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Workload Characterization 
Common parameters in performance models: 
 Service demand of a request
 CPU time, bandwidth consumed, …

 Arrival rate of requests

 Applications
 Automated performance modelling
 Resource cost splitting
 Performance anomaly detection
 … 
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Example: Queueing Modelling 

Demands 

Java Modelling Tools: 
http://jmt.sf.net 
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Example: Cost Splitting 
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We know from theory that the weight is 
exactly the service demand! 
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A Typical Challenge 

HTTP Requests 
in the WS 
(Web Server) 

Observation period T 

1 request in WS 

3 requests in WS 

0 requests in WS 

Time 
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A Typical Challenge 
OS schedules jobs in round robin
If n requests run simultaneously, each will
approximately receive 1/n of the CPU time
Process Sharing is a round robin where the
quantum of time assigned to each request is
infinitesimal

X X 

Service time S 
of the yellow request 

Time 

CPU 

33% CPU 
time each 

50% 
each 

100% 
for blue 

X 

Quantum 

Requests 
Arrive  

Simultaneously 

3 requests 
running 
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Tutorial Agenda 

 Introduction
 Demand Estimation
Utilization-based

– LibReDE tool
Response-based
Queue Length-based

– FG tool
 Comparison Study & Case Studies
 Arrival Rate Estimation

– M3A tool
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Demand Estimation 
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Overview 
 Estimation Approaches (first part) 
 Simple 
 Utilization 
 Response Time 

 LibReDE demo 
 Estimation Approaches (second part) 
 Queue Length 
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Response Time Approximation 

 Trivial approximation: 𝐷𝐷𝑖𝑖,𝑐𝑐 ≈ 𝑅𝑅𝑐𝑐 
 Assumptions 
 resource dominates system response time 
 waiting time in queue ≪ 𝐷𝐷𝑖𝑖,𝑐𝑐 

 Only applicable at low resource utilization 
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Service Demand Law 
 Basic operational law:

𝐷𝐷𝑖𝑖,𝑐𝑐 =
𝑈𝑈𝑖𝑖,𝑐𝑐
𝑋𝑋0,𝑐𝑐

 Partial utilization 𝑈𝑈𝑖𝑖,𝑐𝑐 is hard to derive
 Operating system: per-process statistics
 Profilers: high-overheads

 2 alternative solutions:
 Controlled experiment
 Partitioning
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Controlled Experiment 
 Measurement
Interval 
 CPU Utilization

 Requests executed in separate experiments

 Resource
Demand 
 Problems:
 Not applicable at runtime
 Mutual interference

40% 

Request1 

30% 

Request2 
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Partitioning 
 Measurement
Interval 
 CPU Utilization

 Mixed Workload

 How to partition
processing time? 
 Response times
 Additional performance counters

60% 

Request2 

Request1 
? 
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Estimation Approaches 

Data Collection Data Collection 

Demand Estimation 

Demand Estimation 

Modeling Assumptions 
(scheduling, service distribution) 

Modeling Assumptions 
(scheduling, service distribution) 

Model Solution Model Solution 

Utilization Approach Response Time Approach 
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Linear Regression 
 Linear model (based on Utilization Law)
 𝑈𝑈𝑖𝑖 = ∑ 𝑋𝑋𝑖𝑖,𝑐𝑐𝑁𝑁

𝑐𝑐 ∙ 𝐷𝐷𝑖𝑖,𝑐𝑐 + 𝑈𝑈0
 Example:

 At least 𝑚𝑚 > 𝑛𝑛 observations required
 Alternative solutions:
 Least-Squares Regression
 Least Absolute Differences Regression
 … 

0.54 = 3 * 𝐷𝐷𝑖𝑖,1 + … + 8 * 𝐷𝐷𝑖𝑖,𝑛𝑛 
0.72 = 9 * 𝐷𝐷𝑖𝑖,1 + … + 4 * 𝐷𝐷𝑖𝑖,𝑛𝑛 
0.33 = 2 * 𝐷𝐷𝑖𝑖,1 + … + 9 * 𝐷𝐷𝑖𝑖,𝑛𝑛 
… = …
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Example: Outliers 
 

 

