information; their queues are not represented
- Each bolt has one receiving queue and no sending queue
- Two approaches for abstracting the queues of the bolts:
 - each bolt has one receiving queue for each of its parallel instances (multiple queues) \((L[i, x])\)
 - one single receiving queue is shared among all its parallel instances (shared queues) \((L[i])\)
- Usage of discrete counters for queues size changes
Modeling assumptions

- Focus on the behavior of the queues of the bolts
- How time parameters of the topology affect the accumulation of tuples in the queues of the bolts
 - Time frequency the spouts send information to the subscribed bolts, i.e. *minimum time between two consecutive spout emits*
 - Tuples processing time for each bolt, i.e. *the time required by bolts to process a tuple (execution rate)*
- Spouts are considered sources of information; their queues are not represented
- Each bolt has one receiving queue and no sending queue
- Two approaches for abstracting the queues of the bolts:
 - Each bolt has one receiving queue for each of its parallel instances (multiple queues) \((L[i, x])\)
 - One single receiving queue is shared among all its parallel instances (shared queues) \((L[i])\)
- Usage of discrete counters for queues size changes
Formalization and Verification

The formalization captures the topology behavior (subscription relation, current state, modeling assumptions) through transitions:

- **discrete** transitions change the state of the topology components or updating the size of the queues of the bolts but they do not modify the value of the global time T

- **continuous** transition changes the value of the global time T and, possibly, the states of some bolts when their processing has been terminated during the last δ time units

$$\exists 0 < \delta \land CanTimeElapse = \text{true} \land$$

$$\begin{align*}
T' &= T + \delta \\
\forall j, z \left(P'[j, z] &= \text{if } (0 \leq P[j, z] - \delta) \text{then } P[j, z] - \delta \text{ else } 0 \right) \\
B'[j, z] &= \ldots \\
\text{CanTimeElapse}' &= \text{false}
\end{align*}$$

Examples of transitions and their effect:

- **spout emit**(i, j): $L[j]$ increases ($\text{SubscribedBS}[j, i]$); emit time of the spout (Stime) is reset

- **bolt emit**(i, j): the state of $B[i]$ is changed into idle and $L[j]$ is incremented by 1

- **bolt take**(j, y): $L[j]$ is decreased by 1 and the percentage of tuple processing of the thread receiving the tuple ($P[j, y]$) is set to 1

Formalization and verification was performed in the same framework: MCMT (http://users.mat.unimi.it/users/ghilardi/mcmt/), respectively Cubicle (http://cubicle.lri.fr/).
Formalization and Verification

The formalization captures the topology behavior (subscription relation, current state, modeling assumptions) through transitions:

- **discrete** transitions change the state of the topology components or updating the size of the queues of the bolts but they do not modify the value of the global time T

- **continuous** transition changes the value of the global time T and, possibly, the states of some bolts when their processing has been terminated during the last δ time units

\[
\exists \delta > 0 \land \text{CanTimeElapse} = \text{true} \land \\
\begin{aligned}
\frac{\delta}{T'} &= T + \delta \\
\forall j (P'[j, z]) &= \text{if } (0 \leq P[j, z] - \delta) \text{then } P[j, z] - \delta \text{ else } 0 \\
\forall j (B'[j, z]) &= \text{...} \\
\text{CanTimeElapse}' &= \text{false}
\end{aligned}
\]

Examples of transitions and their effect:

- **spout_emit(i, j)**: $L[j]$ increases ($\text{SubscribedBS}[j, i]$); emit time of the spout (Stime) is reset

- **bolt_emit(i, j)**: the state of $B[i]$ is changed into idle and $L[j]$ is incremented by 1

- **bolt_take(j, y)**: $L[j]$ is decreased by 1 and the percentage of tuple processing of the thread receiving the tuple ($P[j, y]$) is set to 1

Formalization and verification was performed in the same framework: MCMT (http://users.mat.unimi.it/users/ghilardi/mcmt/), respectively Cubicle (http://cubicle.lri.fr/).
Formalization and Verification

The formalization captures the topology behavior (subscription relation, current state, modeling assumptions) through transitions:

- **discrete** transitions change the state of the topology components or updating the size of the queues of the bolts but they do not modify the value of the global time \(T \)

- **continuous** transition changes the value of the global time \(T \) and, possibly, the states of some bolts when their processing has been terminated during the last \(\delta \) time units

\[
\exists \delta > 0 \land CanTimeElapse = true \land \\
\forall \left(\begin{array}{l}
T' = T + \delta \\
P'[j, z] = \text{if } (0 \leq P[j, z] - \delta) \text{then } P[j, z] - \delta \text{ else } 0 \\
B'[j, z] \ldots \\
CanTimeElapse' = false
\end{array} \right)
\]

Examples of transitions and their effect:

