
Privacy-Aware 
Data-Intensive 
Applications

Michele Guerriero
Politecnico di Milano
michele.guerriero@polimi.it



Today's Information and Communication 
Technologies

● Advancements in ICTs enable the development of powerful and 
more efficient infrastructures and services:

collection of big data from different sources

increase demand for Data-Intensive Applications (DIAs)



The Evolution of Modern Data Processing

● From Map-Reduce to Directed Acyclic Graph-based execution

● The rise of distributed stream processors for large-scale and 
real-time data processing

● The Lambda architecture for balancing batch and streaming 
computations

● The Google Dataflow Model: a unified programming model for 
both batch and streaming data pipelines



Are We Missing Something?

● The problem with Big Data is not just how do we process them

● In many cases Big Data are personal and often sensitive

● Privacy becomes more and more a primary concern in modern 
DIAs



Towards Privacy-Aware DIAs

● Data subjects should be able to specify requirements on how
their data are used

● DIA designers and developers should be able to easily enforce
such requirements

● Solution:

1. a language to let data subjects to specify privacy policies on 
modern DIAs

2. an automatic mechanism to enforce such policies



A Privacy Model for Modern Data-Intensive 
Applications

O3

Message
Queue

S1

S2

S3

O2

O1

Data Broker



View Generalization Policies for Data 
Subject-Specific Streams

● View generalization policies (VGP): allow data subject to 
define views over data subject-specific streams

● A VGP attached on a data subject-specific stream defines how
tuples refering to a given data subject should be published
when a given context holds

● Use Domain Generalization Hierarchy (DGH) to define views



VGP Desired Effect

S2
ds1

6

ds2

5

ds2

3

ds1

1

S1

44 58

ds1

8

12 1273

ds1

6

ds2

6

102

O2: for each
time window

sum the 
content per 
data subject

ds1

6

100

data subject

timestamp

content

data subject

timestamp

content

VGP by data subject ds1:
if context(ctx) 
then generalise(S2, 1)

Time window
of 6 time units

ctx

85

Specifies to which level of the associated
DGH the content of S2 must be generalised



Data Subject Eviction Policies

● Data subject eviction policies (DSEP): allow data owners to 
avoid their data to be considered by a given computation

● A DSEP attached on a data subject-generic stream S defines
in which context tuples refering to a given data subject should
be evicted from the input streams of the operator that produces
S



DSEP Desired Effect

S3
ds1

6

ds2

5

ds2

3

ds1

1

S1

44 58

ds1

8

12 1273

6

2

O2: for each
time window
counts the 
tuples with 

value
greater than

50

data subject

timestamp

content

timestamp

content

DSEP by data subject ds1:
if context(ctx) 
then evict(S3)

Time window
of 6 time units

ctx

6

1



Defining the Context

● Context modeled as a set of contextual variables:

1. dynamic variables change during a user session (e.g. the 
various real-time data computed by a given DIA, the user
location, etc.)

past values might be of interest

2. static variables does not change during a user session (e.g. 
the user identity, her purpose, etc.) 

only their current value is of interest

● Policy enabling context: Metric Temporal Logic formula 
specifying conditions over the past value of dynamic variables
as well as the current value of static variables



Automatic Policy Enforcement via Dataflow 
Rewriting

● Define a set of privacy enhancing dataflow operator

● PastConditionChecker (PCC): checks the validity of past
conditions over dynamic variables

● ViewBuilder (VB): enforces the VGPs specified on a given 
data subject specific stream

● DataSubjectEvictor (DSE): enforces the DSEPs on a given 
data subject generic stream



Enforcing View Creation Policies

VGP by data subject ds1:
if Past[T1,T2](S1>30) & S2<10
then generalise(S3, 1)

S1

S2

S3

PCC

VB
S3’

Past[T1,T2](S1>30)



Enforcing Data Subject Eviction Policies

DSEP by data subject ds1:
if Past[T1,T2](S1>30) & S1<10
then evict(S3)

S1

S2

S3-IN

PCC

DSE
S3-IN’

Past[T1,T2](S1>30)

O
S3



Evaluation Plan

● Performance evaluation focused on:

1. understanding the introduced performance overhead

2. understanding the main model variables that affect performance 
and how

● Apply trace-checking to verify the correctness of the policy 
enforcement implementation

● Apply the proposed approach on real-world use cases (how? 
How to find them?)

● How to compare when there are really no similar approaches out 
there?



Preliminary Results

● Prototype implementation on top of the Apache Flink dataflow
processor

● Preliminary performance evaluation on a cluster of 30 cores:

Example Application 1 Latency Throughput

No Policy 1.5 ms 61.11 t/ms

1 VGP 2.8 ms 56.24 t/ms

Example Application 2 Latency Throughput

No Policy 1.9 ms 60.74 t/ms

1 DSEP 5.3 ms 57.14 t/ms



Future Work and Thesis Plan

● Rigorously follow the evaluation plan

● Dataflow computing and programming fits very well with 
model-based approaches:

1. Apply model-driven apporach to further simplify the 
development of privacy-aware DIAs

2. Extend results from previous research on model-driven 
engineering for DIAs 



Conclusion

● Novel scenarios require new solutions to protect data

● Need to provide data owners with control over their data

● Design and development of privacy-aware applications needs to 
be made easy

● Data protection solutions are beneficial to both:

1. data owners (empowered with control)

2. data controllers (increased confidence of users, decreased
liability)



Thank You!