 Outliers can bias the regression 
 

Fit 
Without 
Outliers  



10 

Example: Collinearities 
 

 

 e.g.: logins proportional to logouts 
 

“Right” answer 
not well-defined 
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Other Approaches 
 Robust regression 
 Least Absolute Differences: Zhang et al. (2007) 
 Least Trimmed Squares: Casale et al. (2008) 

 Machine-learning 
 Clusterwise linear regression: Cremonesi et al. (2010)  
 Pattern matching: Cremonesi et al. (2014) 
 

 



12 

Utilization Approaches 
 Utilization-based approaches  
 Advantages 
 Only utilization and throughput data required 
 Minimal assumptions: 

–  Any scheduling strategy 
–  Any interarrival distribution 
–  (Any service time distribution) 

 Disadvantages 
 Robustness 
 Amount of data 
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Response Time Approaches 
 Assumptions 
 Single queue: closed-form solution exists 
 Queueing network: product-form 

 Response time equations depend on 
 Scheduling strategy 
 Service distribution 
 Interarrival time distribution 

If M/G/1 with PS or LCFS 
or M/M/1 with FCFS and class-independent service 

times, then 𝑅𝑅 = 𝐷𝐷
1−𝑈𝑈
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General Optimization 
 Assumptions: 
 Variables 𝑫𝑫 = (𝐷𝐷1,1, … ,𝐷𝐷1,𝑛𝑛, … ,𝐷𝐷𝑖𝑖,1, … ,𝐷𝐷𝑖𝑖,𝑛𝑛)  
 Queueing Network QN  𝒛𝒛 = 𝑓𝑓(𝑫𝑫) 
 Observation data 𝒛𝒛� 

 Optimization Problem: 
 min

𝑫𝑫
𝒛𝒛 − 𝒛𝒛�  

 𝑫𝑫 may be subject to certain constraints 

arbitrary norm 
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Examples 
 Menascé (2008): 
 
 
 
 
 
 Liu et al. (2006): 
 

Squared response time error Product-form solution (non-linear!) 

Constrained to valid solutions 
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Kalman Filter 
 Dynamical system 
 State model:  

 𝑿𝑿𝑘𝑘=𝑭𝑭𝑘𝑘−1𝑿𝑿𝑘𝑘−1+𝑩𝑩𝑘𝑘−1𝒖𝒖𝑘𝑘−1 + 𝒘𝒘𝑘𝑘−1 
 
 
 Observation model:  

 𝒁𝒁𝑘𝑘 = 𝑯𝑯𝑘𝑘𝑿𝑿𝑘𝑘+𝒗𝒗𝑘𝑘 
 
 Filter 
  𝒛𝒛𝑘𝑘 , 𝒛𝒛𝑘𝑘−1, 𝒛𝒛𝑘𝑘−2, … , 𝒛𝒛1  𝑿𝑿�𝑘𝑘~𝑁𝑁(𝒙𝒙�𝑘𝑘,𝑷𝑷�𝑘𝑘) 
 
 

observations 

previous state controlled input uncorrelated noise next state 

estimated mean value 
estimated covariance 

time-series of observations 

observation noise 
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Applied to Demand Estimation 

 State vector 𝑿𝑿𝑘𝑘 = 𝑫𝑫 
 Constant state model 𝑿𝑿𝑘𝑘=𝑿𝑿𝑘𝑘−1 + 𝒘𝒘𝑘𝑘−1 
 Observation model (e.g., Kumar et al. 2009) 

𝑅𝑅1
⋮
𝑈𝑈

=

𝐷𝐷1
1 − 𝑈𝑈
⋮

𝑋𝑋1 ∙ 𝐷𝐷1 + ⋯+ 𝑋𝑋𝐶𝐶 ∙ 𝐷𝐷𝑐𝑐

 

 Other observation models are possible (e.g., 
Zheng et al. 2008, Wang et al. 2012) 
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Want to learn more?  