- **spout_emit(i, j)**: \(L[j] \) increases (\(SubscribedBS[j, i] \)); emit time of the spout (\(Stime \)) is reset

- **bolt_emit(i, j)**: the state of \(B[i] \) is changed into \textit{idle} and \(L[j] \) is incremented by 1

- **bolt_take(j, y)**: \(L[j] \) is decreased by 1 and the percentage of tuple processing of the thread receiving the tuple \((P[j, y]) \) is set to 1

Formalization and verification was performed in the same framework: MCMT (http://users.mat.unimi.it/users/ghilardi/mcmt/), respectively Cubicle (http://cubicle.lri.fr/).
Formalization and Verification

The formalization captures the topology behavior (subscription relation, current state, modeling assumptions) through transitions:

- **discrete** transitions change the state of the topology components or updating the size of the queues of the bolts but they do not modify the value of the global time \(T \)
- **continuous** transition changes the value of the global time \(T \) and, possibly, the states of some bolts when their processing has been terminated during the last \(\delta \) time units

\[
\exists \frac{\delta}{\delta} 0 < \delta \wedge \text{CanTimeElapse} = \text{true} \wedge \\
\forall j, z \begin{pmatrix} \left(T' = T + \delta \\ P'[j, z] = \text{if } (0 \leq P[j, z] - \delta) \text{then } P[j, z] - \delta \text{ else } 0 \\ B'[j, z] \\
\text{CanTimeElapse'} = \text{false} \end{pmatrix}
\]

Examples of transitions and their effect:

- **spout_{emit}(i, j)**: \(L[j] \) increases (\(\text{SubscribedBS}[j, i] \)); emit time of the spout (\(\text{Stime} \)) is reset
- **bolt_{emit}(i, j)**: the state of \(B[i] \) is changed into \text{idle} and \(L[j] \) is incremented by 1
- **bolt_{take}(j, y)**: \(L[j] \) is decreased by 1 and the percentage of tuple processing of the thread receiving the tuple (\(P[j, y] \)) is set to 1

Formalization and verification was performed in the same framework: MCMT (http://users.mat.unimi.it/users/ghilardi/mcmt/), respectively Cubicle (http://cubicle.lri.fr/).
Formalization and Verification

The formalization captures the topology behavior (subscription relation, current state, modeling assumptions) through transitions:

- **discrete** transitions change the state of the topology components or updating the size of the queues of the bolts but they do not modify the value of the global time T
- **continuous** transition changes the value of the global time T and, possibly, the states of some bolts when their processing has been terminated during the last δ time units

$$\exists \delta > 0 \land \text{CanTimeElapse} = \text{true} \land$$

$$\forall (T', P'[j, z], B'[j, z], \ldots) = \begin{cases} T + \delta & \text{if } (0 \leq P[j, z] - \delta) \text{then } P[j, z] - \delta \text{ else } 0 \\ \text{CanTimeElapse}' = \text{false} & \end{cases}$$

Examples of transitions and their effect:

- **spout Emit** (i, j): $L[j]$ increases ($\text{SubscribedBS}[j, i]$); emit time of the spout (Stime) is reset
- **bolt Emit** (i, j): the state of $B[i]$ is changed into idle and $L[j]$ is incremented by 1
- **bolt Take** (j, y): $L[j]$ is decreased by 1 and the percentage of tuple processing of the thread receiving the tuple ($P[j, y]$) is set to 1

Formalization and verification were performed in the same framework: MCMT (http://users.mat.unimi.it/users/ghilardi/mcmt/), respectively Cubicle (http://cubicle.lri.fr/).
Formalization and Verification

The **formalization** captures the topology behavior (subscription relation, current state, modeling assumptions) through transitions:

- **discrete** transitions change the state of the topology components or updating the size of the queues of the bolts but they do not modify the value of the global time T

- **continuous** transition changes the value of the global time T and, possibly, the states of some bolts when their processing has been terminated during the last δ time units

\[
\exists \delta > 0 \land \text{CanTimeElapse} = \text{true} \land \\
\forall j, z \left(\\
\begin{align*}
T' &= T + \delta \\
P'[j, z] &= \text{if } (0 \leq P[j, z] - \delta) \text{then } P[j, z] - \delta \text{ else } 0 \\
B'[j, z] &= \ldots \\
\text{CanTimeElapse}' &= \text{false}
\end{align*}
\right)
\]

Examples of transitions and their effect:

- **spout**$_{\text{emit}}(i, j)$: $L[j]$ increases ($\text{SubscribedBS}[j, i]$); emit time of the spout ($Stime$) is reset

- **bolt**$_{\text{emit}}(i, j)$: the state of $B[i]$ is changed into idle and $L[j]$ is incremented by 1

- **bolt**$_{\text{take}}(j, y)$: $L[j]$ is decreased by 1 and the percentage of tuple processing of the thread receiving the tuple ($P[j, y]$) is set to 1

Formalization and verification was performed in the same framework: MCMT (http://users.mat.unimi.it/users/ghilardi/mcmt/), respectively Cubicle (http://cubicle.lri.fr/).
Formalization and Verification

The formalization captures the topology behavior (subscription relation, current state, modeling assumptions) through transitions:

- **discrete** transitions change the state of the topology components or updating the size of the queues of the bolts but they do not modify the value of the global time T
- **continuous** transition changes the value of the global time T and, possibly, the states of some bolts when their processing has been terminated during the last δ time units

$$\exists \delta > 0 \land CanTimeElapse = true \land$$

$$\forall j, z \left(\begin{array}{c}
T' = T + \delta \\
p'[j, z] = \text{if } (0 \leq p[j, z] - \delta) \text{then } p[j, z] - \delta \text{ else } 0 \\
b'[j, z] = \ldots \\
CanTimeElapse' = false
\end{array}\right)$$

Examples of transitions and their effect:

- **spout** emit (i, j): $L[j]$ increases ($SubscribedBS[j, i]$); emit time of the spout ($Stime$) is reset
- **bolt** emit (i, j): the state of $B[i]$ is changed into idle and $L[j]$ is incremented by 1
- **bolt** take (j, y): $L[j]$ is decreased by 1 and the percentage of tuple processing of the thread receiving the tuple ($P[j, y]$) is set to 1

Formalization and verification was performed in the same framework: MCMT (http://users.mat.unimi.it/users/ghilardi/mcmt/), respectively Cubicle (http://cubicle.lri.fr/).
Formalization and Verification

The formalization captures the topology behavior (subscription relation, current state, modeling assumptions) through transitions:

- **discrete** transitions change the state of the topology components or updating the size of the queues of the bolts but they do not modify the value of the global time T
- **continuous** transition changes the value of the global time T and, possibly, the states of some bolts when their processing has been terminated during the last δ time units

\[
\exists \delta > 0 \land \text{CanTimeElapse} = \text{true} \land \\
\left(T' = T + \delta, P'[j, z] = \begin{cases} P[j, z] - \delta & \text{if } 0 \leq P[j, z] - \delta \\ 0 & \text{else} \end{cases}, B'[j, z] = \ldots, \text{CanTimeElapse}' = \text{false} \right)
\]

Examples of transitions and their effect:

- **spout_emit\(_i,j\)**: $L[j]$ increases ($SubscribedBS[j, i]$); emit time of the spout ($Stime$) is reset
- **bolt_emit\(_i,j\)**: the state of $B[i]$ is changed into idle and $L[j]$ is incremented by 1
- **bolt_take\(_j,y\)**: $L[j]$ is decreased by 1 and the percentage of tuple processing of the thread receiving the tuple ($P[j, y]$) is set to 1

Formalization and verification was performed in the same framework: MCMT (http://users.mat.unimi.it/users/ghilardi/mcmt/), respectively Cubicle (http://cubicle.lri.fr/).
Challenges

- **Nondeterministic updates**

\[
\exists x, y, i, j \quad \text{statechange} = \text{true} \land \\
\left(\begin{array}{l}
\text{statechange}' = \text{false} \\
\ldots \\
B'[l, z] = \\
\forall l, k, z \quad \begin{cases}
\text{true} & \text{if } (z = y \land l = j \land B[j, y] = E) \\
\text{else} & \\
\end{cases}
\end{array} \right)
\]

- **Reducing the dimension of the search space**

 - spout states were left out; only the time elapsing to enable spout emit is considered
 - bolt queues have only one dimension (shared queue)

\[
\exists i, j, x \quad T_{\text{min}} < Stime[j] \land \text{SubscribedBS}[j, i] = \text{true} \land \\
\left(\begin{array}{l}
\text{true} \quad \begin{cases}
L'[l] = \text{if } (l = j) \text{ then } L[l] + 1 \text{ else } L[l] \\
\text{then } \\
\end{cases} \\
\forall L' \quad \begin{cases}
\text{true} \quad \begin{cases}
\text{else } & \\
\end{cases} \\
\end{cases}
\end{array} \right)
\]

- **Incorrect firing of transitions:** the implemented backward reachability algorithm lacks the so-called *urgent transitions*.

Our case: simulation of urgent transitions via flags; bolt emit and take are urgent wrt spout emits.