Elsevier PEVA, October 2015. 
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http://descartes.tools/librede 
Eclipse Public License (EPL)  

http://descartes.tools/librede


1 

Response Time Based 
Estimation 

 
Joint work with S. Kraft and S. Pacheco-Sanchez (SAP Belfast, 

UK) and Juan F. Pérez (U. Melbourne, Australia) 
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Paradigm Shift 

Demand Estimation 

Modeling Assumptions 

(Scheduling, Service Distribution) 

Model Generation and Solution 

Data Collection 

Demand Estimation 

Modeling Assumptions 

(Scheduling, Service Distribution) 

Model Generation and Solution 

Data Collection 

Utilization Approach Response Time Approach 
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 Estimate demand D from response time R 
 
 
 

 
 We investigate the likelihood function in 
 First-Come First-Served (FCFS) queues  

– e.g., admission control, disk drive buffers, … 
 Processor Sharing (PS) queues  

– e.g., CPUs, bandwidth sharing, … 
 
 
 
 

 

Observation 

R D4 
D3 

D1 

D2 D0 

1. For each observed R sample 
2. Draw D from parameter space 
3. Compute likelihood P[R|D] 
4. Move in parameter space to 

maximize P[R|D]   
 

Parameter Space 

Maximum Likelihood Estimator 
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 Model response time using absorbing CTMCs 
 Under FCFS, future arrivals do not affect  
response time distribution of the tagged job 
 
 
 
 

 

RT Likelihood in FCFS queues 

D1 D2 D2 D1 D1 

nK, jobs of class k in queue  
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Markov Chain 2 
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RT Likelihood in FCFS queues 
 

 Probability of being absorbed by time t 
into a give CTMC state  
 Well-understood: PH-type distributed 
 
 
FCFS Example: 

Backlog 
seen  
upon 
arrival 

Class 1 arrival 

ML Problem (K classes) 
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 Monitoring dataset 
 Active mix:   (1     ,2    ,1    ,1   , 0    ) 
 Admission state (mix) and response times 
 

 
 
 

 
 
 
 
 

Assumptions 
 

V CPUs 

R Classes +  
Class switching 

W Workers 

… 
Admission 

Response time 

Multi-core server 
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PI: Trajectory Inference 
 

 Class switching probabilities   
 Users submit requests cyclically 
 Requests issued change class over time 
 

 Closed class-switching queueing model 
 V CPUs, R classes       O(V2R) states 
 Inference of trajectory too complex 
 
 
 

? 
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Dataset characteristics 
 

 CI: Complete information (baseline)   
 V=1 CPU: full state trajectory  
 V>1 CPUs: no individual CPU states 
 We split demand proportionally, taking into 
account the active workers 

 

 PI: Partial information 
 Sample admission state and response time 
 Mean throughput is assumed known 
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CI: Demand estimation 
  V=1 CPU   
 Full demand distribution  
 

 
 

 
 
 
 

Request 
Runtime 

Active workers 

Demand 
Request j 

Class r 

Scale by Active CPUs   V>1 CPU   
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 CI requires very detailed measurements 
 Closed queueing network model   
 Assume a fixed mix as seen upon job arrival 
 No class switching (      tractable) 
 Model can estimate response time of arriving job 
 

 

PI: Approximation 

CPU-0 

CPU-1 

Admission 

Inter 
Admission 

Time 

CPU 0+1 
(PS queue) 
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  V=1 CPU   
 Model assumed in equilibrium  
 

 
 

 
 
 

RPS: Regression Approach 

Queue seen 
at admission 

(incl. arriving job) 

Response  
Time 

Class r 

  V>1 CPU 
 Individual CPU state estimated 

   

Demand 
Class r 

Average queue per CPU 
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MLPS: Maximum Likelihood 
 
 Maximum Likelihood Estimation (MLPS) 
 Search over mean demand guesses 
 Maximize likelihood of observed dataset  

  
 Response time likelihood 
 Tagged customer method (absorbing CTMC) 
 Initialized with state seen upon admission 
 Mean demand guess      CTMC rates 
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 Job of class 3 arrives at system with V=1 CPU 

 Mix seen upon arrival: 1 job of class 1, 3 jobs of class 2 

 

 

 

 

 

 

 
 

 We study the transient of this CTMC to obtain the 
response time distribution of the class-3 job 

 

 

 

 

 

 

 

    

 

MLPS: Absorbing CTMC 
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MLPS: Absorbing CTMC 
 

 V=1 CPU 
 Dataset:  
 Likelihood function for each sample: 
 