- **Number of transitions** limited by:

 - the emit state of a bolt is enforced if a bolt is ready to emit
 - state take omitted
 - restrict the reachability analysis only to one bolt (bolt 1) of the system
Challenges

▶ Nondeterministic updates

\[\exists x, y, i, j \text{ statechange} = \text{true} \land \]
\[\text{statechange}' = \text{false} \]
\[\ldots \]
\[\forall l, k, z \left(B'[l, z] = \begin{cases} \text{if } (z = y \land l = j \land B[j, y] = E) \text{ then } (I \text{ or } K) \text{ else } B[l, z] \\ \text{elseif } \ldots \end{cases} \right) \]
\[\text{CanTimeElapse}' = \text{true} \]

▶ Reducing the dimension of the search space

▶ spout states were left out; only the time elapsing to enable spout emit is considered
▶ bolt queues have only one dimension (shared queue)

\[\exists i, j, x \text{ Ts}_{\text{min}} < \text{Stime}[i] \land \text{SubscribedBS}[j, i] = \text{true} \land \ldots \]
\[\left(L'[l] = \begin{cases} \text{if } (l = j) \text{ then } L[l] + 1 \text{ else } L[l] \\ \text{elseif } \ldots \end{cases} \right) \]
\[\forall l \left(\text{Stime}'[l] = \begin{cases} \text{if } (l = i) \text{ then } 0 \text{ else } \text{Stime}[l] \end{cases} \right) \]

▶ Incorrect firing of transitions: the implemented backward reachability algorithm lacks the so-called urgent transitions.
Our case: simulation of urgent transitions via flags; bolt emit and take are urgent wrt spout emits.

▶ Number of transitions limited by:
▶ the emit state of a bolt is enforced if a bolt is ready to emit
▶ state take omitted
▶ restrict the reachability analysis only to one bolt (bolt 1) of the system
Challenges

- **Nondeterministic updates**

 \[\exists_{x,y,i,j} \text{statechange} = \text{true} \land \]
 \[
 \begin{cases}
 \text{statechange}' = \text{false} \\
 \ldots \\
 B'[l, z] = \begin{cases}
 \text{if } (z=y \land l=j \land B[j, y]=E) & \text{then } (I \text{ or } K) \text{ else } B[l, z] \\
 \text{elseif } \ldots \\
 \text{CanTimeElapse}' = \text{true}
 \end{cases}
 \end{cases}
 \]

- **Reducing the dimension of the search space**
 - spout states were left out; only the time elapsing to enable spout emit is considered
 - bolt queues have only one dimension (shared queue)

 \[\exists_{i,j,x} T_{\text{min}}<\text{Stime}[i] \land \text{SubscribedBS}[j, i]=\text{true} \land \ldots \]

 \[
 \begin{cases}
 L'[l] = \begin{cases}
 \text{if } (l=j) & \text{then } L[l]+1 \text{ else } L[l] \\
 \ldots \\
 \text{elseif } \ldots \\
 \text{Stime}'[l] = \begin{cases}
 \text{if } (l=i) & \text{then } 0 \text{ else } \text{Stime}[l] \\
 \ldots
 \end{cases}
 \end{cases}
 \end{cases}
 \]

- **Incorrect firing of transitions**: the implemented backward reachability algorithm lacks the so-called *urgent transitions*.

 Our case: simulation of urgent transitions via flags; bolt emit and take are urgent wrt spout emits.

- **Number of transitions** limited by:
 - the emit state of a bolt is enforced if a bolt is ready to emit
 - state take omitted
 - restrict the reachability analysis only to one bolt (bolt 1) of the system
Challenges

▶ Nondeterministic updates

\[\exists x, y, i, j \quad \text{statechange} = \text{true} \wedge \]
\[\begin{cases}
\text{statechange}' = \text{false} \\
\ldots \\
B'[l, z] = \begin{cases}
\text{if } (z = y \wedge l = j \wedge B[j, y] = \text{E}) & \text{then } (I \text{ or } K) \\
\text{else } B[l, z] & \text{elseif } \ldots
\end{cases} \\
\text{CanTimeElapse}' = \text{true}
\end{cases} \]

▶ Reducing the dimension of the search space

▶ spout states were left out; only the time elapsing to enable spout emit is considered
▶ bolt queues have only one dimension (shared queue)

\[\exists i, j, x \quad Ts_{\text{min}} < Stime[i] \wedge \text{SubscribedBS}[j, i] = \text{true} \wedge \ldots \\
\begin{cases}
L'[l] = \begin{cases}
\text{if } (l = j) & \text{then } L[l] + 1 \\
\text{else } L[l] & \text{elseif } \ldots
\end{cases} \\
Stime'[l] = \begin{cases}
\text{if } (l = i) & \text{then } 0 \\
\text{else } Stime[l] & \text{elseif } \ldots
\end{cases}
\end{cases} \]

▶ Incorrect firing of transitions: the implemented backward reachability algorithm lacks the so-called urgent transitions.
Our case: simulation of urgent transitions via flags; bolt emit and take are urgent wrt spout emits.