 
 
 
 

 V>1 CPUs 
 Load-dependent rates 
 
 
 
 

 
 
 
 

  

init with state at 
admission 

trajectory 
in ri sec 

completion rates 

CTMC generator  
 

1/demand 
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MinPS: Sensitivity Analysis 
 

 Magnitude of class demands  
 3 orders of difference: CI gap ~insensitive 
 

 Class switch probability  
 High / Rare: CI gap ~insensitive 
 

 Non-exponential service 
 low CV: CI gap weakly sensitive 
 high CV: CI gap ~insensitive for CV<2 
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Case Study: SAP ERP 
 3-tier commercial application 
 Modified MLPS with setup times 
 Transactions grouped in R=2 classes  

Response Time 

User 1 
Worker Database 

SAP ERP Application Server 

Workload 
Generator 

Dispatcher 

SAP ERP Database 
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Fluid MLPS (FMLPS) 
 Limit behaviour of the CTMC for growing rates 
and requests increasingly deterministic 
 V=scale factor. Request mix is unchanged. 
 Limit behaviour can be modelled via ODEs  

 

State 
occupancy 
measure 
at time t=100 
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Queue-Length 
Based Estimation 
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 Monitor occupancy at all resources 
 Observations: 
 Ill-posed, unless think times known  

 Probabilistic model of distributed system 
 

 
 Gibbs: iteratively sample posterior 

Gibbs Sampling (GQL) 

prior 
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GQL: Results 
 

 Accurate estimates, error ~3%-7% 
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GQL: Sensitivity analysis 
 Increasing model sizes 
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GQL: Prior distribution 
 

 Dirichlet prior 
 all estimates converge unless the exact demand has 
very low probability prior 
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GQL: Results 
 

 Accurate estimates, error ~3%-7% 
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GQL vs Other MCMC Methods 
 

 Far better convergence properties than 
Metropolis-Hastings and Slice sampling 
 
 
 
 
 
 
 About 13-15% error in estimating demands 
against cloud ERP data (Apache OFBiz) 
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QMLE Approximation 
 

 Based on Maximum Likelihood Estimation 

 Works with mean queue length 

 A simple approximation of the MLE: 

 Consider the demand vector      where  

 

 More details at tomorrow’s talk! 
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FG Tool 
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Tool support 
 FG - “Filling-the-Gap” 
 Batch offline analysis, support for Condor 
 Open Source Software  
 MCR executables (BSD-3) 

 

 Main repo: 

https://github.com/Imperial-AESOP/Filling-the-Gap 

 Manual available in the repo 

 
 

 
 

 
 

https://github.com/Imperial-AESOP/Filling-the-Gap
https://github.com/Imperial-AESOP/Filling-the-Gap
https://github.com/Imperial-AESOP/Filling-the-Gap
https://github.com/Imperial-AESOP/Filling-the-Gap
https://github.com/Imperial-AESOP/Filling-the-Gap
https://github.com/Imperial-AESOP/Filling-the-Gap
https://github.com/Imperial-AESOP/Filling-the-Gap
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FG: Initial design 
 Outputs 
 Model parameters 
 Visualization 
 Forecasting 

–Requires analysis, but not decision-making 
 User control knobs  
 Analysis frequency 
 Horizon of analysis 
 Monitoring intensity  
 Maximum collection window 
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FG: Parameter Estimation 

 Parameters for QN/LQN models 
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FG: Architecture 
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FG: Methods 
 Implemented methods 
 Complete Information (CI) 
 Utilization-Based Regression (UBR) 
 Utilization-Based Optimization (UBO) 
(M/GI/1-PS; cf. Zhang et al., Menasce) 
 ODE-based MLPS (“fluid MLPS”, FMLPS) 
 MINPS 
 Queue-Based Gibbs Sampling (GQL) 
 Extended RPS (ERPS, includes a new 
correction for number of cores) 
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FG: Comparison Results 



1 

Queue-Length 
Based Estimation 



2 

 

 Monitor occupancy at all resources 
 Observations: 
 Ill-posed, unless think times known  

 Probabilistic model of distributed system 
 

 
 Markov-Chain Monte-Carlo (MCMC) 
 draw samples from target distribution  
 averaging samples provides estimate 

Gibbs Sampling (GQL) 
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 Markov-Chain Monte-Carlo (MCMC) 

Gibbs Sampling (GQL) 
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 Gibbs: sample one dimension at a time 

  

 iteratively sample posterior 

 

 where 

Gibbs Sampling (GQL) 

prior 
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GQL: Results 
 

 Accurate estimates, error ~3%-7% 
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GQL: Sensitivity analysis 
 Increasing model sizes 
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GQL: Prior distribution 
 

 Dirichlet prior 
 all estimates converge unless the exact demand has 
very low probability prior 
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GQL: Results 
 

 Accurate estimates, error ~3%-7% 



9 

GQL vs Other MCMC Methods 
 

 Far better convergence properties than 
Metropolis-Hastings and Slice sampling 
 
 
 
 
 
 
 About 13-15% error in estimating demands 
against cloud ERP data (Apache OFBiz) 
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QMLE Approximation 
 

 Based on Maximum Likelihood Estimation 

 Works with mean queue length 

 A simple approximation of the MLE: 

 Consider the demand vector      where  

 

 Approach generalizes to load-dependent QNs 

 More details at tomorrow’s talk! 
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FG Tool 
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Tool support 
 FG - “Filling-the-Gap” 
 Batch offline analysis, support for Condor 
 Open Source Software  
 MCR executables (BSD-3) 

 

 Main repo: 

https://github.com/Imperial-AESOP/Filling-the-Gap 

 Manual available in the repo 

 
 

 
 

 
 

https://github.com/Imperial-AESOP/Filling-the-Gap
https://github.com/Imperial-AESOP/Filling-the-Gap
https://github.com/Imperial-AESOP/Filling-the-Gap
https://github.com/Imperial-AESOP/Filling-the-Gap
https://github.com/Imperial-AESOP/Filling-the-Gap
https://github.com/Imperial-AESOP/Filling-the-Gap
https://github.com/Imperial-AESOP/Filling-the-Gap
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FG: Initial design 
 Outputs 
 Model parameters 
 Visualization 
 

 User control knobs  
 Analysis frequency 
 Horizon of analysis 
 Algorithm selection 
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FG: Parameter Estimation 

 Parameters for QN/LQN models 
 



15 

FG: Architecture 
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FG: Methods 
 Implemented methods 
 Complete Information (CI) 
 Utilization-Based Regression (UBR) 
 Utilization-Based Optimization (UBO) 
(M/GI/1-PS; cf. Zhang et al., Menasce) 
 ODE-based MLPS (“fluid MLPS”, FMLPS) 
 MINPS 
 Queue-Based Gibbs Sampling (GQL) 
 Extended RPS (ERPS, includes a new 
correction for number of cores) 
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FG: Comparison Results 
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Comparison & Case Studies 
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Comparison 

Elsevier PEVA, October 2015. 
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Experiments 
 Dataset D1: Queueing Simulator 
 Simulated M/M/1 queue with FCFS scheduling 
 Workload classes: 1, 2 and 5 
 Utilization levels: 10%, 50%, 90% 
 In total: 900 traces 

 Dataset D2: Micro-Benchmarks 
 Workload classes: 1, 2, and 3 
 Utilization levels: 20%, 50%, 80% 
 In total: 210 traces 
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Compared Approaches 
 Based on Service Demand Law (Brosig et al. 
2009) 
 Utilization Regression (Rolia and Vetland 1995) 
 Kalman Filter (Kumar et al. 2009) 
 Opitimization 1 (Menascé 2008) 
 Optimization 2 (Liu et al. 2006) 
 Response time regression (Kraft et al. 2009) 
 Gibbs Sampling (Wang et al. 20133) 
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Number of Samples 

0

1

2

3

4

5

6

7

8

SDL Util.
Regression

Kalman Filter Optim. 1 Optim. 2 Rt. Regression Gibbs

Re
la

tiv
e 

Er
ro

r 
(i

n 
%

) 

600 samples 3600 samples

Dataset D1 

Number of samples has only limited impact. 