▶ Number of transitions limited by:
▶ the emit state of a bolt is enforced if a bolt is ready to emit
▶ state take omitted
▶ restrict the reachability analysis only to one bolt (bolt 1) of the system
Challenges

- **Nondeterministic updates**

\[\exists x, y, i, j \quad \text{statechange} = \text{true} \land \]
\[
\left(\text{statechange}' = \text{false} \right) \implies \]
\[
\left(\forall l, k, z \quad B'[l, z] = \begin{cases}
 \text{if } (z = y \land l = j \land B[j, y] = E) & \text{then } (I \lor K) \text{ else } B[l, z] \\
 \text{elseif } \ldots
\end{cases} \right) \]
\[
\text{CanTimeElapse}' = \text{true} \]

- **Reducing the dimension of the search space**
 - spout states were left out; only the time elapsing to enable spout emit is considered
 - bolt queues have only one dimension (shared queue)

\[\exists i, j, x \quad T_{\text{min}} < \text{Stime}[i] \land \text{SubscribedBS}[j, i] = \text{true} \land \ldots \]
\[
\left(L'[l] = \begin{cases}
 \text{if } (l = j) & \text{then } L[l] + 1 \text{ else } L[l] \\
 \text{elseif } \ldots
\end{cases} \right) \]
\[
\forall l, k, z \quad \left(\text{Stime}'[l] = \begin{cases}
 \text{if } (l = i) & \text{then } 0 \text{ else } \text{Stime}[l] \\
 \text{elseif } \ldots
\end{cases} \right) \]

- **Incorrect firing of transitions**: the implemented backward reachability algorithm lacks the so-called *urgent transitions*.
Our case: simulation of urgent transitions via flags; bolt emit and take are urgent wrt spout emits.

- **Number of transitions limited by**:
 - the emit state of a bolt is enforced if a bolt is ready to emit
 - state take omitted
 - restrict the reachability analysis only to one bolt (bolt 1) of the system
Challenges

- Nondeterministic updates

\[\exists \ x,y,i,j \quad \text{statechange} = \text{true} \land \]
\[\begin{align*}
\text{statechange}' &= \text{false} \\
\ldots \\
B'[l,z] &= \begin{cases}
\text{if } (z=y \land l=j \land B[j,y]=E) \\
\text{then } (I \lor K) \text{ else } B[l,z] \\
\text{elseif } \ldots \\
\text{CanTimeElapse}' &= \text{true}
\end{cases}
\end{align*} \]

- Reducing the dimension of the search space
 - spout states were left out; only the time elapsing to enable spout emit is considered
 - bolt queues have only one dimension (shared queue)

\[\exists \ i,j,x \quad Ts_{\min}<Stime[i] \land SubscribedBS[j, i]=\text{true} \land \ldots \]
\[\begin{align*}
L'[l] &= \begin{cases}
\text{if } (l=j) \text{ then } L[l]+1 \text{ else } L[l]
\end{cases} \\
\forall \ l \quad Stime'[l] &= \begin{cases}
\text{if } (l=i) \text{ then } 0 \text{ else } Stime[l]
\end{cases} \\
\ldots
\end{align*} \]

- Incorrect firing of transitions: the implemented backward reachability algorithm lacks the so-called \textit{urgent transitions}.

\textbf{Our case:} simulation of urgent transitions via flags; bolt emit and take are urgent \textit{wrt} spout emits.

- Number of transitions limited by:
 - the emit state of a bolt is enforced if a bolt is ready to emit
 - state take omitted
 - restrict the reachability analysis only to one bolt (bolt 1) of the system
Challenges

- **Nondeterministic updates**

\[
\exists \ x, y, i, j \quad \begin{cases}
\text{statechange} = \text{true} \land \\
\text{statechange}' = \text{false} \\
\ldots \\
B'[l, z] = \begin{cases}
\text{if} \ (z = y \land l = j \land B[j, y] = E) \text{ then } (I \text{ or } K) \text{ else } B[l, z] \\
\text{elseif} \ldots \\
\text{CanTimeElapse}' = \text{true}
\end{cases}
\end{cases}
\]

- **Reducing the dimension of the search space**

 - spout states were left out; only the time elapsing to enable spout emit is considered
 - bolt queues have only one dimension (shared queue)

\[
\exists \ i, j, x \quad \begin{cases}
Ts_{\text{min}} < Stime[i] \land SubscribedBS[j, i] = \text{true} \land \\
L'[l] = \begin{cases}
\text{if} \ (l = j) \text{ then } L[l] + 1 \text{ else } L[l] \\
\end{cases} \\
Stime'[l] = \begin{cases}
\text{if} \ (l = i) \text{ then } 0 \text{ else } Stime[l] \\
\ldots
\end{cases}
\end{cases}
\]

- **Incorrect firing of transitions**: the implemented backward reachability algorithm lacks the so-called *urgent transitions*.

 Our case: simulation of urgent transitions via flags; bolt emit and take are urgent wrt spout emits.