7 

Number of Workload Classes 
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Number of workload classes 
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9 
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Correlation with std[D]: 

Significant influence of scheduling strategy. 
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Collinearity 
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Additional Wait Times 
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Execution Time 
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Case Study: SPECjEnterprise 
 SPECjEnterprise2010 application benchmark 
 Distributed deployment over 7 VMs 
 „Microservice Style“ 

 Strategies for Demand Estimation 
 Observed end-to-end response time 
 Observed residence time per tier 
 Per-resource statistics 
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Experiment Setup 
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Case Study: SAP HANA 
 Admission control 
 Multi-tenant application (extended TPC-W) 
 SAP HANA cloud platform 

 Supports Performance isolation between tenants 
 IEEE/ACM CCGrid 2014. 
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General Idea 

Application 
Server 

Admission 
Control 

Requests rr,c 

Tenants 

Accepted 
Request 

Response 

Resource Demand Estimation 

Demand dt,r,i 

Guarantee 

Indices: 

t = tenant 

r = request type 

i = resource  

Moni-
toring 

Throughput Xt,r 
Response Time Rt,r 

Utilization Ui 
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Resource Isolation 
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Performance Isolation 
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Case Study: Zimbra 
 Goal: Automatic vertical CPU scaling of VMs 
 Zimbra is a collaboration server 
 Transactional workload 
 SLA: Mails need to be delivered within 2 minutes 
 Mails may be queued 

IEEE SASO 2014. 
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Approach Overview 

Desired 
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Layered Performance Model 

Application 
layer 

Virtual resource 
layer 

Physical resource 
layer 

VM1 VM2 vApp 

vCPU vCPU 

Physical CPU 
Service rate depends 
on physical hardware 

+ Hypervisor Scheduling 
Delays 

+ OS scheduling delays 
+ Wait times for other 

resources 

Hierarchical modeling approach (Method of Layers [1]):  
Service time at layer 𝑖𝑖  is equal to response time of an underlying closed queueing network 
at layer 𝑖𝑖 − 1 
 

Load-dependent 
Service Demands 
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Influence of Layers 

Zimbra MTA with linearly increasing workload: 

D
em

an
ds

 (i
n 

se
co

nd
s)

 

Estimated demands reflect contention at hypervisor and 
application level 
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Reconfigurations 
Controller Mean  

latency [s] 
Reconfigurations Mean  

vCPUs 
Max 
vCPUs 

Model-based 20.48 13 1.4 2 
Trigger-based 
(1 min) 

10.82 273 1.83 3 

Trigger-based 
(5 min) 

25.97 72 1.46 3 

Static allocation 1385 0 1 1 

Zimbra MTA VM: 

Model-based controller needs less reconfigurations and 
resources 
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Arrival Process Fitting 
 

Joint work with A. Sansottera and P. Cremonesi (DEIB, Politecnico di 
Milano, Italy) 
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Outline 
 Introduction 

Moments and probabilities in Marked MAPs 

 Fitting of second-order acyclic Marked MAPs 

 Results 

 Conclusions 
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 Stochastic models 
Generate statistically similar request arrival patterns 
Analytical models accelerate search for optimal decisions 

Markovian Traffic Model 
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 Stochastic models 
Generate statistically similar request arrival patterns 
Analytical models accelerate search for optimal decisions 

Arrival Process Modelling 
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Markovian Traffic Model Automated fitting methods 
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 Network of queues  
mathematical abstraction for prediction, what-if scenarios, …  
describes billions of possible states for the resources 
efficient output analysis techniques [Smirni, QEST’09]  
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 Network of queues  
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Non-Poisson Arrivals 
Microsoft Live Maps Back End Trace  

Disk read/write inter-issue time 
Poisson  Phase-type Renewal Processes 
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PH-type Distribution 
N transient states 

Exit vector 

No-mass at 0 assumption 

CTMC 

Representation PH(D0, α) 

1 absorbing state 

Phase-type Distribution: distribution of the time to absorption 
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PH-type Renewal Process 
 Renewal Process with Phase-type distribution 
 Inter-arrival times: i.i.d. with PH(D0, α) distribution 

 Counting process N(t) is a CTMC 

 Blocks of N states 

 Block k: N(t) = k 

 After absorption, go to block k+1 
 Initial state in block k+1: probability α 
 Rate of exit from state i and restart from state j = si αj 
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Some Tools for PH Fitting 

EMpht (1996) 
http://home.imf.au.dk/asmus/pspapers.html   
EM algorithm for ML fitting, based on Runge-Kutta 
methods  
Local optimization technique  

 jPhase (2006) 
http://copa.uniandes.edu.co/software/jmarkov/index.html 

Java library  
ML and canonical form fitting algorithms 

http://home.imf.au.dk/asmus/pspapers.html
http://copa.uniandes.edu.co/software/jmarkov/index.html
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Some Tools for PH Fitting 

PhFit (2002)  
http://webspn.hit.bme.hu/∼telek/tools.htm   

Separate fit of distribution body and tail  
Both continuous and discrete ML distributions  

G-FIT (2007)   
http://ls4-www.cs.uni-dortmund.de/home/thummler/gfit.tgz  

Hyper-Erlang PHs used as building block  
Automatic aggregation of large traces, dramatic 
speed-up of computational times compared to EMpht 

 

 

http://webspn.hit.bme.hu/%E2%88%BCtelek/tools.htm
http://webspn.hit.bme.hu/%E2%88%BCtelek/tools.htm
http://webspn.hit.bme.hu/%E2%88%BCtelek/tools.htm
http://ls4-www.cs.uni-dortmund.de/home/thummler/g%EF%AC%81t.tgz
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Correlated Arrivals 
Microsoft Live Maps Back End Trace  

Disk read/write inter-issue time 
Phase-type Renewal Processes  Markovian Arrival Processes 
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Markovian Arrival Process 
 Phase-type Renewal Process 
Rate of exit from state i and restart from state j = si αj 

 Markovian Arrival Process (MAP) 
Rate of exit from state i and restart from state j = sij 
Generalization of PH-Renewal: allows to model correlation 
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Tools for MAP fitting 

KPC-Toolbox (2008) 
http://www.cs.wm.edu/MAPQN/kpctoolbox.html 
Moment-matching method 
Composition of large MAPs by two-state MAPs 
 
 
 
Property of KPC Process (similar relations for 
higher-order moments, ACF, …) 

 

KPC Process 

!/][][][ kXEXEXE k
b

k
a

k =

http://www.cs.wm.edu/MAPQN/kpctoolbox.html
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Motivation and Goals 
Marked Markovian Arrival Processes (MMAPs) 
  Generalization of MAPs to model multi-class arrivals 
  Allow to model non-Poisson cross-correlated arrivals 
  Allow efficient solution of the models with matrix-

analytic methods 
 

Modeling the arrival process at a queuing 
system (MMAP[K]/PH[k]/1-FCFS queue) 
 FCFS queues can be analyzed analytically using age process 
Q-MAM: https://bitbucket.org/qmam/qmam/src  
 BU-Tools: http://webspn.hit.bme.hu/~telek/tools/butools/  

 
 

https://bitbucket.org/qmam/qmam/src
https://bitbucket.org/qmam/qmam/src
http://webspn.hit.bme.hu/%7Etelek/tools/butools/
http://webspn.hit.bme.hu/%7Etelek/tools/butools/
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Multi-class Arrivals 
Microsoft Live Maps Back End Trace  

Disk read/write inter-issue time 
Markovian Arrival Processes  Marked Markovian Arrival Processes 
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Marked MAPs 

(D0,D1) is a representation of 
the MAP underlying the MMAP 

(D0,D11,D12) is a representation of a 
MMAP[2] process (2 classes) 
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Fitting 
 Fitting problem 
Marked trace from a real system: (Xi, Ci)  MMAP  
Queues with arrivals that follow MMAP can be solved 

analytically 

 Two families of methods 
Maximum-likelihood 
Matching moments (or other characteristics) 

We focus on moment matching 
More computationally efficient 
 In real systems, easier to save moments than the whole 

trace 
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Issues of moment matching 
 Representation of MMAPs is not minimal 
 Number of parameters >> Degrees of freedom 

 Hard to obtain analytical fitting formulas for 
the parameters 
Easy: Parameters -> Moments 
Hard: Moments -> Parameters 
Requires solving a non-linear system of equations in the 

general case 
Non-linear least squares for MMAP fitting [Buchholz, 2010] 
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Issues of moment matching 
 Feasibility: given a number of states n for the 

MMAP, which values of the moments can be fitted 
exactly? 
Related issue: how to perform approximate fitting? 