- **Number of transitions** limited by:
 - the emit state of a bolt is enforced if a bolt is ready to emit
 - state take omitted
 - restrict the reachability analysis only to one bolt (bolt 1) of the system
Challenges

▶ Nondeterministic updates

\[
\exists x, y, i, j, \exists statechange = true \land
\begin{align*}
 statechange' &= false \\
 \forall l, k, z \left(B'[l, z] \right) &= \begin{cases}
 \text{if} \ (z = y \land l = j \land B[j, y] = E) & \text{then} (I \lor K) \text{ else } B[l, z] \\
 \text{elseif} & \ldots \\
 CanTimeElapse' &= true
\end{cases}
\end{align*}
\]

▶ Reducing the dimension of the search space

▶ spout states were left out; only the time elapsing to enable spout emit is considered
▶ bolt queues have only one dimension (shared queue)

\[
\exists T_{\min} < Stime[i] \land SubscribedBS[j, i] = true \land \ldots
\]

\[
\begin{align*}
 L'[l] &= \begin{cases}
 \text{if} \ (l = j) & \text{then } L[l] + 1 \text{ else } L[l] \\
 \ldots
\end{cases} \\
 Stime'[l] &= \begin{cases}
 \text{if} \ (l = i) & \text{then } 0 \text{ else } Stime[l] \\
 \ldots
\end{cases}
\end{align*}
\]

▶ Incorrect firing of transitions: the implemented backward reachability algorithm lacks the so-called urgent transitions.

Our case: simulation of urgent transitions via flags; bolt emit and take are urgent wrt spout emits.

▶ Number of transitions limited by:

▶ the emit state of a bolt is enforced if a bolt is ready to emit
▶ state take omitted
▶ restrict the reachability analysis only to one bolt (bolt 1) of the system
Challenges

- **Nondeterministic updates**

\[
\exists \ x, y, i, j \text{ such that}\]
\[
\exists statechange = \text{true} \land
\]
\[
\left(\begin{array}{c}
statechange' = \text{false} \\
B'[l, z] = \text{if } (z=y \land l=j \land B[j, y]=E) \text{ then } (I \text{ or } K) \text{ else } B[l, z] \\
\text{CanTimeElapse'} = \text{true}
\end{array}\right)
\]

- **Reducing the dimension of the search space**
 - spout states were left out; only the time elapsing to enable spout emit is considered
 - bolt queues have only one dimension (shared queue)

\[
\exists \ i, j, x \text{ such that}\]
\[
T_{\text{min}} < Stime[i] \land \text{SubscribedBS}[j, i]=\text{true} \land \ldots
\]
\[
\forall l \left(L'[l] = \text{if } (l=j) \text{ then } L[l]+1 \text{ else } L[l]\right)
\]
\[
\forall l \left(Stime'[l] = \text{if } (l=i) \text{ then } 0 \text{ else } Stime[l]\right)
\]

- **Incorrect firing of transitions**: the implemented backward reachability algorithm lacks the so-called *urgent transitions*.

Our case: simulation of urgent transitions via flags; bolt emit and take are urgent wrt spout emits.

- **Number of transitions** limited by:
 - the emit state of a bolt is enforced if a bolt is ready to emit
 - state take omitted
 - restrict the reachability analysis only to one bolt (bolt 1) of the system
Challenges

- **Nondeterministic updates**

\[
\exists x, y, i, j \quad \text{statechange} = \text{true} \land \\
\left(\text{statechange}' = \text{false} \land \ldots \begin{align*}
B'[l, z] &= \begin{cases}
\text{if (z=y \land l=j \land B[j, y]=E)} & \text{then (I or K) else } B[l, z] \\
\text{elseif} & \ldots
\end{cases} \\
\text{CanTimeElapse}' &= \text{true}
\right)
\]

- **Reducing the dimension of the search space**
 - spout states were left out; only the time elapsing to enable spout emit is considered
 - bolt queues have only one dimension (shared queue)

\[
\exists i, j, x \quad Ts_{min} < Stime[i] \land SubscribedBS[j, i]=\text{true} \land \ldots \\
\begin{align*}
L'[l] &= \begin{cases}
\text{if (l=j)} & \text{then } L[l]+1 \text{ else } L[l] \\
\text{elseif} & \ldots
\end{cases} \\
Stime'[l] &= \begin{cases}
\text{if (l=i)} & \text{then } 0 \text{ else } Stime[l] \\
\text{elseif} & \ldots
\end{cases}
\end{align*}
\]

- **Incorrect firing of transitions**: the implemented backward reachability algorithm lacks the so-called *urgent transitions*.
 Our case: simulation of urgent transitions via flags; bolt emit and take are urgent wrt spout emits.

- **Number of transitions** limited by:
 - the emit state of a bolt is enforced if a bolt is ready to emit
 - state take omitted
 - restrict the reachability analysis only to one bolt (bolt 1) of the system
Experimental results

First attempt:

- $L[1] \geq 3$ and $Tsmin < 1$ – expected result: UNSAFE

 Trace: \textit{Init} \rightarrow \textit{time_elapsed} \rightarrow \textit{setDoTake}$_{\text{False}}$ \rightarrow \textit{setDoEmit}$_{\text{False}}$ \rightarrow \textit{spout_emit}$ \rightarrow$ \textit{time_elapsed} \rightarrow \textit{setDoTake}$_{\text{True}}$ \rightarrow \textit{setDoEmit}$_{\text{False}}$ \rightarrow \textit{bolt1_take}$ \rightarrow$ \textit{setDoTake}$_{\text{False}}$ \rightarrow \textit{setDoEmit}$_{\text{False}}$ \rightarrow \textit{spout_emit}$ \rightarrow$ \textit{time_elapsed} \rightarrow \textit{setDoTake}$_{\text{False}}$ \rightarrow \textit{setDoEmit}$_{\text{False}}$ \rightarrow \textit{spout_emit}$ \rightarrow$ $L[1] \geq 2$

- $L[1] \geq 3$ and $Tsmin \geq 1$ – expected result: SAFE

Result: the verification problems lead to memory exhaustion.

Second attempt:

- $L[1] \geq 2$ and $Tsmin < 1$ – obtained result: UNSAFE

- $L[1] \geq 2$ and $Tsmin \geq 1$ – expected result: SAFE
Experimental results

First attempt:

- $L[1] \geq 3$ and $Ts\min < 1$ – expected result: UNSAFE

 Trace: $Init \rightarrow time_elapse \rightarrow setDoTake_{False} \rightarrow setDoEmit_{False} \rightarrow spout_{emit} \rightarrow time_elapse \rightarrow setDoTake_{True} \rightarrow setDoEmit_{False} \rightarrow bolt1_take \rightarrow setDoTake_{False} \rightarrow setDoEmit_{False} \rightarrow spout_{emit} \rightarrow time_elapse \rightarrow setDoTake_{False} \rightarrow setDoEmit_{False} \rightarrow spout_{emit} \rightarrow L[1] \geq 2$

- $L[1] \geq 3$ and $Ts\min \geq 1$ – expected result: SAFE

Result: the verification problems lead to memory exhaustion.

Second attempt:

- $L[1] \geq 2$ and $Ts\min < 1$ – obtained result: UNSAFE
- $L[1] \geq 2$ and $Ts\min \geq 1$ – expected result: SAFE
Experimental results

First attempt:

- $L[1] \geq 3$ and $T_{smin} < 1$ – expected result: UNSAFE

 Trace: $Init \rightarrow time_elapse \rightarrow setDoTake_{False} \rightarrow setDoEmit_{False} \rightarrow spout_{emit} \rightarrow time_elapse \rightarrow setDoTake_{True} \rightarrow setDoEmit_{False} \rightarrow bolt1_{take} \rightarrow setDoTake_{False} \rightarrow setDoEmit_{False} \rightarrow spout_{emit} \rightarrow time_elapse \rightarrow setDoTake_{False} \rightarrow spout_{emit} \rightarrow l[1] \geq 2$

- $L[1] \geq 3$ and $T_{smin} \geq 1$ – expected result: SAFE

Result: the verification problems lead to memory exhaustion.

Second attempt:

- $L[1] \geq 2$ and $T_{smin} < 1$ – obtained result: UNSAFE

- $L[1] \geq 2$ and $T_{smin} \geq 1$ – expected result: SAFE
Experimental results

First attempt:

- $L[1] \geq 3$ and $Tsmin < 1$ – expected result: UNSAFE

 Trace:
 Init \rightarrow time_elapse \rightarrow setDoTake_False \rightarrow setDoEmit_False \rightarrow spout_emit \rightarrow time_elapse \rightarrow setDoTake_True \rightarrow setDoEmit_False \rightarrow bolt1_take \rightarrow setDoTake_False \rightarrow setDoEmit_False \rightarrow spout_emit \rightarrow time_elapse \rightarrow setDoTake_False \rightarrow setDoEmit_False \rightarrow spout_emit \rightarrow $L[1] \geq 2$

- $L[1] \geq 3$ and $Tsmin \geq 1$ – expected result: SAFE

Result: the verification problems lead to memory exhaustion.