 Which characteristics best capture the queueing 
behavior? 
Caveat 1: not all characteristics have known analytical 

formulas 
Caveat 2: inverting the analytical formulas might be harder 

for some characteristics 
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Outline 
 Introduction 

Moments and probabilities in Marked 
MAPs 

 Fitting of second-order acyclic Marked MAPs 

 Results 
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Definitions 
 Ordinary moment of order j: 

 

 Backward moment of order j for class c (green): 

 

 Forward moment of order j for class c (green): 

 

 Cross moments of order j for class c followed by class k: 

 

 Probability of a class c arrival: 

 

 “Transition” probability of a class c arrival followed by class k 
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Moment Dependencies 
 Ordinary moments can be expressed as linear 

combination of 
 the forward moments, weighted by the class probabilities 
 the backward moments, weighted by the class probabilities 
 the cross moments, weighted by the class-transition probabilities 

 

 
For 2 classes and j = 1 
Linear system for M1ck 
4 unknowns, rank 3 

A cross-moment might 
be needed to uniquely 
determine a second-
order MMAP[2] 
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Outline 
 Introduction 

Moments and probabilities in Marked MAPs 

 Fitting of second-order acyclic Marked 
MAPs 

 Results 
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AMMAP[2] Fitting 

7 degrees of 
freedom 

4 for the 
underlying 

AMAP 

3 for the 
marginal 

Phase-type 

1 for the  
auto-

correlation 
decay 

3 for  
multi-class 

characteristics 

D0 D1 
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AMMAP[2] Fitting 
 Any MAP(2) has geometric autocorrelation decay with rate γ 
• Canonical form for the underlying MAP(2) [Bodrog et al., 2010] 
 Acyclic: two forms for γ > 0 and γ < 0 
 For γ = 0, acyclic phase-type renewal 

γ  > 0 γ  < 0 
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AMMAP[2] Fitting 
 Any MAP(2) has geometric autocorrelation decay with rate γ 
• Canonical form for the underlying MAP(2) [Bodrog et al., 2010] 
 Acyclic: two forms for γ > 0 and γ < 0 
 For γ = 0, acyclic phase-type renewal 

γ  > 0 γ  < 0 
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AMMAP[2] Fitting 
 Any MAP(2) has geometric autocorrelation decay with rate γ 
• Canonical form for the underlying MAP(2) [Bodrog et al., 2010] 
 Acyclic: two forms for γ > 0 and γ < 0 
 For γ = 0, acyclic phase-type renewal 

γ  > 0 γ  < 0 

3 degrees of freedom 3 degrees of freedom 
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AMMAP[2] Fitting 
 How to spend the 3 available degrees of 

freedom? 

 We have found closed, analytical formulas for the 
three parameters q11, q21, q22, for both canonical 
forms 

 Three different sets of characteristics considered 
Class probabilities and… 
1) Forward moments and backward moments 
2) Forward moments and class transition probabilities 
3) Backward moments and class transition probabilities 
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AMMAP[m] Fitting 
 How to handle more than 2 classes? 

 
p1  = 0.29 
F11 = 0.08 
B11 = 0.08 

p2  = 0.43 
F12 = 0.13 
B12 = 0.12 

p3  = 0.29 
F13 = 0.08 
B13 = 0.09 
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M3A Toolbox 

Latest version: 

https://github.com/Imperial-AESOP/M3A 
 
A set of Matlab functions designed for computing 
the statistical descriptors of MMAPs and fitting 
marked traces with MMAPs  
Syntax compatibility with KPC-Toolbox 

– M3A’s MMAPs are treated by KPC-Toolbox as MAPs 

https://github.com/Imperial-AESOP/M3A
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Outline 
 Introduction 

Moments and probabilities in Marked MAPs 

 Fitting of second-order acyclic Marked MAPs 

 Results 
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Real-World Traces 

Microsoft Live Maps Back End Trace –  
Disk read/write inter-issue time 

Simulation of */M/1 Queue 
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