Second attempt:

- $L[1] \geq 2$ and $Tsmin < 1$ – obtained result: UNSAFE

- $L[1] \geq 2$ and $Tsmin \geq 1$ – expected result: SAFE
Experimental results

First attempt:

- \(L[1] \geq 3 \) and \(Tsmin < 1 \) – expected result: UNSAFE

 Trace: \(Init \rightarrow time_elapse \rightarrow setDoTake_{False} \rightarrow setDoEmit_{False} \rightarrow spout_{emit} \rightarrow time_elapse \rightarrow setDoTake_{True} \rightarrow setDoEmit_{False} \rightarrow bolt1_{take} \rightarrow setDoTake_{False} \rightarrow setDoEmit_{False} \rightarrow spout_{emit} \rightarrow time_elapse \rightarrow setDoTake_{False} \rightarrow setDoEmit_{False} \rightarrow spout_{emit} \rightarrow L[1] \geq 2 \)

- \(L[1] \geq 3 \) and \(Tsmin \geq 1 \) – expected result: SAFE

Result: the verification problems lead to memory exhaustion.

Second attempt:

- \(L[1] \geq 2 \) and \(Tsmin < 1 \) – obtained result: UNSAFE

- \(L[1] \geq 2 \) and \(Tsmin \geq 1 \) – expected result: SAFE
Experimental results

First attempt:

- $L[1] \geq 3$ and $Tsmin < 1$ – expected result: UNSAFE

 Trace: $Init \rightarrow time_elapse \rightarrow setDoTake_{False} \rightarrow setDoEmit_{False} \rightarrow spout_{emit} \rightarrow time_elapse \rightarrow setDoTake_{True} \rightarrow setDoEmit_{False} \rightarrow bolt1_{take} \rightarrow setDoTake_{False} \rightarrow setDoEmit_{False} \rightarrow spout_{emit} \rightarrow time_elapse \rightarrow setDoTake_{False} \rightarrow setDoEmit_{False} \rightarrow spout_{emit} \rightarrow L[1] \geq 2$

- $L[1] \geq 3$ and $Tsmin \geq 1$ – expected result: SAFE

Result: the verification problems lead to memory exhaustion.

Second attempt:

- $L[1] \geq 2$ and $Tsmin < 1$ – obtained result: UNSAFE

- $L[1] \geq 2$ and $Tsmin \geq 1$ – expected result: SAFE
Experimental results

First attempt:
- $L[1] \geq 3$ and $Tsmin < 1$ – expected result: UNSAFE

Trace:
- $\text{Init} \rightarrow \text{time_elapse} \rightarrow \text{setDoTake}_\text{False} \rightarrow \text{setDoEmit}_\text{False} \rightarrow \text{spout}_\text{emit} \rightarrow \text{time_elapse} \rightarrow \text{setDoTake}_\text{True} \rightarrow \text{setDoEmit}_\text{False} \rightarrow \text{bolt1}_\text{take} \rightarrow \text{setDoTake}_\text{False} \rightarrow \text{setDoEmit}_\text{False} \rightarrow \text{spout}_\text{emit} \rightarrow \text{time_elapse} \rightarrow \text{setDoTake}_\text{False} \rightarrow \text{setDoEmit}_\text{False} \rightarrow \text{spout}_\text{emit} \rightarrow L[1] \geq 2$

- $L[1] \geq 3$ and $Tsmin \geq 1$ – expected result: SAFE

Result: the verification problems lead to memory exhaustion.

Second attempt:
- $L[1] \geq 2$ and $Tsmin < 1$ – obtained result: UNSAFE
- $L[1] \geq 2$ and $Tsmin \geq 1$ – expected result: SAFE
Experimental results

First attempt:

- $L[1] \geq 3$ and $Tsmin < 1$ – expected result: UNSAFE

 Trace: $Init \rightarrow time_elapse \rightarrow setDoTake_{\text{False}} \rightarrow setDoEmit_{\text{False}} \rightarrow spout_{\text{emit}} \rightarrow time_elapse \rightarrow setDoTake_{\text{True}} \rightarrow setDoEmit_{\text{False}} \rightarrow bolt_{1\text{take}} \rightarrow setDoTake_{\text{False}} \rightarrow setDoEmit_{\text{False}} \rightarrow spout_{\text{emit}} \rightarrow time_elapse \rightarrow setDoTake_{\text{False}} \rightarrow setDoEmit_{\text{False}} \rightarrow spout_{\text{emit}} \rightarrow L[1] \geq 2$

- $L[1] \geq 3$ and $Tsmin \geq 1$ – expected result: SAFE

Result: the verification problems lead to memory exhaustion.

Second attempt:

- $L[1] \geq 2$ and $Tsmin < 1$ – obtained result: UNSAFE

- $L[1] \geq 2$ and $Tsmin \geq 1$ – expected result: SAFE
Current and Future Work

- Refinements of the presented model, linear topologies limiting the analysis to well-founded transition systems
- New model to capturing relevant properties of distributed systems, e.g. tuple order is compatible with tuple time
Current and Future Work

- Refinements of the presented model, linear topologies → limiting the analysis to well-founded transition systems
- New model to capturing relevant properties of distributed systems, e.g. tuple order is compatible with tuple time